

CodeIgniter User Guide

	License Agreement

	Change Log

	Welcome

	Basic Info

	Installation

	Introduction

	Tutorial

	Contributing to CodeIgniter

	General Topics

	Library Reference

	Database Reference

	Helper Reference

Welcome

	Welcome to CodeIgniter

Basic Info

	Server Requirements

	Credits

Installation

	Installation Instructions
	Downloading CodeIgniter

	Installation Instructions

	Upgrading From a Previous Version

	Troubleshooting

Introduction

	CodeIgniter Overview
	Getting Started

	CodeIgniter at a Glance

	Supported Features

	Application Flow Chart

	Model-View-Controller

	Architectural Goals

Tutorial

	Tutorial
	Static pages

	News section

	Create news items

	Conclusion

Contributing to CodeIgniter

	Contributing to CodeIgniter
	Writing CodeIgniter Documentation

	Developer’s Certificate of Origin 1.1

General Topics

	General Topics
	CodeIgniter URLs

	Controllers

	Reserved Names

	Views

	Models

	Helpers

	Using CodeIgniter Libraries

	Creating Libraries

	Using CodeIgniter Drivers

	Creating Drivers

	Creating Core System Classes

	Creating Ancillary Classes

	Hooks - Extending the Framework Core

	Auto-loading Resources

	Common Functions

	Compatibility Functions

	URI Routing

	Error Handling

	Caching

	Profiling Your Application

	Running via the CLI

	Managing your Applications

	Handling Multiple Environments

	Alternate PHP Syntax for View Files

	Security

	PHP Style Guide

Library Reference

	Libraries
	Benchmarking Class

	Caching Driver

	Calendaring Class

	Shopping Cart Class

	Config Class

	Email Class

	Encrypt Class

	Encryption Library

	File Uploading Class

	Form Validation

	FTP Class

	Image Manipulation Class

	Input Class

	Javascript Class

	Language Class

	Loader Class

	Migrations Class

	Output Class

	Pagination Class

	Template Parser Class

	Security Class

	Session Library

	HTML Table Class

	Trackback Class

	Typography Class

	Unit Testing Class

	URI Class

	User Agent Class

	XML-RPC and XML-RPC Server Classes

	Zip Encoding Class

Database Reference

	Database Reference
	Quick Start: Usage Examples

	Database Configuration

	Connecting to a Database

	Running Queries

	Generating Query Results

	Query Helper Functions

	Query Builder Class

	Transactions

	Getting MetaData

	Custom Function Calls

	Query Caching

	Database Manipulation with Database Forge

	Database Utilities Class

	Database Driver Reference

Helper Reference

	Helpers
	Array Helper

	CAPTCHA Helper

	Cookie Helper

	Date Helper

	Directory Helper

	Download Helper

	Email Helper

	File Helper

	Form Helper

	HTML Helper

	Inflector Helper

	Language Helper

	Number Helper

	Path Helper

	Security Helper

	Smiley Helper

	String Helper

	Text Helper

	Typography Helper

	URL Helper

	XML Helper

Welcome to CodeIgniter

CodeIgniter is an Application Development Framework - a toolkit - for
people who build web sites using PHP. Its goal is to enable you to
develop projects much faster than you could if you were writing code
from scratch, by providing a rich set of libraries for commonly needed
tasks, as well as a simple interface and logical structure to access
these libraries. CodeIgniter lets you creatively focus on your project
by minimizing the amount of code needed for a given task.

Who is CodeIgniter For?

CodeIgniter is right for you if:

	You want a framework with a small footprint.

	You need exceptional performance.

	You need broad compatibility with standard hosting accounts that run
a variety of PHP versions and configurations.

	You want a framework that requires nearly zero configuration.

	You want a framework that does not require you to use the command
line.

	You want a framework that does not require you to adhere to
restrictive coding rules.

	You are not interested in large-scale monolithic libraries like PEAR.

	You do not want to be forced to learn a templating language (although
a template parser is optionally available if you desire one).

	You eschew complexity, favoring simple solutions.

	You need clear, thorough documentation.

Installation Instructions

CodeIgniter is installed in four steps:

	Unzip the package.

	Upload the CodeIgniter folders and files to your server. Normally the
index.php file will be at your root.

	Open the application/config/config.php file with a text editor and
set your base URL. If you intend to use encryption or sessions, set
your encryption key.

	If you intend to use a database, open the
application/config/database.php file with a text editor and set your
database settings.

If you wish to increase security by hiding the location of your
CodeIgniter files you can rename the system and application folders to
something more private. If you do rename them, you must open your main
index.php file and set the $system_path and $application_folder
variables at the top of the file with the new name you’ve chosen.

For the best security, both the system and any application folders
should be placed above web root so that they are not directly accessible
via a browser. By default, .htaccess files are included in each folder
to help prevent direct access, but it is best to remove them from public
access entirely in case the web server configuration changes or doesn’t
abide by the .htaccess.

If you would like to keep your views public it is also possible to move
the views folder out of your application folder.

After moving them, open your main index.php file and set the
$system_path, $application_folder and $view_folder variables,
preferably with a full path, e.g. ‘/www/MyUser/system’.

One additional measure to take in production environments is to disable
PHP error reporting and any other development-only functionality. In
CodeIgniter, this can be done by setting the ENVIRONMENT constant, which
is more fully described on the security
page.

That’s it!

If you’re new to CodeIgniter, please read the Getting
Started section of the User Guide
to begin learning how to build dynamic PHP applications. Enjoy!

Downloading CodeIgniter

	CodeIgniter v3.1.11 (Current version) [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.11]

	CodeIgniter v3.1.10 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.10]

	CodeIgniter v3.1.9 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.9]

	CodeIgniter v3.1.8 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.8]

	CodeIgniter v3.1.7 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.7]

	CodeIgniter v3.1.6 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.6]

	CodeIgniter v3.1.5 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.5]

	CodeIgniter v3.1.4 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.4]

	CodeIgniter v3.1.3 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.3]

	CodeIgniter v3.1.2 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.2]

	CodeIgniter v3.1.1 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.1]

	CodeIgniter v3.1.0 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.0]

	CodeIgniter v3.0.6 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.6]

	CodeIgniter v3.0.5 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.5]

	CodeIgniter v3.0.4 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.4]

	CodeIgniter v3.0.3 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.3]

	CodeIgniter v3.0.2 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.2]

	CodeIgniter v3.0.1 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.1]

	CodeIgniter v3.0.0 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.0]

	CodeIgniter v2.2.6 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.6]

	CodeIgniter v2.2.5 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.5]

	CodeIgniter v2.2.4 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.4]

	CodeIgniter v2.2.3 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.3]

	CodeIgniter v2.2.2 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.2]

	CodeIgniter v2.2.1 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.1]

	CodeIgniter v2.2.0 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.0]

	CodeIgniter v2.1.4 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.1.4]

	CodeIgniter v2.1.3 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.1.3]

	CodeIgniter v2.1.2 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.1.2]

	CodeIgniter v2.1.1 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.1.1]

	CodeIgniter v2.1.0 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/v2.1.0]

GitHub

Git [http://git-scm.com/about] is a distributed version control system.

Public Git access is available at GitHub [https://github.com/bcit-ci/CodeIgniter].
Please note that while every effort is made to keep this code base
functional, we cannot guarantee the functionality of code taken from
the develop branch.

Beginning with version 2.0.3, stable versions are also available via GitHub Releases [https://github.com/bcit-ci/CodeIgniter/releases].

Installation Instructions

CodeIgniter is installed in four steps:

	Unzip the package.

	Upload the CodeIgniter folders and files to your server. Normally the
index.php file will be at your root.

	Open the application/config/config.php file with a text editor and
set your base URL. If you intend to use encryption or sessions, set
your encryption key.

	If you intend to use a database, open the
application/config/database.php file with a text editor and set your
database settings.

If you wish to increase security by hiding the location of your
CodeIgniter files you can rename the system and application folders to
something more private. If you do rename them, you must open your main
index.php file and set the $system_path and $application_folder
variables at the top of the file with the new name you’ve chosen.

For the best security, both the system and any application folders
should be placed above web root so that they are not directly accessible
via a browser. By default, .htaccess files are included in each folder
to help prevent direct access, but it is best to remove them from public
access entirely in case the web server configuration changes or doesn’t
abide by the .htaccess.

If you would like to keep your views public it is also possible to move
the views folder out of your application folder.

After moving them, open your main index.php file and set the
$system_path, $application_folder and $view_folder variables,
preferably with a full path, e.g. ‘/www/MyUser/system’.

One additional measure to take in production environments is to disable
PHP error reporting and any other development-only functionality. In
CodeIgniter, this can be done by setting the ENVIRONMENT constant, which
is more fully described on the security
page.

That’s it!

If you’re new to CodeIgniter, please read the Getting
Started section of the User Guide
to begin learning how to build dynamic PHP applications. Enjoy!

Upgrading From a Previous Version

Please read the upgrade notes corresponding to the version you are
upgrading from.

	Upgrading from 3.1.10 to 3.1.11

	Upgrading from 3.1.9 to 3.1.10

	Upgrading from 3.1.8 to 3.1.9

	Upgrading from 3.1.7 to 3.1.8

	Upgrading from 3.1.6 to 3.1.7

	Upgrading from 3.1.5 to 3.1.6

	Upgrading from 3.1.4 to 3.1.5

	Upgrading from 3.1.3 to 3.1.4

	Upgrading from 3.1.2 to 3.1.3

	Upgrading from 3.1.1 to 3.1.2

	Upgrading from 3.1.0 to 3.1.1

	Upgrading from 3.0.6 to 3.1.0

	Upgrading from 3.0.5 to 3.0.6

	Upgrading from 3.0.4 to 3.0.5

	Upgrading from 3.0.3 to 3.0.4

	Upgrading from 3.0.2 to 3.0.3

	Upgrading from 3.0.1 to 3.0.2

	Upgrading from 3.0.0 to 3.0.1

	Upgrading from 2.2.x to 3.0.x

	Upgrading from 2.2.2 to 2.2.3

	Upgrading from 2.2.1 to 2.2.2

	Upgrading from 2.2.0 to 2.2.1

	Upgrading from 2.1.4 to 2.2.x

	Upgrading from 2.1.3 to 2.1.4

	Upgrading from 2.1.2 to 2.1.3

	Upgrading from 2.1.1 to 2.1.2

	Upgrading from 2.1.0 to 2.1.1

	Upgrading from 2.0.3 to 2.1.0

	Upgrading from 2.0.2 to 2.0.3

	Upgrading from 2.0.1 to 2.0.2

	Upgrading from 2.0 to 2.0.1

	Upgrading from 1.7.2 to 2.0

	Upgrading from 1.7.1 to 1.7.2

	Upgrading from 1.7.0 to 1.7.1

	Upgrading from 1.6.3 to 1.7.0

	Upgrading from 1.6.2 to 1.6.3

	Upgrading from 1.6.1 to 1.6.2

	Upgrading from 1.6.0 to 1.6.1

	Upgrading from 1.5.4 to 1.6.0

	Upgrading from 1.5.3 to 1.5.4

	Upgrading from 1.5.2 to 1.5.3

	Upgrading from 1.5.0 or 1.5.1 to 1.5.2

	Upgrading from 1.4.1 to 1.5.0

	Upgrading from 1.4.0 to 1.4.1

	Upgrading from 1.3.3 to 1.4.0

	Upgrading from 1.3.2 to 1.3.3

	Upgrading from 1.3.1 to 1.3.2

	Upgrading from 1.3 to 1.3.1

	Upgrading from 1.2 to 1.3

	Upgrading from 1.1 to 1.2

	Upgrading from Beta 1.0 to Beta 1.1

Upgrading from 3.1.10 to 3.1.11

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Replace config/mimes.php

This config file has received some updates. Please copy it to
application/config/mimes.php.

Upgrading from 3.1.9 to 3.1.10

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Check for calls to is_countable()

PHP 7.3 introduces a native is_countable() [https://secure.php.net/is_countable]
function, which creates a name collision with the is_countable() function
we’ve had in our Inflector Helpers.

If you’ve been using the helper function in question, you should now rename
the calls to it to word_is_countable().

Upgrading from 3.1.8 to 3.1.9

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Replace config/mimes.php

This config file has received some updates. Please copy it to
application/config/mimes.php.

Upgrading from 3.1.7 to 3.1.8

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.1.6 to 3.1.7

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Remove usage of CAPTCHA helper extra parameters (deprecation)

The CAPTCHA Helper function
create_captcha() allows passing of its img_path, img_url
and font_path options as the 2nd, 3rd and 4th parameters respectively.

This kind of usage is now deprecated and you should just pass the options
in question as part of the first parameter array.

Note

The functionality in question is still available, but you’re
strongly encouraged to remove its usage sooner rather than later.

Upgrading from 3.1.5 to 3.1.6

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Remove usage of the APC Cache driver (deprecation)

The Cache Library APC driver is now
deprecated, as the APC extension is effectively dead, as explained in its
PHP Manual page [https://secure.php.net/manual/en/intro.apc.php].

If your application happens to be using it, you can switch to another
cache driver, as APC support will be removed in a future CodeIgniter
version.

Note

The driver is still available, but you’re strongly encouraged
to remove its usage sooner rather than later.

Upgrading from 3.1.4 to 3.1.5

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.1.3 to 3.1.4

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.1.2 to 3.1.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Remove usage of nice_date() helper (deprecation)

The Date Helper function nice_date() is
no longer useful since the introduction of PHP’s DateTime classes [https://secure.php.net/datetime]

You can replace it with the following:

DateTime::createFromFormat($input_format, $input_date)->format($desired_output_format);

Thus, nice_date() is now deprecated and scheduled for removal in
CodeIgniter 3.2+.

Note

The function is still available, but you’re strongly encouraged
to remove its usage sooner rather than later.

Step 3: Remove usage of $config[‘standardize_newlines’]

The Input Library would optionally replace
occurrences of rn, r, n in input data with whatever the PHP_EOL
value is on your system - if you’ve set $config['standardize_newlines']
to TRUE in your application/config/config.php.

This functionality is now deprecated and scheduled for removal in
CodeIgniter 3.2.+.

Note

The functionality is still available, but you’re strongly
encouraged to remove its usage sooner rather than later.

Upgrading from 3.1.1 to 3.1.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Update your “ci_sessions” database table

If you’re using the Session Library with the
‘database’ driver, you may have to ALTER your sessions table for your
sessions to continue to work.

Note

The table in question is not necessarily named “ci_sessions”.
It is what you’ve set as your $config['sess_save_path'].

This will only affect you if you’ve changed your session.hash_function
php.ini setting to something like ‘sha512’. Or if you’ve been running
an older CodeIgniter version on PHP 7.1+.

It is recommended that you do this anyway, just to avoid potential issues
in the future if you do change your configuration.

Just execute the one of the following SQL queries, depending on your
database:

// MySQL:
ALTER TABLE ci_sessions CHANGE id id varchar(128) NOT NULL;

// PostgreSQL
ALTER TABLE ci_sessions ALTER COLUMN id SET DATA TYPE varchar(128);

Upgrading from 3.1.0 to 3.1.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.0.6 to 3.1.0

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Check your PHP version

We recommend always running versions that are currently supported [https://secure.php.net/supported-versions.php], which right now is at least PHP 5.6.

PHP 5.2.x versions are now officially not supported by CodeIgniter, and while 5.3.7+
may be at least runnable, we strongly discourage you from using any PHP versions below
the ones listed on the PHP.net Supported Versions [https://secure.php.net/supported-versions.php]
page.

Step 3: If you’re using the ‘odbc’ database driver, check for usage of Query Builder

Query Builder functionality and escape() can
no longer be used with the ‘odbc’ database driver.

This is because, due to its nature, the ODBC extension for PHP [https://secure.php.net/odbc]
does not provide a function that allows to safely escape user-supplied strings for usage
inside an SQL query (which our Query Builder relies on).

Thus, user inputs MUST be bound, as shown in Running Queries,
under the “Query Bindings” section.

Upgrading from 3.0.5 to 3.0.6

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Update your index.php file (optional)

We’ve made some tweaks to the index.php file, mostly related to proper
usage of directory separators (i.e. use the DIRECTORY_SEPARATOR
constant instead of a hard coded forward slash “/”).

Nothing will break if you skip this step, but if you’re running Windows
or just want to be up to date with every change - we do recommend that
you update your index.php file.

Tip: Just copy the ``ENVIRONMENT``, ``$system_path``, ``$application_folder``
and ``$view_folder`` declarations from the old file and put them into the
new one, replacing the defaults.

Step 3: Remove ‘prep_for_form’ usage (deprecation)

The Form Validation Library has a
prep_for_form() method, which is/can also be used as a rule in
set_rules() to automatically perform HTML encoding on input data.

Automatically encoding input (instead of output) data is a bad practice in
the first place, and CodeIgniter and PHP itself offer other alternatives
to this method anyway.
For example, Form Helper functions will
automatically perform HTML escaping when necessary.

Therefore, the prep_for_form method/rule is pretty much useless and is now
deprecated and scheduled for removal in 3.1+.

Note

The method is still available, but you’re strongly encouraged to
remove its usage sooner rather than later.

Upgrading from 3.0.4 to 3.0.5

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.0.3 to 3.0.4

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.0.2 to 3.0.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Make sure your ‘base_url’ config value is not empty

When $config['base_url'] is not set, CodeIgniter tries to automatically
detect what your website’s base URL is. This is done purely for convenience
when you are starting development of a new application.

Auto-detection is never reliable and also has security implications, which
is why you should always have it manually configured!

One of the changes in CodeIgniter 3.0.3 is how this auto-detection works,
and more specifically it now falls back to the server’s IP address instead
of the hostname requested by the client. Therefore, if you’ve ever relied
on auto-detection, it will change how your website works now.

In case you need to allow e.g. multiple domains, or both http:// and
https:// prefixes to be dynamically used depending on the request,
remember that application/config/config.php is still a PHP script, in
which you can create this logic with a few lines of code. For example:

$allowed_domains = array('domain1.tld', 'domain2.tld');
$default_domain = 'domain1.tld';

if (in_array($_SERVER['HTTP_HOST'], $allowed_domains, TRUE))
{
 $domain = $_SERVER['HTTP_HOST'];
}
else
{
 $domain = $default_domain;
}

if (! empty($_SERVER['HTTPS']))
{
 $config['base_url'] = 'https://'.$domain;
}
else
{
 $config['base_url'] = 'http://'.$domain;
}

Upgrading from 3.0.1 to 3.0.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Update your application/config/constants.php file

The application/config/constants.php file has been updated to check
if constants aren’t already defined before doing that, making it easier
to add an environment-specific configuration.

Note

If you’ve made modifications to this file, please make a
backup first and cross-check the differences first.

Upgrading from 3.0.0 to 3.0.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Update your CLI error templates

Replace all files under your application/views/errors/cli/ directory.

Upgrading from 2.2.x to 3.0.x

Before performing an update you should take your site offline by replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory and
replace your index.php file. If any modifications were made to your
index.php they will need to be made fresh in this new one.

Important

You have to delete the old system/ directory first and
then put the new one in its place. A simple copy-paste may cause
issues.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your classes file names

Starting with CodeIgniter 3.0, all class filenames (libraries, drivers, controllers
and models) must be named in a Ucfirst-like manner or in other words - they must
start with a capital letter.

For example, if you have the following library file:

application/libraries/mylibrary.php

… then you’ll have to rename it to:

application/libraries/Mylibrary.php

The same goes for driver libraries and extensions and/or overrides of CodeIgniter’s
own libraries and core classes.

application/libraries/MY_email.php
application/core/MY_log.php

The above files should respectively be renamed to the following:

application/libraries/MY_Email.php
application/core/MY_Log.php

Controllers:

application/controllers/welcome.php -> application/controllers/Welcome.php

Models:

application/models/misc_model.php -> application/models/Misc_model.php

Please note that this DOES NOT affect directories, configuration files, views,
helpers, hooks and anything else - it is only applied to classes.

You must now follow just one simple rule - class names in Ucfirst and everything else
in lowercase.

Step 3: Replace config/mimes.php

This config file has been updated to contain more user mime-types, please copy
it to application/config/mimes.php.

Step 4: Remove $autoload[‘core’] from your config/autoload.php

Use of the $autoload['core'] config array has been deprecated as of CodeIgniter 1.4.1 and is now removed.
Move any entries that you might have listed there to $autoload['libraries'] instead.

Step 5: Move your Log class overrides or extensions

The Log Class is considered as a “core” class and is now located in the
system/core/ directory. Therefore, in order for your Log class overrides
or extensions to work, you need to move them to application/core/:

application/libraries/Log.php -> application/core/Log.php
application/libraries/MY_Log.php -> application/core/MY_Log.php

Step 6: Update your Session library usage

The Session Library has been completely
re-written in CodeIgniter 3 and now comes with a bunch of new features,
but that also means that there are changes that you should make …

Most notably, the library now uses separate storage drivers instead of
always relying on (encrypted) cookies.
In fact, cookies as storage have now been removed and you must always use
some kind of server-side storage engine, with the file-system being the
default option.

The Session Class now utilizes PHP’s own mechanisms for building custom
session handlers, which also means that your session data is now
accessible via the $_SESSION superglobal (though, we’ve kept the
possibility to use it as “userdata”, like you’ve done until now).

A few configuration options have been removed and a few have been added.
You should really read the whole Session library manual for the details, but here’s a short list of changes
that you should make:

	Set your $config['sess_driver'] value

It will default to ‘files’, unless you’ve previously used
$config['sess_use_database'], in which case it will be set to
‘database’.

	Set a $config['sess_save_path'] value

For the ‘database’ driver, a fallback to $config['sess_table_name']
is in place, but otherwise requires you to read the manual for the
specific driver of your choice.

	Update your ci_sessions table (‘database’ driver only)

The table structure has changed a bit, and more specifically:

	session_id field is renamed to id

	user_agent field is dropped

	user_data field is renamed to data and under MySQL is now of type BLOB

	last_activity field is renamed to timestamp

This is accompanied by a slight change in the table indexes too, so
please read the manual about the Session Database Driver for more information.

Important

Only MySQL and PostgreSQL are officially supported
now. Other databases may still work, but due to lack of advisory
locking features, they are unsafe for concurrent requests and
you should consider using another driver instead.

	Remove $config['sess_match_useragent']

The user-agent string is input supplied by the user’s browser, or in
other words: client side input. As such, it is an ineffective feature
and hence why it has been removed.

	Remove $config['sess_encrypt_cookie']

As already noted, the library no longer uses cookies as a storage
mechanism, which renders this option useless.

	Remove $config['sess_expire_on_close']

This option is still usable, but only for backwards compatibility
purposes and it should be otherwise removed. The same effect is
achieved by setting $config['sess_expiration'] to 0.

	Check “flashdata” for collisions with “userdata”

Flashdata is now just regular “userdata”, only marked for deletion on
the next request. In other words: you can’t have both “userdata” and
“flashdata” with the same name, because it’s the same thing.

	Check usage of session metadata

Previously, you could access the ‘session_id’, ‘ip_address’,
‘user_agent’ and ‘last_activity’ metadata items as userdata.
This is no longer possible, and you should read the notes about
Session Metadata
if your application relies on those values.

	Check unset_userdata() usage

Previously, this method used to accept an associative array of
'key' => 'dummy value' pairs for unsetting multiple keys. That
however makes no sense and you now have to pass only the keys, as
the elements of an array.

// Old
$this->session->unset_userdata(array('item' => '', 'item2' => ''));

// New
$this->session->unset_userdata(array('item', 'item2'));

Finally, if you have written a Session extension, you must now move it to
the application/libraries/Session/ directory, although chances are that
it will now also have to be re-factored.

Step 7: Update your config/database.php

Due to 3.0.0’s renaming of Active Record to Query Builder, inside your
config/database.php, you will need to rename the $active_record
variable to $query_builder:

$active_group = 'default';
// $active_record = TRUE;
$query_builder = TRUE;

Step 8: Replace your error templates

In CodeIgniter 3.0, the error templates are now considered as views and have been moved to the
application/views/errors directory.

Furthermore, we’ve added support for CLI error templates in plain-text format that unlike HTML,
is suitable for the command line. This of course requires another level of separation.

It is safe to move your old templates from application/errors to application/views/errors/html,
but you’ll have to copy the new application/views/errors/cli directory from the CodeIgniter archive.

Step 9: Update your config/routes.php file

Routes containing :any

Historically, CodeIgniter has always provided the :any wildcard in
routing, with the intention of providing a way to match any character
within an URI segment.

However, the :any wildcard is actually just an alias for a regular
expression and used to be executed in that manner as .+. This is
considered a bug, as it also matches the / (forward slash) character, which
is the URI segment delimiter and that was never the intention.

In CodeIgniter 3, the :any wildcard will now represent [^/]+, so
that it will not match a forward slash.

There are certainly many developers that have utilized this bug as an actual
feature. If you’re one of them and want to match a forward slash, please use
the .+ regular expression:

(.+) // matches ANYTHING
(:any) // matches any character, except for '/'

Directories and ‘default_controller’, ‘404_override’

As you should know, the $route['default_controller'] and
$route['404_override'] settings accept not only a controller name, but
also controller/method pairs. However, a bug in the routing logic has
made it possible for some users to use that as directory/controller
instead.

As already said, this behavior was incidental and was never intended, nor
documented. If you’ve relied on it, your application will break with
CodeIgniter 3.0.

Another notable change in version 3 is that ‘default_controller’ and
‘404_override’ are now applied per directory. To explain what this means,
let’s take the following example:

$route['default_controller'] = 'main';

Now, assuming that your website is located at example.com, you already
know that if a user visits http://example.com/, the above setting will
cause your ‘Main’ controller to be loaded.

However, what happens if you have an application/controllers/admin/
directory and the user visits http://example.com/admin/?
In CodeIgniter 3, the router will look for a ‘Main’ controller under the
admin/ directory as well. If not found, a Not Found (404) will be triggered.

The same rule applies to the ‘404_override’ setting.

Step 10: Many functions now return NULL instead of FALSE on missing items

Many methods and functions now return NULL instead of FALSE when the required items don’t exist:

	Common functions
	config_item()

	Config Class
	config->item()

	config->slash_item()

	Input Class
	input->get()

	input->post()

	input->get_post()

	input->cookie()

	input->server()

	input->input_stream()

	input->get_request_header()

	Session Class
	session->userdata()

	session->flashdata()

	URI Class
	uri->segment()

	uri->rsegment()

	Array Helper
	element()

	elements()

Step 11: Usage of XSS filtering

Many functions in CodeIgniter allow you to use its XSS filtering feature
on demand by passing a boolean parameter. The default value of that
parameter used to be boolean FALSE, but it is now changed to NULL and it
will be dynamically determined by your $config['global_xss_filtering']
value.

If you used to manually pass a boolean value for the $xss_filter
parameter or if you’ve always had $config['global_xss_filtering'] set
to FALSE, then this change doesn’t concern you.

Otherwise however, please review your usage of the following functions:

	Input Library
	input->get()

	input->post()

	input->get_post()

	input->cookie()

	input->server()

	input->input_stream()

	Cookie Helper get_cookie()

Important

Another related change is that the $_GET, $_POST,
$_COOKIE and $_SERVER superglobals are no longer
automatically overwritten when global XSS filtering is turned on.

Step 12: Check for potential XSS issues with URIs

The URI Library used to automatically convert
a certain set of “programmatic characters” to HTML entities when they
are encountered in a URI segment.

This was aimed at providing some automatic XSS protection, in addition
to the $config['permitted_uri_chars'] setting, but has proven to be
problematic and is now removed in CodeIgniter 3.0.

If your application has relied on this feature, you should update it to
filter URI segments through $this->security->xss_clean() whenever you
output them.

Step 13: Check for usage of the ‘xss_clean’ Form validation rule

A largely unknown rule about XSS cleaning is that it should only be
applied to output, as opposed to input data.

We’ve made that mistake ourselves with our automatic and global XSS cleaning
feature (see previous step about XSS above), so now in an effort to discourage that
practice, we’re also removing ‘xss_clean’ from the officially supported
list of form validation rules.

Because the Form Validation library
generally validates input data, the ‘xss_clean’ rule simply doesn’t
belong in it.

If you really, really need to apply that rule, you should now also load the
Security Helper, which contains
xss_clean() as a regular function and therefore can be also used as
a validation rule.

Step 14: Update usage of Input Class’s get_post() method

Previously, the Input Class method get_post()
was searching first in POST data, then in GET data. This method has been
modified so that it searches in GET then in POST, as its name suggests.

A method has been added, post_get(), which searches in POST then in GET, as
get_post() was doing before.

Step 15: Update usage of Directory Helper’s directory_map() function

In the resulting array, directories now end with a trailing directory
separator (i.e. a slash, usually).

Step 16: Update usage of Database Forge’s drop_table() method

Up until now, drop_table() added an IF EXISTS clause by default or it didn’t work
at all with some drivers. In CodeIgniter 3.0, the IF EXISTS condition is no longer added
by default and has an optional second parameter that allows that instead and is set to
FALSE by default.

If your application relies on IF EXISTS, you’ll have to change its usage.

// Now produces just DROP TABLE `table_name`
$this->dbforge->drop_table('table_name');

// Produces DROP TABLE IF EXISTS `table_name`
$this->dbforge->drop_table('table_name', TRUE);

Note

The given example uses MySQL-specific syntax, but it should work across
all drivers with the exception of ODBC.

Step 17: Change usage of Email library with multiple emails

The Email Library will automatically clear the
set parameters after successfully sending emails. To override this behaviour,
pass FALSE as the first parameter in the send() method:

if ($this->email->send(FALSE))
{
 // Parameters won't be cleared
}

Step 18: Update your Form_validation language lines

Two improvements have been made to the Form Validation Library’s language
files and error messages format:

	Language Library line keys now must be
prefixed with form_validation_ in order to avoid collisions:

// Old
$lang['rule'] = ...

// New
$lang['form_validation_rule'] = ...

	The error messages format has been changed to use named parameters, to
allow more flexibility than what sprintf() offers:

// Old
'The %s field does not match the %s field.'

// New
'The {field} field does not match the {param} field.'

Note

The old formatting still works, but the non-prefixed line keys
are DEPRECATED and scheduled for removal in CodeIgniter 3.1+.
Therefore you’re encouraged to update its usage sooner rather than
later.

Step 19: Make sure your ‘base_url’ config value is not empty

When $config['base_url'] is not set, CodeIgniter tries to automatically
detect what your website’s base URL is. This is done purely for convenience
when you are starting development of a new application.

Auto-detection is never reliable and also has security implications, which
is why you should always have it manually configured!

One of the changes in CodeIgniter 3.0.3 is how this auto-detection works,
and more specifically it now falls back to the server’s IP address instead
of the hostname requested by the client. Therefore, if you’ve ever relied
on auto-detection, it will change how your website works now.

In case you need to allow e.g. multiple domains, or both http:// and
https:// prefixes to be dynamically used depending on the request,
remember that application/config/config.php is still a PHP script, in
which you can create this logic with a few lines of code. For example:

$allowed_domains = array('domain1.tld', 'domain2.tld');
$default_domain = 'domain1.tld';

if (in_array($_SERVER['HTTP_HOST'], $allowed_domains, TRUE))
{
 $domain = $_SERVER['HTTP_HOST'];
}
else
{
 $domain = $default_domain;
}

if (! empty($_SERVER['HTTPS']))
{
 $config['base_url'] = 'https://'.$domain;
}
else
{
 $config['base_url'] = 'http://'.$domain;
}

Step 20: Remove usage of (previously) deprecated functionalities

In addition to the $autoload['core'] configuration setting, there’s a
number of other functionalities that have been removed in CodeIgniter 3.0.0:

The SHA1 library

The previously deprecated SHA1 library has been removed, alter your code to use PHP’s native
sha1() function to generate a SHA1 hash.

Additionally, the sha1() method in the Encrypt Library has been removed.

The EXT constant

Usage of the EXT constant has been deprecated since dropping support for PHP 4. There’s no
longer a need to maintain different filename extensions and in this new CodeIgniter version,
the EXT constant has been removed. Use just ‘.php’ instead.

Smiley helper

The Smiley Helper is a legacy feature from EllisLab’s
ExpressionEngine product. However, it is too specific for a general purpose framework like
CodeIgniter and as such it is now deprecated.

Also, the previously deprecated js_insert_smiley() (since version 1.7.2) is now removed.

The Encrypt library

Following numerous vulnerability reports, the Encrypt Library has
been deprecated and a new, Encryption Library is added to take
its place.

The new library requires either the MCrypt extension [http://php.net/mcrypt] (and /dev/urandom
availability) or PHP 5.3.3 and the OpenSSL extension [http://php.net/openssl].
While this might be rather inconvenient, it is a requirement that allows us to have properly
implemented cryptographic functions.

Note

The Encrypt Library is still available for the purpose
of keeping backwards compatibility.

Important

You are strongly encouraged to switch to the new Encryption Library as soon as possible!

The Cart library

The Cart Library, similarly to the Smiley Helper is too specific for CodeIgniter. It is now deprecated
and scheduled for removal in CodeIgniter 3.1+.

Note

The library is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

Database drivers ‘mysql’, ‘sqlite’, ‘mssql’, ‘pdo/dblib’

The mysql driver utilizes the old ‘mysql’ PHP extension, known for its aging code base and
many low-level problems. The extension is deprecated as of PHP 5.5 and CodeIgniter deprecates
it in version 3.0, switching the default configured MySQL driver to mysqli.

Please use either the ‘mysqli’ or ‘pdo/mysql’ drivers for MySQL. The old ‘mysql’ driver will be
removed at some point in the future.

The sqlite, mssql and pdo/dblib (also known as pdo/mssql or pdo/sybase) drivers
all depend on PHP extensions that for different reasons no longer exist since PHP 5.3.

Therefore we are now deprecating these drivers as we will have to remove them in one of the next
CodeIgniter versions. You should use the more advanced, sqlite3, sqlsrv or pdo/sqlsrv
drivers respectively.

Note

These drivers are still available, but you’re strongly encouraged to switch to other ones
sooner rather than later.

Security helper do_hash()

Security Helper function do_hash() is now just an alias for
PHP’s native hash() function. It is deprecated and scheduled for removal in CodeIgniter 3.1+.

Note

This function is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

The $config[‘global_xss_filtering’] setting

As already explained above, XSS filtering should not be done on input data,
but on output instead. Therefore, the $config['global_xss_filtering'],
which automatically filters input data, is considered a bad practice and
is now deprecated.

Instead, you should manually escape any user-provided data via the
xss_clean() function when you need to output it, or use a
library like HTML Purifier [http://htmlpurifier.org/] that does that
for you.

Note

The setting is still available, but you’re strongly encouraged to
remove its usage sooner rather than later.

File helper read_file()

File Helper function read_file() is now just an alias for
PHP’s native file_get_contents() function. It is deprecated and scheduled for removal in
CodeIgniter 3.1+.

Note

This function is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

String helper repeater()

String Helper function repeater() is now just an alias for
PHP’s native str_repeat() function. It is deprecated and scheduled for removal in CodeIgniter 3.1+.

Note

This function is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

String helper trim_slashes()

String Helper function trim_slashes() is now just an alias
for PHP’s native trim() function (with a slash passed as its second argument). It is deprecated and
scheduled for removal in CodeIgniter 3.1+.

Note

This function is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

Form helper form_prep()

Form Helper function form_prep()
is now just an alias for common function
html_escape(). It is deprecated and will be removed in the future.

Please use html_escape() instead.

Note

This function is still available, but you’re strongly encouraged
to remove its usage sooner rather than later.

Email helper functions

Email Helper only has two functions

	valid_email()

	send_email()

Both of them are now aliases for PHP’s native filter_var() and mail() functions, respectively.
Therefore the Email Helper altogether is being deprecated and
is scheduled for removal in CodeIgniter 3.1+.

Note

These functions are still available, but you’re strongly encouraged to remove their usage
sooner rather than later.

Date helper standard_date()

Date Helper function standard_date() is being deprecated due
to the availability of native PHP constants [http://php.net/manual/en/class.datetime.php#datetime.constants.types],
which when combined with date() provide the same functionality. Furthermore, they have the
exact same names as the ones supported by standard_date(). Here are examples of how to replace
its usage:

// Old way
standard_date(); // defaults to standard_date('DATE_RFC822', now());

// Replacement
date(DATE_RFC822, now());

// Old way
standard_date('DATE_ATOM', $time);

// Replacement
date(DATE_ATOM, $time);

Note

This function is still available, but you’re strongly encouraged to remove its usage sooner
rather than later as it is scheduled for removal in CodeIgniter 3.1+.

HTML helpers nbs(), br()

HTML Helper functions nbs() and br() are just aliases
for the native str_repeat() function used with and
 respectively.

Because there’s no point in just aliasing native PHP functions, they are now deprecated and
scheduled for removal in CodeIgniter 3.1+.

Note

These functions are still available, but you’re strongly encouraged to remove their usage
sooner rather than later.

Pagination library ‘anchor_class’ setting

The Pagination Library now supports adding pretty much any HTML
attribute to your anchors via the ‘attributes’ configuration setting. This includes passing the
‘class’ attribute and using the separate ‘anchor_class’ setting no longer makes sense.
As a result of that, the ‘anchor_class’ setting is now deprecated and scheduled for removal in
CodeIgniter 3.1+.

Note

This setting is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

String helper random_string() types ‘unique’ and ‘encrypt’

When using the String Helper function random_string(),
you should no longer pass the unique and encrypt randomization types. They are only
aliases for md5 and sha1 respectively and are now deprecated and scheduled for removal
in CodeIgniter 3.1+.

Note

These options are still available, but you’re strongly encouraged to remove their usage
sooner rather than later.

URL helper url_title() separators ‘dash’ and ‘underscore’

When using the URL Helper function url_title(), you
should no longer pass dash or underscore as the word separator. This function will
now accept any character and you should just pass the chosen character directly, so you
should write ‘-‘ instead of ‘dash’ and ‘_’ instead of ‘underscore’.

dash and underscore now act as aliases and are deprecated and scheduled for removal
in CodeIgniter 3.1+.

Note

These options are still available, but you’re strongly encouraged to remove their usage
sooner rather than later.

Session Library method all_userdata()

As seen in the Change Log, Session Library
method userdata() now allows you to fetch all userdata by simply omitting its parameter:

$this->session->userdata();

This makes the all_userdata() method redudant and therefore it is now just an alias for
userdata() with the above shown usage and is being deprecated and scheduled for removal
in CodeIgniter 3.1+.

Note

This method is still available, but you’re strongly encouraged to remove its usage
sooner rather than later.

Database Forge method add_column() with an AFTER clause

If you have used the third parameter for Database Forge method
add_column() to add a field for an AFTER clause, then you should change its usage.

That third parameter has been deprecated and scheduled for removal in CodeIgniter 3.1+.

You should now put AFTER clause field names in the field definition array instead:

// Old usage:
$field = array(
 'new_field' => array('type' => 'TEXT')
);

$this->dbforge->add_column('table_name', $field, 'another_field');

// New usage:
$field = array(
 'new_field' => array('type' => 'TEXT', 'after' => 'another_field')
);

$this->dbforge->add_column('table_name', $field);

Note

The parameter is still available, but you’re strongly encouraged to remove its usage
sooner rather than later.

Note

This is for MySQL and CUBRID databases only! Other drivers don’t support this
clause and will silently ignore it.

URI Routing methods fetch_directory(), fetch_class(), fetch_method()

With properties CI_Router::$directory, CI_Router::$class and CI_Router::$method
being public and their respective fetch_*() no longer doing anything else to just return
the properties - it doesn’t make sense to keep them.

Those are all internal, undocumented methods, but we’ve opted to deprecate them for now
in order to maintain backwards-compatibility just in case. If some of you have utilized them,
then you can now just access the properties instead:

$this->router->directory;
$this->router->class;
$this->router->method;

Note

Those methods are still available, but you’re strongly encouraged to remove their usage
sooner rather than later.

Input library method is_cli_request()

Calls to the CI_Input::is_cli_request() method are necessary at many places
in the CodeIgniter internals and this is often before the Input Library is loaded. Because of that, it is being replaced by a common
function named is_cli() and this method is now just an alias.

The new function is both available at all times for you to use and shorter to type.

// Old
$this->input->is_cli_request();

// New
is_cli();

CI_Input::is_cli_request() is now now deprecated and scheduled for removal in
CodeIgniter 3.1+.

Note

This method is still available, but you’re strongly encouraged to remove its usage
sooner rather than later.

Config library method system_url()

Usage of CI_Config::system_url() encourages insecure coding practices.
Namely, your CodeIgniter system/ directory shouldn’t be publicly accessible
from a security point of view.

Because of this, this method is now deprecated and scheduled for removal in
CodeIgniter 3.1+.

Note

This method is still available, but you’re strongly encouraged to remove its usage
sooner rather than later.

The Javascript library

The Javascript Library has always had an
‘experimental’ status and was never really useful, nor a proper solution.

It is now deprecated and scheduled for removal in CodeIgniter 3.1+.

Note

This library is still available, but you’re strongly encouraged to remove its usage
sooner rather than later.

Form Validation method prep_for_form()

The Form Validation Library has a
prep_for_form() method, which is/can also be used as a rule in
set_rules() to automatically perform HTML encoding on input data.

Automatically encoding input (instead of output) data is a bad practice in
the first place, and CodeIgniter and PHP itself offer other alternatives
to this method anyway.
For example, Form Helper functions will
automatically perform HTML escaping when necessary.

Therefore, the prep_for_form method/rule is pretty much useless and is now
deprecated and scheduled for removal in 3.1+.

Note

The method is still available, but you’re strongly encouraged to
remove its usage sooner rather than later.

Step 21: Check your usage of Text helper highlight_phrase()

The default HTML tag used by Text Helper function
highlight_phrase() has been changed from to the new HTML5
tag <mark>.

Unless you’ve used your own highlighting tags, this might cause trouble
for your visitors who use older web browsers such as Internet Explorer 8.
We therefore suggest that you add the following code to your CSS files
in order to avoid backwards compatibility with old browsers:

mark {
 background: #ff0;
 color: #000;
};

Upgrading from 2.2.2 to 2.2.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Upgrading from 2.2.1 to 2.2.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Upgrading from 2.2.0 to 2.2.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Upgrading from 2.1.4 to 2.2.x

Note

The Encrypt Class now requires the
Mcrypt extension. If you were previously using the Encrypt Class
without Mcrypt, then this is a breaking change. You must install
the Mcrypt extension in order to upgrade. For information on
installing Mcrypt please see the PHP documentation
<http://php.net/manual/en/mcrypt.setup.php>.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Upgrading from 2.1.3 to 2.1.4

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Upgrading from 2.1.2 to 2.1.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 2.1.1 to 2.1.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 2.1.0 to 2.1.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Replace config/mimes.php

This config file has been updated to contain more user mime-types, please copy
it to _application/config/mimes.php*.

Step 3: Update your IP address tables

This upgrade adds support for IPv6 IP addresses. In order to store them, you need
to enlarge your ip_address columns to 45 characters. For example, CodeIgniter’s
session table will need to change

ALTER TABLE ci_sessions CHANGE ip_address ip_address varchar(45) default '0' NOT NULL

Upgrading from 2.0.3 to 2.1.0

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Replace config/mimes.php

This config file has been updated to contain more user agent types,
please copy it to application/config/mimes.php.

Step 3: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 2.0.2 to 2.0.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder and replace
your index.php file. If any modifications were made to your index.php
they will need to be made fresh in this new one.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your main index.php file

If you are running a stock index.php file simply replace your version
with the new one.

If your index.php file has internal modifications, please add your
modifications to the new file and use it.

Step 3: Replace config/user_agents.php

This config file has been updated to contain more user agent types,
please copy it to application/config/user_agents.php.

Step 4: Change references of the EXT constant to “.php”

Note

The EXT Constant has been marked as deprecated, but has not
been removed from the application. You are encouraged to make the
changes sooner rather than later.

Step 5: Remove APPPATH.’third_party’ from autoload.php

Open application/config/autoload.php, and look for the following:

$autoload['packages'] = array(APPPATH.'third_party');

If you have not chosen to load any additional packages, that line can be
changed to:

$autoload['packages'] = array();

Which should provide for nominal performance gains if not autoloading
packages.

Update Sessions Database Tables

If you are using database sessions with the CI Session Library, please
update your ci_sessions database table as follows:

CREATE INDEX last_activity_idx ON ci_sessions(last_activity);
ALTER TABLE ci_sessions MODIFY user_agent VARCHAR(120);

Upgrading from 2.0.1 to 2.0.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder and replace
your index.php file. If any modifications were made to your index.php
they will need to be made fresh in this new one.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Remove loading calls for the Security Library

Security has been moved to the core and is now always loaded
automatically. Make sure you remove any loading calls as they will
result in PHP errors.

Step 3: Move MY_Security

If you are overriding or extending the Security library, you will need
to move it to application/core.

csrf_token_name and csrf_hash have changed to protected class
properties. Please use security->get_csrf_hash() and
security->get_csrf_token_name() to access those values.

Upgrading from 2.0.0 to 2.0.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder and replace
your index.php file. If any modifications were made to your index.php
they will need to be made fresh in this new one.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Replace config/mimes.php

This config file has been updated to contain more mime types, please
copy it to application/config/mimes.php.

Step 3: Check for forms posting to default controller

The default behavior for form_open() when called with no parameters
used to be to post to the default controller, but it will now just leave
an empty action=”” meaning the form will submit to the current URL. If
submitting to the default controller was the expected behavior it will
need to be changed from:

echo form_open(); //<form action="" method="post" accept-charset="utf-8">

to use either a / or base_url():

echo form_open('/'); //<form action="http://example.com/index.php/" method="post" accept-charset="utf-8">
echo form_open(base_url()); //<form action="http://example.com/" method="post" accept-charset="utf-8">

Upgrading from 1.7.2 to 2.0.0

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Update Instructions

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder except
your application folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Adjust get_dir_file_info() where necessary

Version 2.0.0 brings a non-backwards compatible change to
get_dir_file_info() in the File
Helper. Non-backwards compatible changes
are extremely rare in CodeIgniter, but this one we feel was warranted
due to how easy it was to create serious server performance issues. If
you need recursiveness where you are using this helper function,
change such instances, setting the second parameter, $top_level_only
to FALSE:

get_dir_file_info('/path/to/directory', FALSE);

Step 3: Convert your Plugins to Helpers

2.0.0 gets rid of the “Plugin” system as their functionality was
identical to Helpers, but non-extensible. You will need to rename your
plugin files from filename_pi.php to filename_helper.php, move them to
your helpers folder, and change all instances of:

$this->load->plugin('foo');

to

$this->load->helper('foo');

Step 4: Update stored encrypted data

Note

If your application does not use the Encrypt library, does
not store Encrypted data permanently, or is on an environment that does
not support Mcrypt, you may skip this step.

The Encrypt library has had a number of improvements, some for
encryption strength and some for performance, that has an unavoidable
consequence of making it no longer possible to decode encrypted data
produced by the original version of this library. To help with the
transition, a new method has been added, encode_from_legacy() that
will decode the data with the original algorithm and return a re-encoded
string using the improved methods. This will enable you to easily
replace stale encrypted data with fresh in your applications, either on
the fly or en masse.

Please read how to use this
method in the Encrypt library
documentation.

Step 5: Remove loading calls for the compatibility helper.

The compatibility helper has been removed from the CodeIgniter core. All
methods in it should be natively available in supported PHP versions.

Step 6: Update Class extension

All core classes are now prefixed with CI_. Update Models and
Controllers to extend CI_Model and CI_Controller, respectively.

Step 7: Update Parent Constructor calls

All native CodeIgniter classes now use the PHP 5 __construct()
convention. Please update extended libraries to call
parent::__construct().

Step 8: Move any core extensions to application/core

Any extensions to core classes (e.g. MY_Controller.php) in your
application/libraries folder must be moved to the new
application/core folder.

Step 9: Update your user guide

Please replace your local copy of the user guide with the new version,
including the image files.

Update Notes

Please refer to the 2.0.0 Change Log for full
details, but here are some of the larger changes that are more likely to
impact your code:

	Scaffolding has been removed.

	The CAPTCHA plugin in now a helper.

	The JavaScript calendar plugin was removed.

	The system/cache and system/logs directories are now in the application
directory.

	The Validation class has been removed. Please see the
Form Validation library

	“default” is now a reserved name.

	The xss_clean() function has moved to the Security Class.

	do_xss_clean() now returns FALSE if the uploaded file fails XSS checks.

	The Session Class requires now the use of an
encryption key set in the config file.

	The following deprecated Active Record functions have been removed:
orwhere, orlike, groupby, orhaving, orderby,
getwhere.

	_drop_database() and _create_database() functions have been removed
from the db utility drivers.

	The dohash() function of the Security helper
has been renamed to do_hash() for naming consistency.

The config folder

The following files have been changed:

	config.php

	database.php

	mimes.php

	routes.php

	user_agents.php

The following files have been added:

	foreign_chars.php

	profiler.php

Upgrading from 1.7.1 to 1.7.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

	index.php

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Remove header() from 404 error template

If you are using header() in your 404 error template, such as the case
with the default error_404.php template shown below, remove that line
of code.

<?php header("HTTP/1.1 404 Not Found"); ?>

404 status headers are now properly handled in the show_404() method
itself.

Step 3: Confirm your system_path

In your updated index.php file, confirm that the $system_path variable
is set to your application’s system folder.

Step 4: Update your user guide

Please replace your local copy of the user guide with the new version,
including the image files.

Upgrading from 1.7.0 to 1.7.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please replace your local copy of the user guide with the new version,
including the image files.

Upgrading from 1.6.3 to 1.7.0

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your Session Table

If you are using the Session class in your application, AND if you are
storing session data to a database, you must add a new column named
user_data to your session table. Here is an example of what this column
might look like for MySQL:

user_data text NOT NULL

To add this column you will run a query similar to this:

ALTER TABLE `ci_sessions` ADD `user_data` text NOT NULL

You’ll find more information regarding the new Session functionality in
the Session class page.

Step 3: Update your Validation Syntax

This is an optional, but recommended step, for people currently
using the Validation class. CI 1.7 introduces a new Form Validation
class, which deprecates the old
Validation library. We have left the old one in place so that existing
applications that use it will not break, but you are encouraged to
migrate to the new version as soon as possible. Please read the user
guide carefully as the new library works a little differently, and has
several new features.

Step 4: Update your user guide

Please replace your local copy of the user guide with the new version,
including the image files.

Upgrading from 1.6.2 to 1.6.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.6.1 to 1.6.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Encryption Key

If you are using sessions, open up application/config/config.php and
verify you’ve set an encryption key.

Step 3: Constants File

Copy /application/config/constants.php to your installation, and modify
if necessary.

Step 4: Mimes File

Replace /application/config/mimes.php with the dowloaded version. If
you’ve added custom mime types, you’ll need to re-add them.

Step 5: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.6.0 to 1.6.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.5.4 to 1.6.0

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/libraries

	system/plugins

	system/language

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Add time_to_update to your config.php

Add the following to application/config/config.php with the other
session configuration options

$config['sess_time_to_update'] = 300;

Step 3: Add $autoload[‘model’]

Add the following to application/config/autoload.php

/*
| ---
Auto-load Model files
Prototype:
$autoload['model'] = array('my_model');
*/

$autoload['model'] = array();

Step 4: Add to your database.php

Make the following changes to your application/config/database.php file:

Add the following variable above the database configuration options,
with $active_group

$active_record = TRUE;

Remove the following from your database configuration options

$db['default']['active_r'] = TRUE;

Add the following to your database configuration options

$db['default']['char_set'] = "utf8";
$db['default']['dbcollat'] = "utf8_general_ci";

Step 5: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.5.3 to 1.5.4

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	application/config/mimes.php

	system/codeigniter

	system/database

	system/helpers

	system/libraries

	system/plugins

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Add charset to your config.php

Add the following to application/config/config.php

/*
|--
Default Character Set
This determines which character set is used by default in various methods
that require a character set to be provided.
*/
$config['charset'] = "UTF-8";

Step 3: Autoloading language files

If you want to autoload any language files, add this line to
application/config/autoload.php

$autoload['language'] = array();

Step 4: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.5.2 to 1.5.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/database/drivers

	system/helpers

	system/libraries/Input.php

	system/libraries/Loader.php

	system/libraries/Profiler.php

	system/libraries/Table.php

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.5.0 to 1.5.2

Note

The instructions on this page assume you are running version
1.5.0 or 1.5.1. If you have not upgraded to that version please do so
first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/helpers/download_helper.php

	system/helpers/form_helper.php

	system/libraries/Table.php

	system/libraries/User_agent.php

	system/libraries/Exceptions.php

	system/libraries/Input.php

	system/libraries/Router.php

	system/libraries/Loader.php

	system/libraries/Image_lib.php

	system/language/english/unit_test_lang.php

	system/database/DB_active_rec.php

	system/database/drivers/mysqli/mysqli_driver.php

	codeigniter/

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.4.1 to 1.5.0

Note

The instructions on this page assume you are running version
1.4.1. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	application/config/user_agents.php (new file for 1.5)

	application/config/smileys.php (new file for 1.5)

	codeigniter/

	database/ (new folder for 1.5. Replaces the “drivers” folder)

	helpers/

	language/

	libraries/

	scaffolding/

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your database.php file

Open your application/config/database.php file and add these new items:

$db['default']['cache_on'] = FALSE;
$db['default']['cachedir'] = '';

Step 3: Update your config.php file

Open your application/config/config.php file and ADD these new items:

/*
|--
Class Extension Prefix
This item allows you to set the filename/classname prefix when extending
native libraries. For more information please see the user guide:
https://codeigniter.com/user_guide/general/core_classes.html
https://codeigniter.com/user_guide/general/creating_libraries.html
*/
$config['subclass_prefix'] = 'MY_';

/*
|--
Rewrite PHP Short Tags
If your PHP installation does not have short tag support enabled CI
can rewrite the tags on-the-fly, enabling you to utilize that syntax
in your view files. Options are TRUE or FALSE (boolean)
*/
$config['rewrite_short_tags'] = FALSE;

In that same file REMOVE this item:

/*
|--
Enable/Disable Error Logging
If you would like errors or debug messages logged set this variable to
TRUE (boolean). Note: You must set the file permissions on the "logs" folder
such that it is writable.
*/
$config['log_errors'] = FALSE;

Error logging is now disabled simply by setting the threshold to zero.

Step 4: Update your main index.php file

If you are running a stock index.php file simply replace your version
with the new one.

If your index.php file has internal modifications, please add your
modifications to the new file and use it.

Step 5: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.4.0 to 1.4.1

Note

The instructions on this page assume you are running version
1.4.0. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	codeigniter

	drivers

	helpers

	libraries

Step 2: Update your config.php file

Open your application/config/config.php file and add this new item:

/*
|--
Output Compression
Enables Gzip output compression for faster page loads. When enabled,
the output class will test whether your server supports Gzip.
Even if it does, however, not all browsers support compression
so enable only if you are reasonably sure your visitors can handle it.
VERY IMPORTANT: If you are getting a blank page when compression is enabled it
means you are prematurely outputting something to your browser. It could
even be a line of whitespace at the end of one of your scripts. For
compression to work, nothing can be sent before the output buffer is called
by the output class. Do not "echo" any values with compression enabled.
*/
$config['compress_output'] = FALSE;

Step 3: Rename an Autoload Item

Open the following file: application/config/autoload.php

Find this array item:

$autoload['core'] = array();

And rename it to this:

$autoload['libraries'] = array();

This change was made to improve clarity since some users were not sure
that their own libraries could be auto-loaded.

Step 4: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.3.3 to 1.4.0

Note

The instructions on this page assume you are running version
1.3.3. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	application/config/hooks.php

	application/config/mimes.php

	codeigniter

	drivers

	helpers

	init

	language

	libraries

	scaffolding

Step 2: Update your config.php file

Open your application/config/config.php file and add these new items:

/*
|--
Enable/Disable System Hooks
If you would like to use the "hooks" feature you must enable it by
setting this variable to TRUE (boolean). See the user guide for details.
*/
$config['enable_hooks'] = FALSE;

/*
|--
Allowed URL Characters
This lets you specify which characters are permitted within your URLs.
When someone tries to submit a URL with disallowed characters they will
get a warning message.
As a security measure you are STRONGLY encouraged to restrict URLs to
as few characters as possible. By default only these are allowed: a-z 0-9~%.:_-
Leave blank to allow all characters -- but only if you are insane.
DO NOT CHANGE THIS UNLESS YOU FULLY UNDERSTAND THE REPERCUSSIONS!!
*/
$config['permitted_uri_chars'] = 'a-z 0-9~%.:_-';

Step 3: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.3.2 to 1.3.3

Note

The instructions on this page assume you are running version
1.3.2. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	codeigniter

	drivers

	helpers

	init

	libraries

Step 2: Update your Models

If you are NOT using CodeIgniter’s
Models feature disregard this step.

As of version 1.3.3, CodeIgniter does not connect automatically to
your database when a model is loaded. This allows you greater
flexibility in determining which databases you would like used with your
models. If your application is not connecting to your database prior to
a model being loaded you will have to update your code. There are
several options for connecting, as described
here.

Step 3: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.3.1 to 1.3.2

Note

The instructions on this page assume you are running version
1.3.1. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	drivers

	init

	libraries

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.3 to 1.3.1

Note

The instructions on this page assume you are running version
1.3. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	drivers

	init/init_unit_test.php (new for 1.3.1)

	language/

	libraries

	scaffolding

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.2 to 1.3

Note

The instructions on this page assume you are running version
1.2. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	application/models/ (new for 1.3)

	codeigniter (new for 1.3)

	drivers

	helpers

	init

	language

	libraries

	plugins

	scaffolding

Step 2: Update your error files

Version 1.3 contains two new error templates located in
application/errors, and for naming consistency the other error templates
have been renamed.

If you have not customized any of the error templates simply replace
this folder:

	application/errors/

If you have customized your error templates, rename them as follows:

	404.php = error_404.php

	error.php = error_general.php

	error_db.php (new)

	error_php.php (new)

Step 3: Update your index.php file

Please open your main index.php file (located at your root). At the very
bottom of the file, change this:

require_once BASEPATH.'libraries/Front_controller'.EXT;

To this:

require_once BASEPATH.'codeigniter/CodeIgniter'.EXT;

Step 4: Update your config.php file

Open your application/config/config.php file and add these new items:

/*
|--
URL suffix
This option allows you to add a suffix to all URLs.
For example, if a URL is this:
example.com/index.php/products/view/shoes
You can optionally add a suffix, like ".html",
making the page appear to be of a certain type:
example.com/index.php/products/view/shoes.html
*/
$config['url_suffix'] = "";

/*
|--
Enable Query Strings
By default CodeIgniter uses search-engine and
human-friendly segment based URLs:
example.com/who/what/where/
You can optionally enable standard query string
based URLs:
example.com?who=me&what=something&where=here
Options are: TRUE or FALSE (boolean)
The two other items let you set the query string "words"
that will invoke your controllers and functions:
example.com/index.php?c=controller&m=function
*/
$config['enable_query_strings'] = FALSE;
$config['controller_trigger'] = 'c';
$config['function_trigger'] = 'm';

Step 5: Update your database.php file

Open your application/config/database.php file and add these new items:

$db['default']['dbprefix'] = "";
$db['default']['active_r'] = TRUE;

Step 6: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading From Beta 1.0 to Final 1.2

To upgrade to Version 1.2 please replace the following directories with
the new versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	drivers

	helpers

	init

	language

	libraries

	plugins

	scaffolding

Please also replace your local copy of the user guide with the new
version.

Upgrading From Beta 1.0 to Beta 1.1

To upgrade to Beta 1.1 please perform the following steps:

Step 1: Replace your index file

Replace your main index.php file with the new index.php file. Note: If
you have renamed your “system” folder you will need to edit this info in
the new file.

Step 2: Relocate your config folder

This version of CodeIgniter now permits multiple sets of “applications”
to all share a common set of backend files. In order to enable each
application to have its own configuration values, the config directory
must now reside inside of your application folder, so please move it
there.

Step 3: Replace directories

Replace the following directories with the new versions:

	drivers

	helpers

	init

	libraries

	scaffolding

Step 4: Add the calendar language file

There is a new language file corresponding to the new calendaring class
which must be added to your language folder. Add the following item to
your version: language/english/calendar_lang.php

Step 5: Edit your config file

The original application/config/config.php file has a typo in it Open
the file and look for the items related to cookies:

$conf['cookie_prefix'] = "";
$conf['cookie_domain'] = "";
$conf['cookie_path'] = "/";

Change the array name from $conf to $config, like this:

$config['cookie_prefix'] = "";
$config['cookie_domain'] = "";
$config['cookie_path'] = "/";

Lastly, add the following new item to the config file (and edit the
option if needed):

/*
|--
URI PROTOCOL
This item determines which server global
should be used to retrieve the URI string. The
default setting of "auto" works for most servers.
If your links do not seem to work, try one of
the other delicious flavors:
'auto' Default - auto detects
'path_info' Uses the PATH_INFO
'query_string' Uses the QUERY_STRING
*/

$config['uri_protocol'] = "auto";

Troubleshooting

If you find that no matter what you put in your URL only your default
page is loading, it might be that your server does not support the
REQUEST_URI variable needed to serve search-engine friendly URLs. As a
first step, open your application/config/config.php file and look for
the URI Protocol information. It will recommend that you try a couple
alternate settings. If it still doesn’t work after you’ve tried this
you’ll need to force CodeIgniter to add a question mark to your URLs. To
do this open your application/config/config.php file and change this:

$config['index_page'] = "index.php";

To this:

$config['index_page'] = "index.php?";

CodeIgniter Overview

The following pages describe the broad concepts behind CodeIgniter:

	Getting Started

	CodeIgniter at a Glance

	Supported Features

	Application Flow Chart

	Model-View-Controller

	Architectural Goals

Getting Started With CodeIgniter

Any software application requires some effort to learn. We’ve done our
best to minimize the learning curve while making the process as
enjoyable as possible.

The first step is to install
CodeIgniter, then read all the topics in the Introduction section of
the Table of Contents.

Next, read each of the General Topics pages in order. Each topic
builds on the previous one, and includes code examples that you are
encouraged to try.

Once you understand the basics you’ll be ready to explore the Class
Reference and Helper Reference pages to learn to utilize the
native libraries and helper files.

Feel free to take advantage of our Community
Forums [http://forum.codeigniter.com/] if you have questions or
problems, and our Wiki [https://github.com/bcit-ci/CodeIgniter/wiki] to see code
examples posted by other users.

CodeIgniter at a Glance

CodeIgniter is an Application Framework

CodeIgniter is a toolkit for people who build web applications using
PHP. Its goal is to enable you to develop projects much faster than you
could if you were writing code from scratch, by providing a rich set of
libraries for commonly needed tasks, as well as a simple interface and
logical structure to access these libraries. CodeIgniter lets you
creatively focus on your project by minimizing the amount of code needed
for a given task.

CodeIgniter is Free

CodeIgniter is licensed under the MIT license so you can use it however
you please. For more information please read the
license agreement.

CodeIgniter is Light Weight

Truly light weight. The core system requires only a few very small
libraries. This is in stark contrast to many frameworks that require
significantly more resources. Additional libraries are loaded
dynamically upon request, based on your needs for a given process, so
the base system is very lean and quite fast.

CodeIgniter is Fast

Really fast. We challenge you to find a framework that has better
performance than CodeIgniter.

CodeIgniter Uses M-V-C

CodeIgniter uses the Model-View-Controller approach, which allows great
separation between logic and presentation. This is particularly good for
projects in which designers are working with your template files, as the
code these files contain will be minimized. We describe MVC in more
detail on its own page.

CodeIgniter Generates Clean URLs

The URLs generated by CodeIgniter are clean and search-engine friendly.
Rather than using the standard “query string” approach to URLs that is
synonymous with dynamic systems, CodeIgniter uses a segment-based
approach:

example.com/news/article/345

Note

By default the index.php file is included in the URL but it can
be removed using a simple .htaccess file.

CodeIgniter Packs a Punch

CodeIgniter comes with full-range of libraries that enable the most
commonly needed web development tasks, like accessing a database,
sending email, validating form data, maintaining sessions, manipulating
images, working with XML-RPC data and much more.

CodeIgniter is Extensible

The system can be easily extended through the use of your own libraries,
helpers, or through class extensions or system hooks.

CodeIgniter Does Not Require a Template Engine

Although CodeIgniter does come with a simple template parser that can
be optionally used, it does not force you to use one. Template engines
simply can not match the performance of native PHP, and the syntax that
must be learned to use a template engine is usually only marginally
easier than learning the basics of PHP. Consider this block of PHP code:

<?php foreach ($addressbook as $name):?>
 <?=$name?>
<?php endforeach; ?>

Contrast this with the pseudo-code used by a template engine:

{foreach from=$addressbook item="name"}
 {$name}
{/foreach}

Yes, the template engine example is a bit cleaner, but it comes at the
price of performance, as the pseudo-code must be converted back into PHP
to run. Since one of our goals is maximum performance, we opted to not
require the use of a template engine.

CodeIgniter is Thoroughly Documented

Programmers love to code and hate to write documentation. We’re no
different, of course, but since documentation is as important as the
code itself, we are committed to doing it. Our source code is extremely
clean and well commented as well.

CodeIgniter has a Friendly Community of Users

Our growing community of users can be seen actively participating in our
Community Forums [http://forum.codeigniter.com/].

CodeIgniter Features

Features in and of themselves are a very poor way to judge an
application since they tell you nothing about the user experience, or
how intuitively or intelligently it is designed. Features don’t reveal
anything about the quality of the code, or the performance, or the
attention to detail, or security practices. The only way to really judge
an app is to try it and get to know the code.
Installing CodeIgniter is child’s play so
we encourage you to do just that. In the mean time here’s a list of
CodeIgniter’s main features.

	Model-View-Controller Based System

	Extremely Light Weight

	Full Featured database classes with support for several platforms.

	Query Builder Database Support

	Form and Data Validation

	Security and XSS Filtering

	Session Management

	Email Sending Class. Supports Attachments, HTML/Text email, multiple
protocols (sendmail, SMTP, and Mail) and more.

	Image Manipulation Library (cropping, resizing, rotating, etc.).
Supports GD, ImageMagick, and NetPBM

	File Uploading Class

	FTP Class

	Localization

	Pagination

	Data Encryption

	Benchmarking

	Full Page Caching

	Error Logging

	Application Profiling

	Calendaring Class

	User Agent Class

	Zip Encoding Class

	Template Engine Class

	Trackback Class

	XML-RPC Library

	Unit Testing Class

	Search-engine Friendly URLs

	Flexible URI Routing

	Support for Hooks and Class Extensions

	Large library of “helper” functions

Application Flow Chart

The following graphic illustrates how data flows throughout the system:

[image: CodeIgniter application flow]

	The index.php serves as the front controller, initializing the base
resources needed to run CodeIgniter.

	The Router examines the HTTP request to determine what should be done
with it.

	If a cache file exists, it is sent directly to the browser, bypassing
the normal system execution.

	Security. Before the application controller is loaded, the HTTP
request and any user submitted data is filtered for security.

	The Controller loads the model, core libraries, helpers, and any
other resources needed to process the specific request.

	The finalized View is rendered then sent to the web browser to be
seen. If caching is enabled, the view is cached first so that on
subsequent requests it can be served.

Model-View-Controller

CodeIgniter is based on the Model-View-Controller development pattern.
MVC is a software approach that separates application logic from
presentation. In practice, it permits your web pages to contain minimal
scripting since the presentation is separate from the PHP scripting.

	The Model represents your data structures. Typically your model
classes will contain functions that help you retrieve, insert, and
update information in your database.

	The View is the information that is being presented to a user. A
View will normally be a web page, but in CodeIgniter, a view can also
be a page fragment like a header or footer. It can also be an RSS
page, or any other type of “page”.

	The Controller serves as an intermediary between the Model, the
View, and any other resources needed to process the HTTP request and
generate a web page.

CodeIgniter has a fairly loose approach to MVC since Models are not
required. If you don’t need the added separation, or find that
maintaining models requires more complexity than you want, you can
ignore them and build your application minimally using Controllers and
Views. CodeIgniter also enables you to incorporate your own existing
scripts, or even develop core libraries for the system, enabling you to
work in a way that makes the most sense to you.

Design and Architectural Goals

Our goal for CodeIgniter is maximum performance, capability, and
flexibility in the smallest, lightest possible package.

To meet this goal we are committed to benchmarking, re-factoring, and
simplifying at every step of the development process, rejecting anything
that doesn’t further the stated objective.

From a technical and architectural standpoint, CodeIgniter was created
with the following objectives:

	Dynamic Instantiation. In CodeIgniter, components are loaded and
routines executed only when requested, rather than globally. No
assumptions are made by the system regarding what may be needed
beyond the minimal core resources, so the system is very light-weight
by default. The events, as triggered by the HTTP request, and the
controllers and views you design will determine what is invoked.

	Loose Coupling. Coupling is the degree to which components of a
system rely on each other. The less components depend on each other
the more reusable and flexible the system becomes. Our goal was a
very loosely coupled system.

	Component Singularity. Singularity is the degree to which
components have a narrowly focused purpose. In CodeIgniter, each
class and its functions are highly autonomous in order to allow
maximum usefulness.

CodeIgniter is a dynamically instantiated, loosely coupled system with
high component singularity. It strives for simplicity, flexibility, and
high performance in a small footprint package.

Tutorial

This tutorial is intended to introduce you to the CodeIgniter framework
and the basic principles of MVC architecture. It will show you how a
basic CodeIgniter application is constructed in step-by-step fashion.

In this tutorial, you will be creating a basic news application. You
will begin by writing the code that can load static pages. Next, you
will create a news section that reads news items from a database.
Finally, you’ll add a form to create news items in the database.

This tutorial will primarily focus on:

	Model-View-Controller basics

	Routing basics

	Form validation

	Performing basic database queries using “Query Builder”

The entire tutorial is split up over several pages, each explaining a
small part of the functionality of the CodeIgniter framework. You’ll go
through the following pages:

	Introduction, this page, which gives you an overview of what to
expect.

	Static pages, which will teach you the basics
of controllers, views and routing.

	News section, where you’ll start using models
and will be doing some basic database operations.

	Create news items, which will introduce
more advanced database operations and form validation.

	Conclusion, which will give you some pointers on
further reading and other resources.

Enjoy your exploration of the CodeIgniter framework.

Static pages

Note: This tutorial assumes you’ve downloaded CodeIgniter and
installed the framework in your
development environment.

The first thing you’re going to do is set up a controller to handle
static pages. A controller is simply a class that helps delegate work.
It is the glue of your web application.

For example, when a call is made to:

http://example.com/news/latest/10

We might imagine that there is a controller named “news”. The method
being called on news would be “latest”. The news method’s job could be to
grab 10 news items, and render them on the page. Very often in MVC,
you’ll see URL patterns that match:

http://example.com/[controller-class]/[controller-method]/[arguments]

As URL schemes become more complex, this may change. But for now, this
is all we will need to know.

Create a file at application/controllers/Pages.php with the following
code.

<?php
class Pages extends CI_Controller {

 public function view($page = 'home')
 {
 }
}

You have created a class named Pages, with a view method that accepts
one argument named $page. The Pages class is extending the
CI_Controller class. This means that the new pages class can access the
methods and variables defined in the CI_Controller class
(system/core/Controller.php).

The controller is what will become the center of every request to
your web application. In very technical CodeIgniter discussions, it may
be referred to as the super object. Like any php class, you refer to
it within your controllers as $this. Referring to $this is how
you will load libraries, views, and generally command the framework.

Now you’ve created your first method, it’s time to make some basic page
templates. We will be creating two “views” (page templates) that act as
our page footer and header.

Create the header at application/views/templates/header.php and add
the following code:

<html>
 <head>
 <title>CodeIgniter Tutorial</title>
 </head>
 <body>

 <h1><?php echo $title; ?></h1>

The header contains the basic HTML code that you’ll want to display
before loading the main view, together with a heading. It will also
output the $title variable, which we’ll define later in the controller.
Now, create a footer at application/views/templates/footer.php that
includes the following code:

 © 2015
 </body>
</html>

Adding logic to the controller

Earlier you set up a controller with a view() method. The method
accepts one parameter, which is the name of the page to be loaded. The
static page templates will be located in the application/views/pages/
directory.

In that directory, create two files named home.php and about.php.
Within those files, type some text − anything you’d like − and save them.
If you like to be particularly un-original, try “Hello World!”.

In order to load those pages, you’ll have to check whether the requested
page actually exists:

public function view($page = 'home')
{
 if (! file_exists(APPPATH.'views/pages/'.$page.'.php'))
 {
 // Whoops, we don't have a page for that!
 show_404();
 }

 $data['title'] = ucfirst($page); // Capitalize the first letter

 $this->load->view('templates/header', $data);
 $this->load->view('pages/'.$page, $data);
 $this->load->view('templates/footer', $data);
}

Now, when the page does exist, it is loaded, including the header and
footer, and displayed to the user. If the page doesn’t exist, a “404
Page not found” error is shown.

The first line in this method checks whether the page actually exists.
PHP’s native file_exists() function is used to check whether the file
is where it’s expected to be. show_404() is a built-in CodeIgniter
function that renders the default error page.

In the header template, the $title variable was used to customize the
page title. The value of title is defined in this method, but instead of
assigning the value to a variable, it is assigned to the title element
in the $data array.

The last thing that has to be done is loading the views in the order
they should be displayed. The second parameter in the view() method is
used to pass values to the view. Each value in the $data array is
assigned to a variable with the name of its key. So the value of
$data['title'] in the controller is equivalent to $title in the
view.

Routing

The controller is now functioning! Point your browser to
[your-site-url]index.php/pages/view to see your page. When you visit
index.php/pages/view/about you’ll see the about page, again including
the header and footer.

Using custom routing rules, you have the power to map any URI to any
controller and method, and break free from the normal convention:
http://example.com/[controller-class]/[controller-method]/[arguments]

Let’s do that. Open the routing file located at
application/config/routes.php and add the following two lines.
Remove all other code that sets any element in the $route array.

$route['default_controller'] = 'pages/view';
$route['(:any)'] = 'pages/view/$1';

CodeIgniter reads its routing rules from top to bottom and routes the
request to the first matching rule. Each rule is a regular expression
(left-side) mapped to a controller and method name separated by slashes
(right-side). When a request comes in, CodeIgniter looks for the first
match, and calls the appropriate controller and method, possibly with
arguments.

More information about routing can be found in the URI Routing
documentation.

Here, the second rule in the $route array matches any request
using the wildcard string (:any). and passes the parameter to the
view() method of the Pages class.

Now visit index.php/about. Did it get routed correctly to the view()
method in the pages controller? Awesome!

News section

In the last section, we went over some basic concepts of the framework
by writing a class that includes static pages. We cleaned up the URI by
adding custom routing rules. Now it’s time to introduce dynamic content
and start using a database.

Setting up your model

Instead of writing database operations right in the controller, queries
should be placed in a model, so they can easily be reused later. Models
are the place where you retrieve, insert, and update information in your
database or other data stores. They represent your data.

Open up the application/models/ directory and create a new file called
News_model.php and add the following code. Make sure you’ve configured
your database properly as described here.

<?php
class News_model extends CI_Model {

 public function __construct()
 {
 $this->load->database();
 }
}

This code looks similar to the controller code that was used earlier. It
creates a new model by extending CI_Model and loads the database
library. This will make the database class available through the
$this->db object.

Before querying the database, a database schema has to be created.
Connect to your database and run the SQL command below (MySQL).
Also add some seed records.

CREATE TABLE news (
 id int(11) NOT NULL AUTO_INCREMENT,
 title varchar(128) NOT NULL,
 slug varchar(128) NOT NULL,
 text text NOT NULL,
 PRIMARY KEY (id),
 KEY slug (slug)
);

Now that the database and a model have been set up, you’ll need a method
to get all of our posts from our database. To do this, the database
abstraction layer that is included with CodeIgniter —
Query Builder — is used. This makes it
possible to write your ‘queries’ once and make them work on all
supported database systems. Add the
following code to your model.

public function get_news($slug = FALSE)
{
 if ($slug === FALSE)
 {
 $query = $this->db->get('news');
 return $query->result_array();
 }

 $query = $this->db->get_where('news', array('slug' => $slug));
 return $query->row_array();
}

With this code you can perform two different queries. You can get all
news records, or get a news item by its slug. You might have
noticed that the $slug variable wasn’t sanitized before running the
query; Query Builder does this for you.

Display the news

Now that the queries are written, the model should be tied to the views
that are going to display the news items to the user. This could be done
in our Pages controller created earlier, but for the sake of clarity,
a new News controller is defined. Create the new controller at
application/controllers/News.php.

<?php
class News extends CI_Controller {

 public function __construct()
 {
 parent::__construct();
 $this->load->model('news_model');
 $this->load->helper('url_helper');
 }

 public function index()
 {
 $data['news'] = $this->news_model->get_news();
 }

 public function view($slug = NULL)
 {
 $data['news_item'] = $this->news_model->get_news($slug);
 }
}

Looking at the code, you may see some similarity with the files we
created earlier. First, the __construct() method: it calls the
constructor of its parent class (CI_Controller) and loads the model,
so it can be used in all other methods in this controller.
It also loads a collection of URL Helper
functions, because we’ll use one of them in a view later.

Next, there are two methods to view all news items and one for a specific
news item. You can see that the $slug variable is passed to the model’s
method in the second method. The model is using this slug to identify the
news item to be returned.

Now the data is retrieved by the controller through our model, but
nothing is displayed yet. The next thing to do is passing this data to
the views.

public function index()
{
 $data['news'] = $this->news_model->get_news();
 $data['title'] = 'News archive';

 $this->load->view('templates/header', $data);
 $this->load->view('news/index', $data);
 $this->load->view('templates/footer');
}

The code above gets all news records from the model and assigns it to a
variable. The value for the title is also assigned to the $data['title']
element and all data is passed to the views. You now need to create a
view to render the news items. Create application/views/news/index.php
and add the next piece of code.

<h2><?php echo $title; ?></h2>

<?php foreach ($news as $news_item): ?>

 <h3><?php echo $news_item['title']; ?></h3>
 <div class="main">
 <?php echo $news_item['text']; ?>
 </div>
 <p><a href="<?php echo site_url('news/'.$news_item['slug']); ?>">View article</p>

<?php endforeach; ?>

Here, each news item is looped and displayed to the user. You can see we
wrote our template in PHP mixed with HTML. If you prefer to use a template
language, you can use CodeIgniter’s Template
Parser class or a third party parser.

The news overview page is now done, but a page to display individual
news items is still absent. The model created earlier is made in such
way that it can easily be used for this functionality. You only need to
add some code to the controller and create a new view. Go back to the
News controller and update view() with the following:

public function view($slug = NULL)
{
 $data['news_item'] = $this->news_model->get_news($slug);

 if (empty($data['news_item']))
 {
 show_404();
 }

 $data['title'] = $data['news_item']['title'];

 $this->load->view('templates/header', $data);
 $this->load->view('news/view', $data);
 $this->load->view('templates/footer');
}

Instead of calling the get_news() method without a parameter, the
$slug variable is passed, so it will return the specific news item.
The only things left to do is create the corresponding view at
application/views/news/view.php. Put the following code in this file.

<?php
echo '<h2>'.$news_item['title'].'</h2>';
echo $news_item['text'];

Routing

Because of the wildcard routing rule created earlier, you need an extra
route to view the controller that you just made. Modify your routing file
(application/config/routes.php) so it looks as follows.
This makes sure the requests reaches the News controller instead of
going directly to the Pages controller. The first line routes URI’s
with a slug to the view() method in the News controller.

$route['news/(:any)'] = 'news/view/$1';
$route['news'] = 'news';
$route['(:any)'] = 'pages/view/$1';
$route['default_controller'] = 'pages/view';

Point your browser to your document root, followed by index.php/news and
watch your news page.

Create news items

You now know how you can read data from a database using CodeIgniter, but
you haven’t written any information to the database yet. In this section
you’ll expand your news controller and model created earlier to include
this functionality.

Create a form

To input data into the database you need to create a form where you can
input the information to be stored. This means you’ll be needing a form
with two fields, one for the title and one for the text. You’ll derive
the slug from our title in the model. Create the new view at
application/views/news/create.php.

<h2><?php echo $title; ?></h2>

<?php echo validation_errors(); ?>

<?php echo form_open('news/create'); ?>

 <label for="title">Title</label>
 <input type="text" name="title" />

 <label for="text">Text</label>
 <textarea name="text"></textarea>

 <input type="submit" name="submit" value="Create news item" />

</form>

There are only two things here that probably look unfamiliar to you: the
form_open() function and the validation_errors() function.

The first function is provided by the form
helper and renders the form element and
adds extra functionality, like adding a hidden CSRF prevention
field. The latter is used to report
errors related to form validation.

Go back to your news controller. You’re going to do two things here,
check whether the form was submitted and whether the submitted data
passed the validation rules. You’ll use the form
validation library to do this.

public function create()
{
 $this->load->helper('form');
 $this->load->library('form_validation');

 $data['title'] = 'Create a news item';

 $this->form_validation->set_rules('title', 'Title', 'required');
 $this->form_validation->set_rules('text', 'Text', 'required');

 if ($this->form_validation->run() === FALSE)
 {
 $this->load->view('templates/header', $data);
 $this->load->view('news/create');
 $this->load->view('templates/footer');

 }
 else
 {
 $this->news_model->set_news();
 $this->load->view('news/success');
 }
}

The code above adds a lot of functionality. The first few lines load the
form helper and the form validation library. After that, rules for the
form validation are set. The set_rules() method takes three arguments;
the name of the input field, the name to be used in error messages, and
the rule. In this case the title and text fields are required.

CodeIgniter has a powerful form validation library as demonstrated
above. You can read more about this library
here.

Continuing down, you can see a condition that checks whether the form
validation ran successfully. If it did not, the form is displayed, if it
was submitted and passed all the rules, the model is called. After
this, a view is loaded to display a success message. Create a view at
application/views/news/success.php and write a success message.

Model

The only thing that remains is writing a method that writes the data to
the database. You’ll use the Query Builder class to insert the
information and use the input library to get the posted data. Open up
the model created earlier and add the following:

public function set_news()
{
 $this->load->helper('url');

 $slug = url_title($this->input->post('title'), 'dash', TRUE);

 $data = array(
 'title' => $this->input->post('title'),
 'slug' => $slug,
 'text' => $this->input->post('text')
);

 return $this->db->insert('news', $data);
}

This new method takes care of inserting the news item into the database.
The third line contains a new function, url_title(). This function -
provided by the URL helper - strips down
the string you pass it, replacing all spaces by dashes (-) and makes
sure everything is in lowercase characters. This leaves you with a nice
slug, perfect for creating URIs.

Let’s continue with preparing the record that is going to be inserted
later, inside the $data array. Each element corresponds with a column in
the database table created earlier. You might notice a new method here,
namely the post() method from the input
library. This method makes sure the data is
sanitized, protecting you from nasty attacks from others. The input
library is loaded by default. At last, you insert our $data array into
our database.

Routing

Before you can start adding news items into your CodeIgniter application
you have to add an extra rule to config/routes.php file. Make sure your
file contains the following. This makes sure CodeIgniter sees ‘create’
as a method instead of a news item’s slug.

$route['news/create'] = 'news/create';
$route['news/(:any)'] = 'news/view/$1';
$route['news'] = 'news';
$route['(:any)'] = 'pages/view/$1';
$route['default_controller'] = 'pages/view';

Now point your browser to your local development environment where you
installed CodeIgniter and add index.php/news/create to the URL.
Congratulations, you just created your first CodeIgniter application!
Add some news and check out the different pages you made.

Conclusion

This tutorial did not cover all of the things you might expect of a
full-fledged content management system, but it introduced you to the
more important topics of routing, writing controllers, and models. We
hope this tutorial gave you an insight into some of CodeIgniter’s basic
design patterns, which you can expand upon.

Now that you’ve completed this tutorial, we recommend you check out the
rest of the documentation. CodeIgniter is often praised because of its
comprehensive documentation. Use this to your advantage and read the
“Introduction” and “General Topics” sections thoroughly. You should read
the class and helper references when needed.

Every intermediate PHP programmer should be able to get the hang of
CodeIgniter within a few days.

If you still have questions about the framework or your own CodeIgniter
code, you can:

	Check out our forums [http://forum.codeigniter.com/]

	Visit our IRC chatroom [https://github.com/bcit-ci/CodeIgniter/wiki/IRC]

	Explore the Wiki [https://github.com/bcit-ci/CodeIgniter/wiki/]

Contributing to CodeIgniter

	Writing CodeIgniter Documentation

	Developer’s Certificate of Origin 1.1

CodeIgniter is a community driven project and accepts contributions of code
and documentation from the community. These contributions are made in the form
of Issues or Pull Requests [https://help.github.com/articles/using-pull-requests/]
on the CodeIgniter repository [https://github.com/bcit-ci/CodeIgniter] on GitHub.

Issues are a quick way to point out a bug. If you find a bug or documentation
error in CodeIgniter then please check a few things first:

	There is not already an open Issue

	The issue has already been fixed (check the develop branch, or look for
closed Issues)

	Is it something really obvious that you fix it yourself?

Reporting issues is helpful but an even better approach is to send a Pull
Request, which is done by “Forking” the main repository and committing to your
own copy. This will require you to use the version control system called Git.

Support

Please note that GitHub is not for general support questions! If you are
having trouble using a feature of CodeIgniter, ask for help on our
forums [http://forum.codeigniter.com/] instead.

If you are not sure whether you are using something correctly or if you
have found a bug, again - please ask on the forums first.

Security

Did you find a security issue in CodeIgniter?

Please don’t disclose it publicly, but e-mail us at security@codeigniter.com,
or report it via our page on HackerOne [https://hackerone.com/codeigniter].

If you’ve found a critical vulnerability, we’d be happy to credit you in our
ChangeLog <../changelog>.

Tips for a Good Issue Report

Use a descriptive subject line (eg parser library chokes on commas) rather than a vague one (eg. your code broke).

Address a single issue in a report.

Identify the CodeIgniter version (eg 3.0-develop) and the component if you know it (eg. parser library)

Explain what you expected to happen, and what did happen.
Include error messages and stacktrace, if any.

Include short code segments if they help to explain.
Use a pastebin or dropbox facility to include longer segments of code or screenshots - do not include them in the issue report itself.
This means setting a reasonable expiry for those, until the issue is resolved or closed.

If you know how to fix the issue, you can do so in your own fork & branch, and submit a pull request.
The issue report information above should be part of that.

If your issue report can describe the steps to reproduce the problem, that is great.
If you can include a unit test that reproduces the problem, that is even better, as it gives whoever is fixing
it a clearer target!

Guidelines

Before we look into how, here are the guidelines. If your Pull Requests fail
to pass these guidelines it will be declined and you will need to re-submit
when you’ve made the changes. This might sound a bit tough, but it is required
for us to maintain quality of the code-base.

PHP Style

All code must meet the Style Guide [https://codeigniter.com/userguide3/general/styleguide.html], which is
essentially the Allman indent style [https://en.wikipedia.org/wiki/Indent_style#Allman_style], underscores and
readable operators. This makes certain that all code is the same format as the
existing code and means it will be as readable as possible.

Documentation

If you change anything that requires a change to documentation then you will
need to add it. New classes, methods, parameters, changing default values, etc
are all things that will require a change to documentation. The change-log
must also be updated for every change. Also PHPDoc blocks must be maintained.

Compatibility

CodeIgniter recommends PHP 5.6 or newer to be used, but it should be
compatible with PHP 5.3.7 so all code supplied must stick to this
requirement. If PHP 5.4 (and above) functions or features are used then
there must be a fallback for PHP 5.3.7.

Branching

CodeIgniter uses the Git-Flow [http://nvie.com/posts/a-successful-git-branching-model/] branching model
which requires all pull requests to be sent to the “develop” branch. This is
where the next planned version will be developed. The “master” branch will
always contain the latest stable version and is kept clean so a “hotfix” (e.g:
an emergency security patch) can be applied to master to create a new version,
without worrying about other features holding it up. For this reason all
commits need to be made to “develop” and any sent to “master” will be closed
automatically. If you have multiple changes to submit, please place all
changes into their own branch on your fork.

One thing at a time: A pull request should only contain one change. That does
not mean only one commit, but one change - however many commits it took. The
reason for this is that if you change X and Y but send a pull request for both
at the same time, we might really want X but disagree with Y, meaning we
cannot merge the request. Using the Git-Flow branching model you can create
new branches for both of these features and send two requests.

Signing

You must sign your work, certifying that you either wrote the work or
otherwise have the right to pass it on to an open source project. git makes
this trivial as you merely have to use –signoff on your commits to your
CodeIgniter fork.

git commit --signoff

or simply

git commit -s

This will sign your commits with the information setup in your git config, e.g.

Signed-off-by: John Q Public <john.public@example.com>

If you are using Tower there is a “Sign-Off” checkbox in the commit window. You
could even alias git commit to use the -s flag so you don’t have to think about
it.

By signing your work in this manner, you certify to a “Developer’s Certificate
of Origin”. The current version of this certificate is in the Developer’s Certificate of Origin 1.1 file
in the root of this documentation.

Writing CodeIgniter Documentation

CodeIgniter uses Sphinx to generate its documentation in a variety of formats,
using reStructuredText to handle the formatting. If you are familiar with
Markdown or Textile, you will quickly grasp reStructuredText. The focus is
on readability and user friendliness.
While they can be quite technical, we always write for humans!

A local table of contents should always be included, like the one below.
It is created automatically by inserting the following:

.. contents::
 :local:

.. raw:: html

<div class="custom-index container"></div>

	Tools Required

	Page and Section Headings and Subheadings

	Method Documentation

The <div> that is inserted as raw HTML is a hook for the documentation’s
JavaScript to dynamically add links to any function and method definitions
contained in the current page.

Tools Required

To see the rendered HTML, ePub, PDF, etc., you will need to install Sphinx
along with the PHP domain extension for Sphinx. The underlying requirement
is to have Python installed. Lastly, you will install the CI Lexer for
Pygments, so that code blocks can be properly highlighted.

easy_install "sphinx==1.2.3"
easy_install "sphinxcontrib-phpdomain==0.1.3.post1"

Then follow the directions in the README file in the cilexer folder
inside the documentation repository to install the CI Lexer.

Page and Section Headings and Subheadings

Headings not only provide order and sections within a page, but they also
are used to automatically build both the page and document table of contents.
Headings are formed by using certain characters as underlines for a bit of
text. Major headings, like page titles and section headings also use
overlines. Other headings just use underlines, with the following hierarchy:

with overline for page titles
* with overline for major sections
= for subsections
- for subsubsections
^ for subsubsubsections
" for subsubsubsubsections (!)

The TextMate ELDocs Bundle can help you
create these with the following tab triggers:

title->

 ##########
 Page Title
 ##########

sec->

 Major Section

sub->

 Subsection
 ==========

sss->

 SubSubSection

ssss->

 SubSubSubSection
 ^^^^^^^^^^^^^^^^

sssss->

 SubSubSubSubSection (!)
 """""""""""""""""""""""

Method Documentation

When documenting class methods for third party developers, Sphinx provides
directives to assist and keep things simple.
For example, consider the following ReST:

.. php:class:: Some_class

 .. php:method:: some_method ($foo [, $bar [, $bat]])

 This function will perform some action. The ``$bar`` array must contain
 a something and something else, and along with ``$bat`` is an optional
 parameter.

 :param int $foo: the foo id to do something in
 :param mixed $bar: A data array that must contain a something and something else
 :param bool $bat: whether or not to do something
 :returns: FALSE on failure, TRUE if successful
 :rtype: bool

 ::

 $this->load->library('some_class');

 $bar = array(
 'something' => 'Here is this parameter!',
 'something_else' => 42
);

 $bat = $this->some_class->should_do_something();

 if ($this->some_class->some_method(4, $bar, $bat) === FALSE)
 {
 show_error('An Error Occurred Doing Some Method');
 }

 .. note:: Here is something that you should be aware of when using some_method().
 For real.

 See also :meth:`Some_class::should_do_something`

 .. php:method:: should_do_something()

 :returns: Whether or not something should be done
 :rtype: bool

It creates the following display:

	
class Some_class

	
	
some_method($foo[, $bar[, $bat]])

	This function will perform some action. The $bar array must contain
a something and something else, and along with $bat is an optional
parameter.

	Parameters:	
	$foo (int) – the foo id to do something in

	$bar (mixed) – A data array that must contain a something and something else

	$bat (bool) – whether or not to do something

	Returns:	FALSE on failure, TRUE if successful

	Return type:	bool

$this->load->library('some_class');

$bar = array(
 'something' => 'Here is this parameter!',
 'something_else' => 42
);

$bat = $this->some_class->should_do_something();

if ($this->some_class->some_method(4, $bar, $bat) === FALSE)
{
 show_error('An Error Occurred Doing Some Method');
}

Note

Here is something that you should be aware of when using some_method().
For real.

See also Some_class::should_do_something()

	
should_do_something()

	

	Returns:	Whether or not something should be done

	Return type:	bool

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

	The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

	The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

	The contribution was provided directly to me by some other
person who certified (1), (2) or (3) and I have not modified
it.

	I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

General Topics

	CodeIgniter URLs

	Controllers

	Reserved Names

	Views

	Models

	Helpers

	Using CodeIgniter Libraries

	Creating Libraries

	Using CodeIgniter Drivers

	Creating Drivers

	Creating Core System Classes

	Creating Ancillary Classes

	Hooks - Extending the Framework Core

	Auto-loading Resources

	Common Functions

	Compatibility Functions

	URI Routing

	Error Handling

	Caching

	Profiling Your Application

	Running via the CLI

	Managing your Applications

	Handling Multiple Environments

	Alternate PHP Syntax for View Files

	Security

	PHP Style Guide

CodeIgniter URLs

By default, URLs in CodeIgniter are designed to be search-engine and
human friendly. Rather than using the standard “query string” approach
to URLs that is synonymous with dynamic systems, CodeIgniter uses a
segment-based approach:

example.com/news/article/my_article

Note

Query string URLs can be optionally enabled, as described
below.

URI Segments

The segments in the URL, in following with the Model-View-Controller
approach, usually represent:

example.com/class/function/ID

	The first segment represents the controller class that should be
invoked.

	The second segment represents the class function, or method, that
should be called.

	The third, and any additional segments, represent the ID and any
variables that will be passed to the controller.

The URI Library and the URL Helper contain functions that make it easy to work
with your URI data. In addition, your URLs can be remapped using the
URI Routing feature for more flexibility.

Removing the index.php file

By default, the index.php file will be included in your URLs:

example.com/index.php/news/article/my_article

If your Apache server has mod_rewrite enabled, you can easily remove this
file by using a .htaccess file with some simple rules. Here is an example
of such a file, using the “negative” method in which everything is redirected
except the specified items:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ index.php/$1 [L]

In the above example, any HTTP request other than those for existing
directories and existing files is treated as a request for your index.php file.

Note

These specific rules might not work for all server configurations.

Note

Make sure to also exclude from the above rule any assets that you
might need to be accessible from the outside world.

Adding a URL Suffix

In your config/config.php file you can specify a suffix that will be
added to all URLs generated by CodeIgniter. For example, if a URL is
this:

example.com/index.php/products/view/shoes

You can optionally add a suffix, like .html, making the page appear to
be of a certain type:

example.com/index.php/products/view/shoes.html

Enabling Query Strings

In some cases you might prefer to use query strings URLs:

index.php?c=products&m=view&id=345

CodeIgniter optionally supports this capability, which can be enabled in
your application/config.php file. If you open your config file you’ll
see these items:

$config['enable_query_strings'] = FALSE;
$config['controller_trigger'] = 'c';
$config['function_trigger'] = 'm';

If you change “enable_query_strings” to TRUE this feature will become
active. Your controllers and functions will then be accessible using the
“trigger” words you’ve set to invoke your controllers and methods:

index.php?c=controller&m=method

Note

If you are using query strings you will have to build your own
URLs, rather than utilizing the URL helpers (and other helpers
that generate URLs, like some of the form helpers) as these are
designed to work with segment based URLs.

Controllers

Controllers are the heart of your application, as they determine how
HTTP requests should be handled.

Page Contents

	Controllers
	What is a Controller?

	Let’s try it: Hello World!

	Methods

	Passing URI Segments to your methods

	Defining a Default Controller

	Remapping Method Calls

	Processing Output

	Private methods

	Organizing Your Controllers into Sub-directories

	Class Constructors

	Reserved method names

	That’s it!

What is a Controller?

A Controller is simply a class file that is named in a way that can be
associated with a URI.

Consider this URI:

example.com/index.php/blog/

In the above example, CodeIgniter would attempt to find a controller
named Blog.php and load it.

When a controller’s name matches the first segment of a URI, it will
be loaded.

Let’s try it: Hello World!

Let’s create a simple controller so you can see it in action. Using your
text editor, create a file called Blog.php, and put the following code
in it:

<?php
class Blog extends CI_Controller {

 public function index()
 {
 echo 'Hello World!';
 }
}

Then save the file to your application/controllers/ directory.

Important

The file must be called ‘Blog.php’, with a capital ‘B’.

Now visit the your site using a URL similar to this:

example.com/index.php/blog/

If you did it right, you should see:

Hello World!

Important

Class names must start with an uppercase letter.

This is valid:

<?php
class Blog extends CI_Controller {

}

This is not valid:

<?php
class blog extends CI_Controller {

}

Also, always make sure your controller extends the parent controller
class so that it can inherit all its methods.

Methods

In the above example the method name is index(). The “index” method
is always loaded by default if the second segment of the URI is
empty. Another way to show your “Hello World” message would be this:

example.com/index.php/blog/index/

The second segment of the URI determines which method in the
controller gets called.

Let’s try it. Add a new method to your controller:

<?php
class Blog extends CI_Controller {

 public function index()
 {
 echo 'Hello World!';
 }

 public function comments()
 {
 echo 'Look at this!';
 }
}

Now load the following URL to see the comment method:

example.com/index.php/blog/comments/

You should see your new message.

Passing URI Segments to your methods

If your URI contains more than two segments they will be passed to your
method as parameters.

For example, let’s say you have a URI like this:

example.com/index.php/products/shoes/sandals/123

Your method will be passed URI segments 3 and 4 (“sandals” and “123”):

<?php
class Products extends CI_Controller {

 public function shoes($sandals, $id)
 {
 echo $sandals;
 echo $id;
 }
}

Important

If you are using the URI Routing
feature, the segments passed to your method will be the re-routed
ones.

Defining a Default Controller

CodeIgniter can be told to load a default controller when a URI is not
present, as will be the case when only your site root URL is requested.
To specify a default controller, open your application/config/routes.php
file and set this variable:

$route['default_controller'] = 'blog';

Where ‘blog’ is the name of the controller class you want used. If you now
load your main index.php file without specifying any URI segments you’ll
see your “Hello World” message by default.

For more information, please refer to the “Reserved Routes” section of the
URI Routing documentation.

Remapping Method Calls

As noted above, the second segment of the URI typically determines which
method in the controller gets called. CodeIgniter permits you to override
this behavior through the use of the _remap() method:

public function _remap()
{
 // Some code here...
}

Important

If your controller contains a method named _remap(),
it will always get called regardless of what your URI contains. It
overrides the normal behavior in which the URI determines which method
is called, allowing you to define your own method routing rules.

The overridden method call (typically the second segment of the URI) will
be passed as a parameter to the _remap() method:

public function _remap($method)
{
 if ($method === 'some_method')
 {
 $this->$method();
 }
 else
 {
 $this->default_method();
 }
}

Any extra segments after the method name are passed into _remap() as an
optional second parameter. This array can be used in combination with
PHP’s call_user_func_array() [http://php.net/call_user_func_array]
to emulate CodeIgniter’s default behavior.

Example:

public function _remap($method, $params = array())
{
 $method = 'process_'.$method;
 if (method_exists($this, $method))
 {
 return call_user_func_array(array($this, $method), $params);
 }
 show_404();
}

Processing Output

CodeIgniter has an output class that takes care of sending your final
rendered data to the web browser automatically. More information on this
can be found in the Views and Output Class pages. In some cases, however, you might want to
post-process the finalized data in some way and send it to the browser
yourself. CodeIgniter permits you to add a method named _output()
to your controller that will receive the finalized output data.

Important

If your controller contains a method named _output(),
it will always be called by the output class instead of
echoing the finalized data directly. The first parameter of the
method will contain the finalized output.

Here is an example:

public function _output($output)
{
 echo $output;
}

Note

Please note that your _output() method will receive the
data in its finalized state. Benchmark and memory usage data
will be rendered, cache files written (if you have caching
enabled), and headers will be sent (if you use that
feature) before it is handed off
to the _output() method.
To have your controller’s output cached properly, its
_output() method can use:

if ($this->output->cache_expiration > 0)
{
 $this->output->_write_cache($output);
}

If you are using this feature the page execution timer and
memory usage stats might not be perfectly accurate since they
will not take into account any further processing you do.
For an alternate way to control output before any of the
final processing is done, please see the available methods
in the Output Library.

Private methods

In some cases you may want certain methods hidden from public access.
In order to achieve this, simply declare the method as being private
or protected and it will not be served via a URL request. For example,
if you were to have a method like this:

private function _utility()
{
 // some code
}

Trying to access it via the URL, like this, will not work:

example.com/index.php/blog/_utility/

Note

Prefixing method names with an underscore will also prevent
them from being called. This is a legacy feature that is left
for backwards-compatibility.

Organizing Your Controllers into Sub-directories

If you are building a large application you might want to hierarchically
organize or structure your controllers into sub-directories. CodeIgniter
permits you to do this.

Simply create sub-directories under the main application/controllers/
one and place your controller classes within them.

Note

When using this feature the first segment of your URI must
specify the folder. For example, let’s say you have a controller located
here:

application/controllers/products/Shoes.php

To call the above controller your URI will look something like this:

example.com/index.php/products/shoes/show/123

Each of your sub-directories may contain a default controller which will be
called if the URL contains only the sub-directory. Simply put a controller
in there that matches the name of your ‘default_controller’ as specified in
your application/config/routes.php file.

CodeIgniter also permits you to remap your URIs using its URI
Routing feature.

Class Constructors

If you intend to use a constructor in any of your Controllers, you
MUST place the following line of code in it:

parent::__construct();

The reason this line is necessary is because your local constructor will
be overriding the one in the parent controller class so we need to
manually call it.

Example:

<?php
class Blog extends CI_Controller {

 public function __construct()
 {
 parent::__construct();
 // Your own constructor code
 }
}

Constructors are useful if you need to set some default values, or run a
default process when your class is instantiated. Constructors can’t
return a value, but they can do some default work.

Reserved method names

Since your controller classes will extend the main application
controller you must be careful not to name your methods identically to
the ones used by that class, otherwise your local functions will
override them. See Reserved Names for a full
list.

Important

You should also never have a method named identically
to its class name. If you do, and there is no __construct()
method in the same class, then your e.g. Index::index()
method will be executed as a class constructor! This is a PHP4
backwards-compatibility feature.

That’s it!

That, in a nutshell, is all there is to know about controllers.

Reserved Names

In order to help out, CodeIgniter uses a series of function, method,
class and variable names in its operation. Because of this, some names
cannot be used by a developer. Following is a list of reserved names
that cannot be used.

Controller names

Since your controller classes will extend the main application
controller you must be careful not to name your methods identically to
the ones used by that class, otherwise your local methods will
override them. The following is a list of reserved names. Do not name
your controller any of these:

	CI_Controller

	Default

	index

Functions

	is_php()

	is_really_writable()

	load_class()

	is_loaded()

	get_config()

	config_item()

	show_error()

	show_404()

	log_message()

	set_status_header()

	get_mimes()

	html_escape()

	remove_invisible_characters()

	is_https()

	function_usable()

	get_instance()

	_error_handler()

	_exception_handler()

	_stringify_attributes()

Variables

	$config

	$db

	$lang

Constants

	ENVIRONMENT

	FCPATH

	SELF

	BASEPATH

	APPPATH

	VIEWPATH

	CI_VERSION

	MB_ENABLED

	ICONV_ENABLED

	UTF8_ENABLED

	FILE_READ_MODE

	FILE_WRITE_MODE

	DIR_READ_MODE

	DIR_WRITE_MODE

	FOPEN_READ

	FOPEN_READ_WRITE

	FOPEN_WRITE_CREATE_DESTRUCTIVE

	FOPEN_READ_WRITE_CREATE_DESTRUCTIVE

	FOPEN_WRITE_CREATE

	FOPEN_READ_WRITE_CREATE

	FOPEN_WRITE_CREATE_STRICT

	FOPEN_READ_WRITE_CREATE_STRICT

	SHOW_DEBUG_BACKTRACE

	EXIT_SUCCESS

	EXIT_ERROR

	EXIT_CONFIG

	EXIT_UNKNOWN_FILE

	EXIT_UNKNOWN_CLASS

	EXIT_UNKNOWN_METHOD

	EXIT_USER_INPUT

	EXIT_DATABASE

	EXIT__AUTO_MIN

	EXIT__AUTO_MAX

Views

A view is simply a web page, or a page fragment, like a header, footer,
sidebar, etc. In fact, views can flexibly be embedded within other views
(within other views, etc., etc.) if you need this type of hierarchy.

Views are never called directly, they must be loaded by a
controller. Remember that in an MVC framework, the
Controller acts as the traffic cop, so it is responsible for fetching a
particular view. If you have not read the
Controllers page you should do so before
continuing.

Using the example controller you created in the
controller page, let’s add a view to it.

Creating a View

Using your text editor, create a file called blogview.php, and put this
in it:

<html>
<head>
 <title>My Blog</title>
</head>
<body>
 <h1>Welcome to my Blog!</h1>
</body>
</html>

Then save the file in your application/views/ directory.

Loading a View

To load a particular view file you will use the following method:

$this->load->view('name');

Where name is the name of your view file.

Note

The .php file extension does not need to be specified
unless you use something other than .php.

Now, open the controller file you made earlier called Blog.php, and
replace the echo statement with the view loading method:

<?php
class Blog extends CI_Controller {

 public function index()
 {
 $this->load->view('blogview');
 }
}

If you visit your site using the URL you did earlier you should see your
new view. The URL was similar to this:

example.com/index.php/blog/

Loading multiple views

CodeIgniter will intelligently handle multiple calls to
$this->load->view() from within a controller. If more than one call
happens they will be appended together. For example, you may wish to
have a header view, a menu view, a content view, and a footer view. That
might look something like this:

<?php

class Page extends CI_Controller {

 public function index()
 {
 $data['page_title'] = 'Your title';
 $this->load->view('header');
 $this->load->view('menu');
 $this->load->view('content', $data);
 $this->load->view('footer');
 }

}

In the example above, we are using “dynamically added data”, which you
will see below.

Storing Views within Sub-directories

Your view files can also be stored within sub-directories if you prefer
that type of organization. When doing so you will need to include the
directory name loading the view. Example:

$this->load->view('directory_name/file_name');

Adding Dynamic Data to the View

Data is passed from the controller to the view by way of an array or
an object in the second parameter of the view loading method. Here
is an example using an array:

$data = array(
 'title' => 'My Title',
 'heading' => 'My Heading',
 'message' => 'My Message'
);

$this->load->view('blogview', $data);

And here’s an example using an object:

$data = new Someclass();
$this->load->view('blogview', $data);

Note

If you use an object, the class variables will be turned
into array elements.

Let’s try it with your controller file. Open it add this code:

<?php
class Blog extends CI_Controller {

 public function index()
 {
 $data['title'] = "My Real Title";
 $data['heading'] = "My Real Heading";

 $this->load->view('blogview', $data);
 }
}

Now open your view file and change the text to variables that correspond
to the array keys in your data:

<html>
<head>
 <title><?php echo $title;?></title>
</head>
<body>
 <h1><?php echo $heading;?></h1>
</body>
</html>

Then load the page at the URL you’ve been using and you should see the
variables replaced.

Creating Loops

The data array you pass to your view files is not limited to simple
variables. You can pass multi dimensional arrays, which can be looped to
generate multiple rows. For example, if you pull data from your database
it will typically be in the form of a multi-dimensional array.

Here’s a simple example. Add this to your controller:

<?php
class Blog extends CI_Controller {

 public function index()
 {
 $data['todo_list'] = array('Clean House', 'Call Mom', 'Run Errands');

 $data['title'] = "My Real Title";
 $data['heading'] = "My Real Heading";

 $this->load->view('blogview', $data);
 }
}

Now open your view file and create a loop:

<html>
<head>
 <title><?php echo $title;?></title>
</head>
<body>
 <h1><?php echo $heading;?></h1>

 <h3>My Todo List</h3>

 <?php foreach ($todo_list as $item):?>

 <?php echo $item;?>

 <?php endforeach;?>

</body>
</html>

Note

You’ll notice that in the example above we are using PHP’s
alternative syntax. If you are not familiar with it you can read about
it here.

Returning views as data

There is a third optional parameter lets you change the behavior of
the method so that it returns data as a string rather than sending it
to your browser. This can be useful if you want to process the data in
some way. If you set the parameter to TRUE (boolean) it will return
data. The default behavior is false, which sends it to your browser.
Remember to assign it to a variable if you want the data returned:

$string = $this->load->view('myfile', '', TRUE);

Models

Models are optionally available for those who want to use a more
traditional MVC approach.

Page Contents

	Models
	What is a Model?

	Anatomy of a Model

	Loading a Model

	Auto-loading Models

	Connecting to your Database

What is a Model?

Models are PHP classes that are designed to work with information in
your database. For example, let’s say you use CodeIgniter to manage a
blog. You might have a model class that contains functions to insert,
update, and retrieve your blog data. Here is an example of what such a
model class might look like:

class Blog_model extends CI_Model {

 public $title;
 public $content;
 public $date;

 public function get_last_ten_entries()
 {
 $query = $this->db->get('entries', 10);
 return $query->result();
 }

 public function insert_entry()
 {
 $this->title = $_POST['title']; // please read the below note
 $this->content = $_POST['content'];
 $this->date = time();

 $this->db->insert('entries', $this);
 }

 public function update_entry()
 {
 $this->title = $_POST['title'];
 $this->content = $_POST['content'];
 $this->date = time();

 $this->db->update('entries', $this, array('id' => $_POST['id']));
 }

}

Note

The methods in the above example use the Query Builder database methods.

Note

For the sake of simplicity in this example we’re using $_POST
directly. This is generally bad practice, and a more common approach
would be to use the Input Library
$this->input->post('title').

Anatomy of a Model

Model classes are stored in your application/models/ directory.
They can be nested within sub-directories if you want this type of
organization.

The basic prototype for a model class is this:

class Model_name extends CI_Model {

}

Where Model_name is the name of your class. Class names must have
the first letter capitalized with the rest of the name lowercase. Make
sure your class extends the base Model class.

The file name must match the class name. For example, if this is your class:

class User_model extends CI_Model {

}

Your file will be this:

application/models/User_model.php

Loading a Model

Your models will typically be loaded and called from within your
controller methods. To load a model you will use
the following method:

$this->load->model('model_name');

If your model is located in a sub-directory, include the relative path
from your models directory. For example, if you have a model located at
application/models/blog/Queries.php you’ll load it using:

$this->load->model('blog/queries');

Once loaded, you will access your model methods using an object with the
same name as your class:

$this->load->model('model_name');

$this->model_name->method();

If you would like your model assigned to a different object name you can
specify it via the second parameter of the loading method:

$this->load->model('model_name', 'foobar');

$this->foobar->method();

Here is an example of a controller, that loads a model, then serves a
view:

class Blog_controller extends CI_Controller {

 public function blog()
 {
 $this->load->model('blog');

 $data['query'] = $this->blog->get_last_ten_entries();

 $this->load->view('blog', $data);
 }
}

Auto-loading Models

If you find that you need a particular model globally throughout your
application, you can tell CodeIgniter to auto-load it during system
initialization. This is done by opening the
application/config/autoload.php file and adding the model to the
autoload array.

Connecting to your Database

When a model is loaded it does NOT connect automatically to your
database. The following options for connecting are available to you:

	You can connect using the standard database methods described
here, either from within your
Controller class or your Model class.

	You can tell the model loading method to auto-connect by passing
TRUE (boolean) via the third parameter, and connectivity settings,
as defined in your database config file will be used:

$this->load->model('model_name', '', TRUE);

	You can manually pass database connectivity settings via the third
parameter:

$config['hostname'] = 'localhost';
$config['username'] = 'myusername';
$config['password'] = 'mypassword';
$config['database'] = 'mydatabase';
$config['dbdriver'] = 'mysqli';
$config['dbprefix'] = '';
$config['pconnect'] = FALSE;
$config['db_debug'] = TRUE;

$this->load->model('model_name', '', $config);

Helper Functions

Helpers, as the name suggests, help you with tasks. Each helper file is
simply a collection of functions in a particular category. There are URL
Helpers, that assist in creating links, there are Form Helpers that help
you create form elements, Text Helpers perform various text formatting
routines, Cookie Helpers set and read cookies, File Helpers help you
deal with files, etc.

Unlike most other systems in CodeIgniter, Helpers are not written in an
Object Oriented format. They are simple, procedural functions. Each
helper function performs one specific task, with no dependence on other
functions.

CodeIgniter does not load Helper Files by default, so the first step in
using a Helper is to load it. Once loaded, it becomes globally available
in your controller and
views.

Helpers are typically stored in your system/helpers, or
application/helpers directory. CodeIgniter will look first in your
application/helpers directory. If the directory does not exist or the
specified helper is not located there CI will instead look in your
global system/helpers/ directory.

Loading a Helper

Loading a helper file is quite simple using the following method:

$this->load->helper('name');

Where name is the file name of the helper, without the .php file
extension or the “helper” part.

For example, to load the URL Helper file, which is named
url_helper.php, you would do this:

$this->load->helper('url');

A helper can be loaded anywhere within your controller methods (or
even within your View files, although that’s not a good practice), as
long as you load it before you use it. You can load your helpers in your
controller constructor so that they become available automatically in
any function, or you can load a helper in a specific function that needs
it.

Note

The Helper loading method above does not return a value, so
don’t try to assign it to a variable. Just use it as shown.

Loading Multiple Helpers

If you need to load more than one helper you can specify them in an
array, like this:

$this->load->helper(
 array('helper1', 'helper2', 'helper3')
);

Auto-loading Helpers

If you find that you need a particular helper globally throughout your
application, you can tell CodeIgniter to auto-load it during system
initialization. This is done by opening the application/config/autoload.php
file and adding the helper to the autoload array.

Using a Helper

Once you’ve loaded the Helper File containing the function you intend to
use, you’ll call it the way you would a standard PHP function.

For example, to create a link using the anchor() function in one of
your view files you would do this:

<?php echo anchor('blog/comments', 'Click Here');?>

Where “Click Here” is the name of the link, and “blog/comments” is the
URI to the controller/method you wish to link to.

“Extending” Helpers

To “extend” Helpers, create a file in your application/helpers/ folder
with an identical name to the existing Helper, but prefixed with MY_
(this item is configurable. See below.).

If all you need to do is add some functionality to an existing helper -
perhaps add a function or two, or change how a particular helper
function operates - then it’s overkill to replace the entire helper with
your version. In this case it’s better to simply “extend” the Helper.

Note

The term “extend” is used loosely since Helper functions are
procedural and discrete and cannot be extended in the traditional
programmatic sense. Under the hood, this gives you the ability to
add to or or to replace the functions a Helper provides.

For example, to extend the native Array Helper you’ll create a file
named application/helpers/MY_array_helper.php, and add or override
functions:

// any_in_array() is not in the Array Helper, so it defines a new function
function any_in_array($needle, $haystack)
{
 $needle = is_array($needle) ? $needle : array($needle);

 foreach ($needle as $item)
 {
 if (in_array($item, $haystack))
 {
 return TRUE;
 }
 }

 return FALSE;
}

// random_element() is included in Array Helper, so it overrides the native function
function random_element($array)
{
 shuffle($array);
 return array_pop($array);
}

Setting Your Own Prefix

The filename prefix for “extending” Helpers is the same used to extend
libraries and core classes. To set your own prefix, open your
application/config/config.php file and look for this item:

$config['subclass_prefix'] = 'MY_';

Please note that all native CodeIgniter libraries are prefixed with CI_
so DO NOT use that as your prefix.

Now What?

In the Table of Contents you’ll find a list of all the available Helper
Files. Browse each one to see what they do.

Using CodeIgniter Libraries

All of the available libraries are located in your system/libraries/
directory. In most cases, to use one of these classes involves initializing
it within a controller using the following
initialization method:

$this->load->library('class_name');

Where ‘class_name’ is the name of the class you want to invoke. For
example, to load the Form Validation Library you would do this:

$this->load->library('form_validation');

Once initialized you can use it as indicated in the user guide page
corresponding to that class.

Additionally, multiple libraries can be loaded at the same time by
passing an array of libraries to the load method.

Example:

$this->load->library(array('email', 'table'));

Creating Your Own Libraries

Please read the section of the user guide that discusses how to
create your own libraries.

Creating Libraries

When we use the term “Libraries” we are normally referring to the
classes that are located in the libraries directory and described in the
Class Reference of this user guide. In this case, however, we will
instead describe how you can create your own libraries within your
application/libraries directory in order to maintain separation between
your local resources and the global framework resources.

As an added bonus, CodeIgniter permits your libraries to extend native
classes if you simply need to add some functionality to an existing
library. Or you can even replace native libraries just by placing
identically named versions in your application/libraries directory.

In summary:

	You can create entirely new libraries.

	You can extend native libraries.

	You can replace native libraries.

The page below explains these three concepts in detail.

Note

The Database classes can not be extended or replaced with your
own classes. All other classes are able to be replaced/extended.

Storage

Your library classes should be placed within your application/libraries
directory, as this is where CodeIgniter will look for them when they are
initialized.

Naming Conventions

	File names must be capitalized. For example: Myclass.php

	Class declarations must be capitalized. For example: class Myclass

	Class names and file names must match.

The Class File

Classes should have this basic prototype:

<?php
defined('BASEPATH') OR exit('No direct script access allowed');

class Someclass {

 public function some_method()
 {
 }
}

Note

We are using the name Someclass purely as an example.

Using Your Class

From within any of your Controller methods you
can initialize your class using the standard:

$this->load->library('someclass');

Where someclass is the file name, without the “.php” file extension.
You can submit the file name capitalized or lower case. CodeIgniter
doesn’t care.

Once loaded you can access your class using the lower case version:

$this->someclass->some_method(); // Object instances will always be lower case

Passing Parameters When Initializing Your Class

In the library loading method you can dynamically pass data as an
array via the second parameter and it will be passed to your class
constructor:

$params = array('type' => 'large', 'color' => 'red');

$this->load->library('someclass', $params);

If you use this feature you must set up your class constructor to expect
data:

<?php defined('BASEPATH') OR exit('No direct script access allowed');

class Someclass {

 public function __construct($params)
 {
 // Do something with $params
 }
}

You can also pass parameters stored in a config file. Simply create a
config file named identically to the class file name and store it in
your application/config/ directory. Note that if you dynamically pass
parameters as described above, the config file option will not be
available.

Utilizing CodeIgniter Resources within Your Library

To access CodeIgniter’s native resources within your library use the
get_instance() method. This method returns the CodeIgniter super
object.

Normally from within your controller methods you will call any of the
available CodeIgniter methods using the $this construct:

$this->load->helper('url');
$this->load->library('session');
$this->config->item('base_url');
// etc.

$this, however, only works directly within your controllers, your
models, or your views. If you would like to use CodeIgniter’s classes
from within your own custom classes you can do so as follows:

First, assign the CodeIgniter object to a variable:

$CI =& get_instance();

Once you’ve assigned the object to a variable, you’ll use that variable
instead of $this:

$CI =& get_instance();

$CI->load->helper('url');
$CI->load->library('session');
$CI->config->item('base_url');
// etc.

Note

You’ll notice that the above get_instance() function is being
passed by reference:

$CI =& get_instance();

This is very important. Assigning by reference allows you to use the
original CodeIgniter object rather than creating a copy of it.

However, since a library is a class, it would be better if you
take full advantage of the OOP principles. So, in order to
be able to use the CodeIgniter super-object in all of the class
methods, you’re encouraged to assign it to a property instead:

class Example_library {

 protected $CI;

 // We'll use a constructor, as you can't directly call a function
 // from a property definition.
 public function __construct()
 {
 // Assign the CodeIgniter super-object
 $this->CI =& get_instance();
 }

 public function foo()
 {
 $this->CI->load->helper('url');
 redirect();
 }

 public function bar()
 {
 echo $this->CI->config->item('base_url');
 }

}

Replacing Native Libraries with Your Versions

Simply by naming your class files identically to a native library will
cause CodeIgniter to use it instead of the native one. To use this
feature you must name the file and the class declaration exactly the
same as the native library. For example, to replace the native Email
library you’ll create a file named application/libraries/Email.php,
and declare your class with:

class CI_Email {

}

Note that most native classes are prefixed with CI_.

To load your library you’ll see the standard loading method:

$this->load->library('email');

Note

At this time the Database classes can not be replaced with
your own versions.

Extending Native Libraries

If all you need to do is add some functionality to an existing library -
perhaps add a method or two - then it’s overkill to replace the entire
library with your version. In this case it’s better to simply extend the
class. Extending a class is nearly identical to replacing a class with a
couple exceptions:

	The class declaration must extend the parent class.

	Your new class name and filename must be prefixed with MY_ (this
item is configurable. See below.).

For example, to extend the native Email class you’ll create a file named
application/libraries/MY_Email.php, and declare your class with:

class MY_Email extends CI_Email {

}

If you need to use a constructor in your class make sure you
extend the parent constructor:

class MY_Email extends CI_Email {

 public function __construct($config = array())
 {
 parent::__construct($config);
 // Your own constructor code
 }

}

Note

Not all of the libraries have the same (or any) parameters
in their constructor. Take a look at the library that you’re
extending first to see how it should be implemented.

Loading Your Sub-class

To load your sub-class you’ll use the standard syntax normally used. DO
NOT include your prefix. For example, to load the example above, which
extends the Email class, you will use:

$this->load->library('email');

Once loaded you will use the class variable as you normally would for
the class you are extending. In the case of the email class all calls
will use:

$this->email->some_method();

Setting Your Own Prefix

To set your own sub-class prefix, open your
application/config/config.php file and look for this item:

$config['subclass_prefix'] = 'MY_';

Please note that all native CodeIgniter libraries are prefixed with CI_
so DO NOT use that as your prefix.

Using CodeIgniter Drivers

Drivers are a special type of Library that has a parent class and any
number of potential child classes. Child classes have access to the
parent class, but not their siblings. Drivers provide an elegant syntax
in your controllers for libraries that benefit
from or require being broken down into discrete classes.

Drivers are found in the system/libraries/ directory, in their own
sub-directory which is identically named to the parent library class.
Also inside that directory is a subdirectory named drivers, which
contains all of the possible child class files.

To use a driver you will initialize it within a controller using the
following initialization method:

$this->load->driver('class_name');

Where class name is the name of the driver class you want to invoke. For
example, to load a driver named “Some_parent” you would do this:

$this->load->driver('some_parent');

Methods of that class can then be invoked with:

$this->some_parent->some_method();

The child classes, the drivers themselves, can then be called directly
through the parent class, without initializing them:

$this->some_parent->child_one->some_method();
$this->some_parent->child_two->another_method();

Creating Your Own Drivers

Please read the section of the user guide that discusses how to create
your own drivers.

Creating Drivers

Driver Directory and File Structure

Sample driver directory and file structure layout:

	/application/libraries/Driver_name
	Driver_name.php

	drivers
	Driver_name_subclass_1.php

	Driver_name_subclass_2.php

	Driver_name_subclass_3.php

Note

In order to maintain compatibility on case-sensitive
file systems, the Driver_name directory must be
named in the format returned by ucfirst().

Note

The Driver library’s architecture is such that
the subclasses don’t extend and therefore don’t inherit
properties or methods of the main driver.

Creating Core System Classes

Every time CodeIgniter runs there are several base classes that are
initialized automatically as part of the core framework. It is possible,
however, to swap any of the core system classes with your own versions
or even extend the core versions.

Most users will never have any need to do this, but the option to
replace or extend them does exist for those who would like to
significantly alter the CodeIgniter core.

Note

Messing with a core system class has a lot of implications, so
make sure you know what you are doing before attempting it.

System Class List

The following is a list of the core system files that are invoked every
time CodeIgniter runs:

	Benchmark

	Config

	Controller

	Exceptions

	Hooks

	Input

	Language

	Loader

	Log

	Output

	Router

	Security

	URI

	Utf8

Replacing Core Classes

To use one of your own system classes instead of a default one simply
place your version inside your local application/core/ directory:

application/core/some_class.php

If this directory does not exist you can create it.

Any file named identically to one from the list above will be used
instead of the one normally used.

Please note that your class must use CI as a prefix. For example, if
your file is named Input.php the class will be named:

class CI_Input {

}

Extending Core Class

If all you need to do is add some functionality to an existing library -
perhaps add a method or two - then it’s overkill to replace the entire
library with your version. In this case it’s better to simply extend the
class. Extending a class is nearly identical to replacing a class with a
couple exceptions:

	The class declaration must extend the parent class.

	Your new class name and filename must be prefixed with MY_ (this
item is configurable. See below.).

For example, to extend the native Input class you’ll create a file named
application/core/MY_Input.php, and declare your class with:

class MY_Input extends CI_Input {

}

Note

If you need to use a constructor in your class make sure you
extend the parent constructor:

class MY_Input extends CI_Input {

 public function __construct()
 {
 parent::__construct();
 // Your own constructor code
 }
}

Tip: Any functions in your class that are named identically to the
methods in the parent class will be used instead of the native ones
(this is known as “method overriding”). This allows you to substantially
alter the CodeIgniter core.

If you are extending the Controller core class, then be sure to extend
your new class in your application controller’s constructors.

class Welcome extends MY_Controller {

 public function index()
 {
 $this->load->view('welcome_message');
 }
}

Setting Your Own Prefix

To set your own sub-class prefix, open your
application/config/config.php file and look for this item:

$config['subclass_prefix'] = 'MY_';

Please note that all native CodeIgniter libraries are prefixed
with CI_ so DO NOT use that as your prefix.

Creating Ancillary Classes

In some cases you may want to develop classes that exist apart from your
controllers but have the ability to utilize all of CodeIgniter’s
resources. This is easily possible as you’ll see.

get_instance()

	
get_instance()

	

	Returns:	Reference to your controller’s instance

	Return type:	CI_Controller

Any class that you instantiate within your controller methods can
access CodeIgniter’s native resources simply by using the
get_instance() function. This function returns the main
CodeIgniter object.

Normally, to call any of the available methods, CodeIgniter requires
you to use the $this construct:

$this->load->helper('url');
$this->load->library('session');
$this->config->item('base_url');
// etc.

$this, however, only works within your controllers, your models,
or your views. If you would like to use CodeIgniter’s classes from
within your own custom classes you can do so as follows:

First, assign the CodeIgniter object to a variable:

$CI =& get_instance();

Once you’ve assigned the object to a variable, you’ll use that variable
instead of $this:

$CI =& get_instance();

$CI->load->helper('url');
$CI->load->library('session');
$CI->config->item('base_url');
// etc.

If you’ll be using get_instance() inside another class, then it would
be better if you assign it to a property. This way, you won’t need to call
get_instance() in every single method.

Example:

class Example {

 protected $CI;

 // We'll use a constructor, as you can't directly call a function
 // from a property definition.
 public function __construct()
 {
 // Assign the CodeIgniter super-object
 $this->CI =& get_instance();
 }

 public function foo()
 {
 $this->CI->load->helper('url');
 redirect();
 }

 public function bar()
 {
 $this->CI->config->item('base_url');
 }
}

In the above example, both methods foo() and bar() will work
after you instantiate the Example class, without the need to call
get_instance() in each of them.

Hooks - Extending the Framework Core

CodeIgniter’s Hooks feature provides a means to tap into and modify the
inner workings of the framework without hacking the core files. When
CodeIgniter runs it follows a specific execution process, diagramed in
the Application Flow page. There may be
instances, however, where you’d like to cause some action to take place
at a particular stage in the execution process. For example, you might
want to run a script right before your controllers get loaded, or right
after, or you might want to trigger one of your own scripts in some
other location.

Enabling Hooks

The hooks feature can be globally enabled/disabled by setting the
following item in the application/config/config.php file:

$config['enable_hooks'] = TRUE;

Defining a Hook

Hooks are defined in the application/config/hooks.php file.
Each hook is specified as an array with this prototype:

$hook['pre_controller'] = array(
 'class' => 'MyClass',
 'function' => 'Myfunction',
 'filename' => 'Myclass.php',
 'filepath' => 'hooks',
 'params' => array('beer', 'wine', 'snacks')
);

Notes:

The array index correlates to the name of the particular hook point you
want to use. In the above example the hook point is pre_controller. A
list of hook points is found below. The following items should be
defined in your associative hook array:

	class The name of the class you wish to invoke. If you prefer to
use a procedural function instead of a class, leave this item blank.

	function The function (or method) name you wish to call.

	filename The file name containing your class/function.

	filepath The name of the directory containing your script.
Note:
Your script must be located in a directory INSIDE your application/
directory, so the file path is relative to that directory. For example,
if your script is located in application/hooks/, you will simply use
‘hooks’ as your filepath. If your script is located in
application/hooks/utilities/ you will use ‘hooks/utilities’ as your
filepath. No trailing slash.

	params Any parameters you wish to pass to your script. This item
is optional.

You can also use lambda/anoymous functions (or closures) as hooks, with
a simpler syntax:

$hook['post_controller'] = function()
{
 /* do something here */
};

Multiple Calls to the Same Hook

If want to use the same hook point with more than one script, simply
make your array declaration multi-dimensional, like this:

$hook['pre_controller'][] = array(
 'class' => 'MyClass',
 'function' => 'MyMethod',
 'filename' => 'Myclass.php',
 'filepath' => 'hooks',
 'params' => array('beer', 'wine', 'snacks')
);

$hook['pre_controller'][] = array(
 'class' => 'MyOtherClass',
 'function' => 'MyOtherMethod',
 'filename' => 'Myotherclass.php',
 'filepath' => 'hooks',
 'params' => array('red', 'yellow', 'blue')
);

Notice the brackets after each array index:

$hook['pre_controller'][]

This permits you to have the same hook point with multiple scripts. The
order you define your array will be the execution order.

Hook Points

The following is a list of available hook points.

	pre_system
Called very early during system execution. Only the benchmark and
hooks class have been loaded at this point. No routing or other
processes have happened.

	pre_controller
Called immediately prior to any of your controllers being called.
All base classes, routing, and security checks have been done.

	post_controller_constructor
Called immediately after your controller is instantiated, but prior
to any method calls happening.

	post_controller
Called immediately after your controller is fully executed.

	display_override
Overrides the _display() method, used to send the finalized page
to the web browser at the end of system execution. This permits you
to use your own display methodology. Note that you will need to
reference the CI superobject with $this->CI =& get_instance() and
then the finalized data will be available by calling
$this->CI->output->get_output().

	cache_override
Enables you to call your own method instead of the _display_cache()
method in the Output Library. This permits
you to use your own cache display mechanism.

	post_system
Called after the final rendered page is sent to the browser, at the
end of system execution after the finalized data is sent to the
browser.

Auto-loading Resources

CodeIgniter comes with an “Auto-load” feature that permits libraries,
helpers, and models to be initialized automatically every time the
system runs. If you need certain resources globally throughout your
application you should consider auto-loading them for convenience.

The following items can be loaded automatically:

	Classes found in the libraries/ directory

	Helper files found in the helpers/ directory

	Custom config files found in the config/ directory

	Language files found in the system/language/ directory

	Models found in the models/ folder

To autoload resources, open the application/config/autoload.php
file and add the item you want loaded to the autoload array. You’ll
find instructions in that file corresponding to each type of item.

Note

Do not include the file extension (.php) when adding items to
the autoload array.

Additionally, if you want CodeIgniter to use a Composer [https://getcomposer.org/]
auto-loader, just set $config['composer_autoload'] to TRUE or
a custom path in application/config/config.php.

Common Functions

CodeIgniter uses a few functions for its operation that are globally
defined, and are available to you at any point. These do not require
loading any libraries or helpers.

	
is_php($version)

	

	Parameters:	
	$version (string) – Version number

	Returns:	TRUE if the running PHP version is at least the one specified or FALSE if not

	Return type:	bool

Determines if the PHP version being used is greater than the
supplied version number.

Example:

if (is_php('5.3'))
{
 $str = quoted_printable_encode($str);
}

Returns boolean TRUE if the installed version of PHP is equal to or
greater than the supplied version number. Returns FALSE if the installed
version of PHP is lower than the supplied version number.

	
is_really_writable($file)

	

	Parameters:	
	$file (string) – File path

	Returns:	TRUE if the path is writable, FALSE if not

	Return type:	bool

is_writable() returns TRUE on Windows servers when you really can’t
write to the file as the OS reports to PHP as FALSE only if the
read-only attribute is marked.

This function determines if a file is actually writable by attempting
to write to it first. Generally only recommended on platforms where
this information may be unreliable.

Example:

if (is_really_writable('file.txt'))
{
 echo "I could write to this if I wanted to";
}
else
{
 echo "File is not writable";
}

Note

See also PHP bug #54709 [https://bugs.php.net/bug.php?id=54709] for more info.

	
config_item($key)

	

	Parameters:	
	$key (string) – Config item key

	Returns:	Configuration key value or NULL if not found

	Return type:	mixed

The Config Library is the preferred way of
accessing configuration information, however config_item() can be used
to retrieve single keys. See Config Library
documentation for more information.

	
set_status_header($code[, $text = ''])

	

	Parameters:	
	$code (int) – HTTP Response status code

	$text (string) – A custom message to set with the status code

	Return type:	void

Permits you to manually set a server status header. Example:

set_status_header(401);
// Sets the header as: Unauthorized

See here [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html] for
a full list of headers.

	
remove_invisible_characters($str[, $url_encoded = TRUE])

	

	Parameters:	
	$str (string) – Input string

	$url_encoded (bool) – Whether to remove URL-encoded characters as well

	Returns:	Sanitized string

	Return type:	string

This function prevents inserting NULL characters between ASCII
characters, like Java\0script.

Example:

remove_invisible_characters('Java\\0script');
// Returns: 'Javascript'

	
html_escape($var)

	

	Parameters:	
	$var (mixed) – Variable to escape (string or array)

	Returns:	HTML escaped string(s)

	Return type:	mixed

This function acts as an alias for PHP’s native htmlspecialchars()
function, with the advantage of being able to accept an array of strings.

It is useful in preventing Cross Site Scripting (XSS).

	
get_mimes()

	

	Returns:	An associative array of file types

	Return type:	array

This function returns a reference to the MIMEs array from
application/config/mimes.php.

	
is_https()

	

	Returns:	TRUE if currently using HTTP-over-SSL, FALSE if not

	Return type:	bool

Returns TRUE if a secure (HTTPS) connection is used and FALSE
in any other case (including non-HTTP requests).

	
is_cli()

	

	Returns:	TRUE if currently running under CLI, FALSE otherwise

	Return type:	bool

Returns TRUE if the application is run through the command line
and FALSE if not.

Note

This function checks both if the PHP_SAPI value is ‘cli’
or if the STDIN constant is defined.

	
function_usable($function_name)

	

	Parameters:	
	$function_name (string) – Function name

	Returns:	TRUE if the function can be used, FALSE if not

	Return type:	bool

Returns TRUE if a function exists and is usable, FALSE otherwise.

This function runs a function_exists() check and if the
Suhosin extension <http://www.hardened-php.net/suhosin/> is loaded,
checks if it doesn’t disable the function being checked.

It is useful if you want to check for the availability of functions
such as eval() and exec(), which are dangerous and might be
disabled on servers with highly restrictive security policies.

Note

This function was introduced because Suhosin terminated
script execution, but this turned out to be a bug. A fix
has been available for some time (version 0.9.34), but is
unfortunately not released yet.

Compatibility Functions

CodeIgniter provides a set of compatibility functions that enable
you to use functions what are otherwise natively available in PHP,
but only in higher versions or depending on a certain extension.

Being custom implementations, these functions will also have some
set of dependencies on their own, but are still useful if your
PHP setup doesn’t offer them natively.

Note

Much like the common functions, the
compatibility functions are always available, as long as
their dependencies are met.

	Password Hashing
	Dependencies

	Constants

	Function reference

	Hash (Message Digest)
	Dependencies

	Function reference

	Multibyte String
	Dependencies

	Function reference

	Standard Functions
	Dependencies

	Function reference

Password Hashing

This set of compatibility functions offers a “backport” of PHP’s
standard Password Hashing extension [http://php.net/password]
that is otherwise available only since PHP 5.5.

Dependencies

	PHP 5.3.7

	CRYPT_BLOWFISH support for crypt()

Constants

	PASSWORD_BCRYPT

	PASSWORD_DEFAULT

Function reference

	
password_get_info($hash)

	

	Parameters:	
	$hash (string) – Password hash

	Returns:	Information about the hashed password

	Return type:	array

For more information, please refer to the PHP manual for
password_get_info() [http://php.net/password_get_info].

	
password_hash($password, $algo[, $options = array()])

	

	Parameters:	
	$password (string) – Plain-text password

	$algo (int) – Hashing algorithm

	$options (array) – Hashing options

	Returns:	Hashed password or FALSE on failure

	Return type:	string

For more information, please refer to the PHP manual for
password_hash() [http://php.net/password_hash].

Note

Unless you provide your own (and valid) salt, this function
has a further dependency on an available CSPRNG source. Each
of the following would satisfy that:
- mcrypt_create_iv() with MCRYPT_DEV_URANDOM
- openssl_random_pseudo_bytes()
- /dev/arandom
- /dev/urandom

	
password_needs_rehash()

	

	Parameters:	
	$hash (string) – Password hash

	$algo (int) – Hashing algorithm

	$options (array) – Hashing options

	Returns:	TRUE if the hash should be rehashed to match the given algorithm and options, FALSE otherwise

	Return type:	bool

For more information, please refer to the PHP manual for
password_needs_rehash() [http://php.net/password_needs_rehash].

	
password_verify($password, $hash)

	

	Parameters:	
	$password (string) – Plain-text password

	$hash (string) – Password hash

	Returns:	TRUE if the password matches the hash, FALSE if not

	Return type:	bool

For more information, please refer to the PHP manual for
password_verify() [http://php.net/password_verify].

Hash (Message Digest)

This compatibility layer contains backports for the hash_equals()
and hash_pbkdf2() functions, which otherwise require PHP 5.6 and/or
PHP 5.5 respectively.

Dependencies

	None

Function reference

	
hash_equals($known_string, $user_string)

	

	Parameters:	
	$known_string (string) – Known string

	$user_string (string) – User-supplied string

	Returns:	TRUE if the strings match, FALSE otherwise

	Return type:	string

For more information, please refer to the PHP manual for
hash_equals() [http://php.net/hash_equals].

	
hash_pbkdf2($algo, $password, $salt, $iterations[, $length = 0[, $raw_output = FALSE]])

	

	Parameters:	
	$algo (string) – Hashing algorithm

	$password (string) – Password

	$salt (string) – Hash salt

	$iterations (int) – Number of iterations to perform during derivation

	$length (int) – Output string length

	$raw_output (bool) – Whether to return raw binary data

	Returns:	Password-derived key or FALSE on failure

	Return type:	string

For more information, please refer to the PHP manual for
hash_pbkdf2() [http://php.net/hash_pbkdf2].

Multibyte String

This set of compatibility functions offers limited support for PHP’s
Multibyte String extension [http://php.net/mbstring]. Because of
the limited alternative solutions, only a few functions are available.

Note

When a character set parameter is ommited,
$config['charset'] will be used.

Dependencies

	iconv [http://php.net/iconv] extension

Important

This dependency is optional and these functions will
always be declared. If iconv is not available, they WILL
fall-back to their non-mbstring versions.

Important

Where a character set is supplied, it must be
supported by iconv and in a format that it recognizes.

Note

For you own dependency check on the actual mbstring
extension, use the MB_ENABLED constant.

Function reference

	
mb_strlen($str[, $encoding = NULL])

	

	Parameters:	
	$str (string) – Input string

	$encoding (string) – Character set

	Returns:	Number of characters in the input string or FALSE on failure

	Return type:	string

For more information, please refer to the PHP manual for
mb_strlen() [http://php.net/mb_strlen].

	
mb_strpos($haystack, $needle[, $offset = 0[, $encoding = NULL]])

	

	Parameters:	
	$haystack (string) – String to search in

	$needle (string) – Part of string to search for

	$offset (int) – Search offset

	$encoding (string) – Character set

	Returns:	Numeric character position of where $needle was found or FALSE if not found

	Return type:	mixed

For more information, please refer to the PHP manual for
mb_strpos() [http://php.net/mb_strpos].

	
mb_substr($str, $start[, $length = NULL[, $encoding = NULL]])

	

	Parameters:	
	$str (string) – Input string

	$start (int) – Position of first character

	$length (int) – Maximum number of characters

	$encoding (string) – Character set

	Returns:	Portion of $str specified by $start and $length or FALSE on failure

	Return type:	string

For more information, please refer to the PHP manual for
mb_substr() [http://php.net/mb_substr].

Standard Functions

This set of compatibility functions offers support for a few
standard functions in PHP that otherwise require a newer PHP version.

Dependencies

	None

Function reference

	
array_column(array $array, $column_key[, $index_key = NULL])

	

	Parameters:	
	$array (array) – Array to fetch results from

	$column_key (mixed) – Key of the column to return values from

	$index_key (mixed) – Key to use for the returned values

	Returns:	An array of values representing a single column from the input array

	Return type:	array

For more information, please refer to the PHP manual for
array_column() [http://php.net/array_column].

	
hex2bin($data)

	

	Parameters:	
	$data (array) – Hexadecimal representation of data

	Returns:	Binary representation of the given data

	Return type:	string

For more information, please refer to the PHP manual for hex2bin() [http://php.net/hex2bin].

URI Routing

Typically there is a one-to-one relationship between a URL string and
its corresponding controller class/method. The segments in a URI
normally follow this pattern:

example.com/class/function/id/

In some instances, however, you may want to remap this relationship so
that a different class/method can be called instead of the one
corresponding to the URL.

For example, let’s say you want your URLs to have this prototype:

example.com/product/1/
example.com/product/2/
example.com/product/3/
example.com/product/4/

Normally the second segment of the URL is reserved for the method
name, but in the example above it instead has a product ID. To
overcome this, CodeIgniter allows you to remap the URI handler.

Setting your own routing rules

Routing rules are defined in your application/config/routes.php file.
In it you’ll see an array called $route that permits you to specify
your own routing criteria. Routes can either be specified using wildcards
or Regular Expressions.

Wildcards

A typical wildcard route might look something like this:

$route['product/:num'] = 'catalog/product_lookup';

In a route, the array key contains the URI to be matched, while the
array value contains the destination it should be re-routed to. In the
above example, if the literal word “product” is found in the first
segment of the URL, and a number is found in the second segment, the
“catalog” class and the “product_lookup” method are instead used.

You can match literal values or you can use two wildcard types:

(:num) will match a segment containing only numbers.
(:any) will match a segment containing any character (except for ‘/’, which is the segment delimiter).

Note

Wildcards are actually aliases for regular expressions, with
:any being translated to [^/]+ and :num to [0-9]+,
respectively.

Note

Routes will run in the order they are defined. Higher routes
will always take precedence over lower ones.

Note

Route rules are not filters! Setting a rule of e.g.
‘foo/bar/(:num)’ will not prevent controller Foo and method
bar to be called with a non-numeric value if that is a valid
route.

Examples

Here are a few routing examples:

$route['journals'] = 'blogs';

A URL containing the word “journals” in the first segment will be
remapped to the “blogs” class.

$route['blog/joe'] = 'blogs/users/34';

A URL containing the segments blog/joe will be remapped to the “blogs”
class and the “users” method. The ID will be set to “34”.

$route['product/(:any)'] = 'catalog/product_lookup';

A URL with “product” as the first segment, and anything in the second
will be remapped to the “catalog” class and the “product_lookup”
method.

$route['product/(:num)'] = 'catalog/product_lookup_by_id/$1';

A URL with “product” as the first segment, and a number in the second
will be remapped to the “catalog” class and the
“product_lookup_by_id” method passing in the match as a variable to
the method.

Important

Do not use leading/trailing slashes.

Regular Expressions

If you prefer you can use regular expressions to define your routing
rules. Any valid regular expression is allowed, as are back-references.

Note

If you use back-references you must use the dollar syntax
rather than the double backslash syntax.

A typical RegEx route might look something like this:

$route['products/([a-z]+)/(\d+)'] = '$1/id_$2';

In the above example, a URI similar to products/shirts/123 would instead
call the “shirts” controller class and the “id_123” method.

With regular expressions, you can also catch multiple segments at once.
For example, if a user accesses a password protected area of your web
application and you wish to be able to redirect them back to the same
page after they log in, you may find this example useful:

$route['login/(.+)'] = 'auth/login/$1';

Note

In the above example, if the $1 placeholder contains a
slash, it will still be split into multiple parameters when
passed to Auth::login().

For those of you who don’t know regular expressions and want to learn
more about them, regular-expressions.info [http://www.regular-expressions.info/]
might be a good starting point.

Note

You can also mix and match wildcards with regular expressions.

Callbacks

You can also use callbacks in place of the normal routing rules to process
the back-references. Example:

$route['products/([a-zA-Z]+)/edit/(\d+)'] = function ($product_type, $id)
{
 return 'catalog/product_edit/' . strtolower($product_type) . '/' . $id;
};

Using HTTP verbs in routes

It is possible to use HTTP verbs (request method) to define your routing rules.
This is particularly useful when building RESTful applications. You can use standard HTTP
verbs (GET, PUT, POST, DELETE, PATCH) or a custom one such (e.g. PURGE). HTTP verb rules
are case-insensitive. All you need to do is to add the verb as an array key to your route.
Example:

$route['products']['put'] = 'product/insert';

In the above example, a PUT request to URI “products” would call the Product::insert()
controller method.

$route['products/(:num)']['DELETE'] = 'product/delete/$1';

A DELETE request to URL with “products” as first the segment and a number in the second will be
mapped to the Product::delete() method, passing the numeric value as the first parameter.

Using HTTP verbs is of course, optional.

Reserved Routes

There are three reserved routes:

$route['default_controller'] = 'welcome';

This route points to the action that should be executed if the URI contains
no data, which will be the case when people load your root URL.
The setting accepts a controller/method value and index() would be
the default method if you don’t specify one. In the above example, it is
Welcome::index() that would be called.

Note

You can NOT use a directory as a part of this setting!

You are encouraged to always have a default route as otherwise a 404 page
will appear by default.

$route['404_override'] = '';

This route indicates which controller class should be loaded if the
requested controller is not found. It will override the default 404
error page. Same per-directory rules as with ‘default_controller’
apply here as well.

It won’t affect to the show_404() function, which will
continue loading the default error_404.php file at
application/views/errors/error_404.php.

$route['translate_uri_dashes'] = FALSE;

As evident by the boolean value, this is not exactly a route. This
option enables you to automatically replace dashes (‘-‘) with
underscores in the controller and method URI segments, thus saving you
additional route entries if you need to do that.
This is required, because the dash isn’t a valid class or method name
character and would cause a fatal error if you try to use it.

Error Handling

CodeIgniter lets you build error reporting into your applications using
the functions described below. In addition, it has an error logging
class that permits error and debugging messages to be saved as text
files.

Note

By default, CodeIgniter displays all PHP errors. You might
wish to change this behavior once your development is complete. You’ll
find the error_reporting() function located at the top of your main
index.php file. Disabling error reporting will NOT prevent log files
from being written if there are errors.

Unlike most systems in CodeIgniter, the error functions are simple
procedural interfaces that are available globally throughout the
application. This approach permits error messages to get triggered
without having to worry about class/function scoping.

CodeIgniter also returns a status code whenever a portion of the core
calls exit(). This exit status code is separate from the HTTP status
code, and serves as a notice to other processes that may be watching of
whether the script completed successfully, or if not, what kind of
problem it encountered that caused it to abort. These values are
defined in application/config/constants.php. While exit status codes
are most useful in CLI settings, returning the proper code helps server
software keep track of your scripts and the health of your application.

The following functions let you generate errors:

	
show_error($message, $status_code, $heading = 'An Error Was Encountered')

	

	Parameters:	
	$message (mixed) – Error message

	$status_code (int) – HTTP Response status code

	$heading (string) – Error page heading

	Return type:	void

This function will display the error message supplied to it using
the error template appropriate to your execution:

application/views/errors/html/error_general.php

or:

application/views/errors/cli/error_general.php

The optional parameter $status_code determines what HTTP status
code should be sent with the error. If $status_code is less
than 100, the HTTP status code will be set to 500, and the exit
status code will be set to $status_code + EXIT__AUTO_MIN.
If that value is larger than EXIT__AUTO_MAX, or if
$status_code is 100 or higher, the exit status code will be set
to EXIT_ERROR.
You can check in application/config/constants.php for more detail.

	
show_404($page = '', $log_error = TRUE)

	

	Parameters:	
	$page (string) – URI string

	$log_error (bool) – Whether to log the error

	Return type:	void

This function will display the 404 error message supplied to it
using the error template appropriate to your execution:

application/views/errors/html/error_404.php

or:

application/views/errors/cli/error_404.php

The function expects the string passed to it to be the file path to
the page that isn’t found. The exit status code will be set to
EXIT_UNKNOWN_FILE.
Note that CodeIgniter automatically shows 404 messages if
controllers are not found.

CodeIgniter automatically logs any show_404() calls. Setting the
optional second parameter to FALSE will skip logging.

	
log_message($level, $message)

	

	Parameters:	
	$level (string) – Log level: ‘error’, ‘debug’ or ‘info’

	$message (string) – Message to log

	Return type:	void

This function lets you write messages to your log files. You must
supply one of three “levels” in the first parameter, indicating what
type of message it is (debug, error, info), with the message itself
in the second parameter.

Example:

if ($some_var == '')
{
 log_message('error', 'Some variable did not contain a value.');
}
else
{
 log_message('debug', 'Some variable was correctly set');
}

log_message('info', 'The purpose of some variable is to provide some value.');

There are three message types:

	Error Messages. These are actual errors, such as PHP errors or
user errors.

	Debug Messages. These are messages that assist in debugging. For
example, if a class has been initialized, you could log this as
debugging info.

	Informational Messages. These are the lowest priority messages,
simply giving information regarding some process.

Note

In order for the log file to actually be written, the
logs/ directory must be writable. In addition, you must
set the “threshold” for logging in
application/config/config.php. You might, for example,
only want error messages to be logged, and not the other
two types. If you set it to zero logging will be disabled.

Web Page Caching

CodeIgniter lets you cache your pages in order to achieve maximum
performance.

Although CodeIgniter is quite fast, the amount of dynamic information
you display in your pages will correlate directly to the server
resources, memory, and processing cycles utilized, which affect your
page load speeds. By caching your pages, since they are saved in their
fully rendered state, you can achieve performance that nears that of
static web pages.

How Does Caching Work?

Caching can be enabled on a per-page basis, and you can set the length
of time that a page should remain cached before being refreshed. When a
page is loaded for the first time, the cache file will be written to
your application/cache folder. On subsequent page loads the cache file
will be retrieved and sent to the requesting user’s browser. If it has
expired, it will be deleted and refreshed before being sent to the
browser.

Enabling Caching

To enable caching, put the following tag in any of your controller
methods:

$this->output->cache($n);

Where $n is the number of minutes you wish the page to remain
cached between refreshes.

The above tag can go anywhere within a method. It is not affected by
the order that it appears, so place it wherever it seems most logical to
you. Once the tag is in place, your pages will begin being cached.

Important

Because of the way CodeIgniter stores content for output,
caching will only work if you are generating display for your
controller with a view.

Important

If you change configuration options that might affect
your output, you have to manually delete your cache files.

Note

Before the cache files can be written you must set the file
permissions on your application/cache/ directory such that
it is writable.

Deleting Caches

If you no longer wish to cache a file you can remove the caching tag and
it will no longer be refreshed when it expires.

Note

Removing the tag will not delete the cache immediately. It will
have to expire normally.

If you need to manually delete the cache, you can use the delete_cache()
method:

// Deletes cache for the currently requested URI
$this->output->delete_cache();

// Deletes cache for /foo/bar
$this->output->delete_cache('/foo/bar');

Profiling Your Application

The Profiler Class will display benchmark results, queries you have run,
and $_POST data at the bottom of your pages. This information can be
useful during development in order to help with debugging and
optimization.

Initializing the Class

Important

This class does NOT need to be initialized. It is loaded
automatically by the Output Library
if profiling is enabled as shown below.

Enabling the Profiler

To enable the profiler place the following line anywhere within your
Controller methods:

$this->output->enable_profiler(TRUE);

When enabled a report will be generated and inserted at the bottom of
your pages.

To disable the profiler you will use:

$this->output->enable_profiler(FALSE);

Setting Benchmark Points

In order for the Profiler to compile and display your benchmark data you
must name your mark points using specific syntax.

Please read the information on setting Benchmark points in the
Benchmark Library page.

Enabling and Disabling Profiler Sections

Each section of Profiler data can be enabled or disabled by setting a
corresponding config variable to TRUE or FALSE. This can be done one of
two ways. First, you can set application wide defaults with the
application/config/profiler.php config file.

Example:

$config['config'] = FALSE;
$config['queries'] = FALSE;

In your controllers, you can override the defaults and config file
values by calling the set_profiler_sections() method of the
Output Library:

$sections = array(
 'config' => TRUE,
 'queries' => TRUE
);

$this->output->set_profiler_sections($sections);

Available sections and the array key used to access them are described
in the table below.

	Key
	Description
	Default

	benchmarks
	Elapsed time of Benchmark points and total execution time
	TRUE

	config
	CodeIgniter Config variables
	TRUE

	controller_info
	The Controller class and method requested
	TRUE

	get
	Any GET data passed in the request
	TRUE

	http_headers
	The HTTP headers for the current request
	TRUE

	memory_usage
	Amount of memory consumed by the current request, in bytes
	TRUE

	post
	Any POST data passed in the request
	TRUE

	queries
	Listing of all database queries executed, including execution time
	TRUE

	uri_string
	The URI of the current request
	TRUE

	session_data
	Data stored in the current session
	TRUE

	query_toggle_count
	The number of queries after which the query block will default to
hidden.
	25

Note

Disabling the save_queries setting in
your database configuration will also effectively disable profiling for
database queries and render the ‘queries’ setting above useless. You can
optionally override this setting with $this->db->save_queries = TRUE;.
Without this setting you won’t be able to view the queries or the
last_query <database/helpers>.

Running via the CLI

As well as calling an applications Controllers
via the URL in a browser they can also be loaded via the command-line
interface (CLI).

Page Contents

	Running via the CLI
	What is the CLI?

	Why run via the command-line?

	Let’s try it: Hello World!

	That’s it!

What is the CLI?

The command-line interface is a text-based method of interacting with
computers. For more information, check the Wikipedia
article [http://en.wikipedia.org/wiki/Command-line_interface].

Why run via the command-line?

There are many reasons for running CodeIgniter from the command-line,
but they are not always obvious.

	Run your cron-jobs without needing to use wget or curl

	Make your cron-jobs inaccessible from being loaded in the URL by
checking the return value of is_cli().

	Make interactive “tasks” that can do things like set permissions,
prune cache folders, run backups, etc.

	Integrate with other applications in other languages. For example, a
random C++ script could call one command and run code in your models!

Let’s try it: Hello World!

Let’s create a simple controller so you can see it in action. Using your
text editor, create a file called Tools.php, and put the following code
in it:

<?php
class Tools extends CI_Controller {

 public function message($to = 'World')
 {
 echo "Hello {$to}!".PHP_EOL;
 }
}

Then save the file to your application/controllers/ folder.

Now normally you would visit the site using a URL similar to this:

example.com/index.php/tools/message/to

Instead, we are going to open the terminal in Mac/Linux or go to Run > “cmd”
in Windows and navigate to our CodeIgniter project.

$ cd /path/to/project;
$ php index.php tools message

If you did it right, you should see Hello World! printed.

$ php index.php tools message "John Smith"

Here we are passing it an argument in the same way that URL parameters
work. “John Smith” is passed as an argument and the output is:

Hello John Smith!

That’s it!

That, in a nutshell, is all there is to know about controllers on the
command line. Remember that this is just a normal controller, so routing
and _remap() works fine.

Managing your Applications

By default it is assumed that you only intend to use CodeIgniter to
manage one application, which you will build in your application/
directory. It is possible, however, to have multiple sets of
applications that share a single CodeIgniter installation, or even to
rename or relocate your application directory.

Renaming the Application Directory

If you would like to rename your application directory you may do so
as long as you open your main index.php file and set its name using
the $application_folder variable:

$application_folder = 'application';

Relocating your Application Directory

It is possible to move your application directory to a different
location on your server than your web root. To do so open
your main index.php and set a full server path in the
$application_folder variable:

$application_folder = '/path/to/your/application';

Running Multiple Applications with one CodeIgniter Installation

If you would like to share a common CodeIgniter installation to manage
several different applications simply put all of the directories located
inside your application directory into their own sub-directory.

For example, let’s say you want to create two applications, named “foo”
and “bar”. You could structure your application directories like this:

applications/foo/
applications/foo/config/
applications/foo/controllers/
applications/foo/libraries/
applications/foo/models/
applications/foo/views/
applications/bar/
applications/bar/config/
applications/bar/controllers/
applications/bar/libraries/
applications/bar/models/
applications/bar/views/

To select a particular application for use requires that you open your
main index.php file and set the $application_folder variable. For
example, to select the “foo” application for use you would do this:

$application_folder = 'applications/foo';

Note

Each of your applications will need its own index.php file
which calls the desired application. The index.php file can be named
anything you want.

Handling Multiple Environments

Developers often desire different system behavior depending on whether
an application is running in a development or production environment.
For example, verbose error output is something that would be useful
while developing an application, but it may also pose a security issue
when “live”.

The ENVIRONMENT Constant

By default, CodeIgniter comes with the environment constant set to use
the value provided in $_SERVER['CI_ENV'], otherwise defaults to
‘development’. At the top of index.php, you will see:

define('ENVIRONMENT', isset($_SERVER['CI_ENV']) ? $_SERVER['CI_ENV'] : 'development');

This server variable can be set in your .htaccess file, or Apache
config using SetEnv [https://httpd.apache.org/docs/2.2/mod/mod_env.html#setenv].
Alternative methods are available for nginx and other servers, or you can
remove this logic entirely and set the constant based on the server’s IP address.

In addition to affecting some basic framework behavior (see the next
section), you may use this constant in your own development to
differentiate between which environment you are running in.

Effects On Default Framework Behavior

There are some places in the CodeIgniter system where the ENVIRONMENT
constant is used. This section describes how default framework behavior
is affected.

Error Reporting

Setting the ENVIRONMENT constant to a value of ‘development’ will cause
all PHP errors to be rendered to the browser when they occur.
Conversely, setting the constant to ‘production’ will disable all error
output. Disabling error reporting in production is a good security
practice.

Configuration Files

Optionally, you can have CodeIgniter load environment-specific
configuration files. This may be useful for managing things like
differing API keys across multiple environments. This is described in
more detail in the environment section of the Config Class documentation.

Alternate PHP Syntax for View Files

If you do not utilize CodeIgniter’s template
engine, you’ll be using pure PHP in your
View files. To minimize the PHP code in these files, and to make it
easier to identify the code blocks it is recommended that you use PHPs
alternative syntax for control structures and short tag echo statements.
If you are not familiar with this syntax, it allows you to eliminate the
braces from your code, and eliminate “echo” statements.

Automatic Short Tag Support

Note

If you find that the syntax described in this page does not
work on your server it might be that “short tags” are disabled in your
PHP ini file. CodeIgniter will optionally rewrite short tags on-the-fly,
allowing you to use that syntax even if your server doesn’t support it.
This feature can be enabled in your config/config.php file.

Please note that if you do use this feature, if PHP errors are
encountered in your view files, the error message and line number
will not be accurately shown. Instead, all errors will be shown as
eval() errors.

Alternative Echos

Normally to echo, or print out a variable you would do this:

<?php echo $variable; ?>

With the alternative syntax you can instead do it this way:

<?=$variable?>

Alternative Control Structures

Controls structures, like if, for, foreach, and while can be written in
a simplified format as well. Here is an example using foreach:

<?php foreach ($todo as $item): ?>

 <?=$item?>

<?php endforeach; ?>

Notice that there are no braces. Instead, the end brace is replaced with
endforeach. Each of the control structures listed above has a similar
closing syntax: endif, endfor, endforeach, and endwhile

Also notice that instead of using a semicolon after each structure
(except the last one), there is a colon. This is important!

Here is another example, using if/elseif/else. Notice the colons:

<?php if ($username === 'sally'): ?>

 <h3>Hi Sally</h3>

<?php elseif ($username === 'joe'): ?>

 <h3>Hi Joe</h3>

<?php else: ?>

 <h3>Hi unknown user</h3>

<?php endif; ?>

Security

This page describes some “best practices” regarding web security, and
details CodeIgniter’s internal security features.

Note

If you came here looking for a security contact, please refer to
our Contribution Guide <../contributing/index>.

URI Security

CodeIgniter is fairly restrictive regarding which characters it allows
in your URI strings in order to help minimize the possibility that
malicious data can be passed to your application. URIs may only contain
the following:

	Alpha-numeric text (latin characters only)

	Tilde: ~

	Percent sign: %

	Period: .

	Colon: :

	Underscore: _

	Dash: -

	Space

Register_globals

During system initialization all global variables that are found to exist
in the $_GET, $_POST, $_REQUEST and $_COOKIE are unset.

The unsetting routine is effectively the same as register_globals = off.

display_errors

In production environments, it is typically desirable to “disable” PHP’s
error reporting by setting the internal display_errors flag to a value
of 0. This disables native PHP errors from being rendered as output,
which may potentially contain sensitive information.

Setting CodeIgniter’s ENVIRONMENT constant in index.php to a value of
‘production’ will turn off these errors. In development mode, it is
recommended that a value of ‘development’ is used. More information
about differentiating between environments can be found on the
Handling Environments page.

magic_quotes_runtime

The magic_quotes_runtime directive is turned off during system
initialization so that you don’t have to remove slashes when retrieving
data from your database.

Best Practices

Before accepting any data into your application, whether it be POST data
from a form submission, COOKIE data, URI data, XML-RPC data, or even
data from the SERVER array, you are encouraged to practice this three
step approach:

	Validate the data to ensure it conforms to the correct type, length,
size, etc.

	Filter the data as if it were tainted.

	Escape the data before submitting it into your database or outputting
it to a browser.

CodeIgniter provides the following functions and tips to assist you
in this process:

XSS Filtering

CodeIgniter comes with a Cross Site Scripting filter. This filter
looks for commonly used techniques to embed malicious JavaScript into
your data, or other types of code that attempt to hijack cookies or
do other malicious things. The XSS Filter is described
here.

Note

XSS filtering should only be performed on output. Filtering
input data may modify the data in undesirable ways, including
stripping special characters from passwords, which reduces
security instead of improving it.

CSRF protection

CSRF stands for Cross-Site Request Forgery, which is the process of an
attacker tricking their victim into unknowingly submitting a request.

CodeIgniter provides CSRF protection out of the box, which will get
automatically triggered for every non-GET HTTP request, but also needs
you to create your submit forms in a certain way. This is explained in
the Security Library documentation.

Password handling

It is critical that you handle passwords in your application properly.

Unfortunately, many developers don’t know how to do that, and the web is
full of outdated or otherwise wrongful advices, which doesn’t help.

We would like to give you a list of combined do’s and don’ts to help you
with that. Please read below.

	DO NOT store passwords in plain-text format.

Always hash your passwords.

	DO NOT use Base64 or similar encoding for storing passwords.

This is as good as storing them in plain-text. Really. Do hashing,
not encoding.

Encoding, and encryption too, are two-way processes. Passwords are
secrets that must only be known to their owner, and thus must work
only in one direction. Hashing does that - there’s no un-hashing or
de-hashing, but there is decoding and decryption.

	DO NOT use weak or broken hashing algorithms like MD5 or SHA1.

These algorithms are old, proven to be flawed, and not designed for
password hashing in the first place.

Also, DON’T invent your own algorithms.

Only use strong password hashing algorithms like BCrypt, which is used
in PHP’s own Password Hashing [http://php.net/password] functions.

Please use them, even if you’re not running PHP 5.5+, CodeIgniter
provides them for you.

	DO NOT ever display or send a password in plain-text format!

Even to the password’s owner, if you need a “Forgotten password”
feature, just randomly generate a new, one-time (this is also important)
password and send that instead.

	DO NOT put unnecessary limits on your users’ passwords.

If you’re using a hashing algorithm other than BCrypt (which has a limit
of 72 characters), you should set a relatively high limit on password
lengths in order to mitigate DoS attacks - say, 1024 characters.

Other than that however, there’s no point in forcing a rule that a
password can only be up to a number of characters, or that it can’t
contain a certain set of special characters.

Not only does this reduce security instead of improving it, but
there’s literally no reason to do it. No technical limitations and
no (practical) storage constraints apply once you’ve hashed them, none!

Validate input data

CodeIgniter has a Form Validation Library that assists you in
validating, filtering, and prepping your data.

Even if that doesn’t work for your use case however, be sure to always
validate and sanitize all input data. For example, if you expect a numeric
string for an input variable, you can check for that with is_numeric()
or ctype_digit(). Always try to narrow down your checks to a certain
pattern.

Have it in mind that this includes not only $_POST and $_GET
variables, but also cookies, the user-agent string and basically
all data that is not created directly by your own code.

Escape all data before database insertion

Never insert information into your database without escaping it.
Please see the section that discusses database queries for more information.

Hide your files

Another good security practice is to only leave your index.php
and “assets” (e.g. .js, css and image files) under your server’s
webroot directory (most commonly named “htdocs/”). These are
the only files that you would need to be accessible from the web.

Allowing your visitors to see anything else would potentially
allow them to access sensitive data, execute scripts, etc.

If you’re not allowed to do that, you can try using a .htaccess
file to restrict access to those resources.

CodeIgniter will have an index.html file in all of its
directories in an attempt to hide some of this data, but have
it in mind that this is not enough to prevent a serious
attacker.

PHP Style Guide

The following page describes the coding styles adhered to when
contributing to the development of CodeIgniter. There is no requirement
to use these styles in your own CodeIgniter application, though they
are recommended.

Table of Contents

	PHP Style Guide
	File Format
	TextMate

	BBEdit

	PHP Closing Tag

	File Naming

	Class and Method Naming

	Variable Names

	Commenting

	Constants

	TRUE, FALSE, and NULL

	Logical Operators

	Comparing Return Values and Typecasting

	Debugging Code

	Whitespace in Files

	Compatibility

	One File per Class

	Whitespace

	Line Breaks

	Code Indenting

	Bracket and Parenthetic Spacing

	Localized Text

	Private Methods and Variables

	PHP Errors

	Short Open Tags

	One Statement Per Line

	Strings

	SQL Queries

	Default Function Arguments

File Format

Files should be saved with Unicode (UTF-8) encoding. The BOM should
not be used. Unlike UTF-16 and UTF-32, there’s no byte order to
indicate in a UTF-8 encoded file, and the BOM can have a negative side
effect in PHP of sending output, preventing the application from being
able to set its own headers. Unix line endings should be used (LF).

Here is how to apply these settings in some of the more common text
editors. Instructions for your text editor may vary; check your text
editor’s documentation.

TextMate

	Open the Application Preferences

	Click Advanced, and then the “Saving” tab

	In “File Encoding”, select “UTF-8 (recommended)”

	In “Line Endings”, select “LF (recommended)”

	Optional: Check “Use for existing files as well” if you wish to
modify the line endings of files you open to your new preference.

BBEdit

	Open the Application Preferences

	Select “Text Encodings” on the left.

	In “Default text encoding for new documents”, select “Unicode (UTF-8,
no BOM)”

	Optional: In “If file’s encoding can’t be guessed, use”, select
“Unicode (UTF-8, no BOM)”

	Select “Text Files” on the left.

	In “Default line breaks”, select “Mac OS X and Unix (LF)”

PHP Closing Tag

The PHP closing tag on a PHP document ?> is optional to the PHP
parser. However, if used, any whitespace following the closing tag,
whether introduced by the developer, user, or an FTP application, can
cause unwanted output, PHP errors, or if the latter are suppressed,
blank pages. For this reason, all PHP files MUST OMIT the PHP closing
tag and end with a single empty line instead.

File Naming

Class files must be named in a Ucfirst-like manner, while any other file name
(configurations, views, generic scripts, etc.) should be in all lowercase.

INCORRECT:

somelibrary.php
someLibrary.php
SOMELIBRARY.php
Some_Library.php

Application_config.php
Application_Config.php
applicationConfig.php

CORRECT:

Somelibrary.php
Some_library.php

applicationconfig.php
application_config.php

Furthermore, class file names should match the name of the class itself.
For example, if you have a class named Myclass, then its filename must
be Myclass.php.

Class and Method Naming

Class names should always start with an uppercase letter. Multiple words
should be separated with an underscore, and not CamelCased.

INCORRECT:

class superclass
class SuperClass

CORRECT:

class Super_class

class Super_class {

 public function __construct()
 {

 }
}

Class methods should be entirely lowercased and named to clearly
indicate their function, preferably including a verb. Try to avoid
overly long and verbose names. Multiple words should be separated
with an underscore.

INCORRECT:

function fileproperties() // not descriptive and needs underscore separator
function fileProperties() // not descriptive and uses CamelCase
function getfileproperties() // Better! But still missing underscore separator
function getFileProperties() // uses CamelCase
function get_the_file_properties_from_the_file() // wordy

CORRECT:

function get_file_properties() // descriptive, underscore separator, and all lowercase letters

Variable Names

The guidelines for variable naming are very similar to those used for
class methods. Variables should contain only lowercase letters,
use underscore separators, and be reasonably named to indicate their
purpose and contents. Very short, non-word variables should only be used
as iterators in for() loops.

INCORRECT:

$j = 'foo'; // single letter variables should only be used in for() loops
$Str // contains uppercase letters
$bufferedText // uses CamelCasing, and could be shortened without losing semantic meaning
$groupid // multiple words, needs underscore separator
$name_of_last_city_used // too long

CORRECT:

for ($j = 0; $j < 10; $j++)
$str
$buffer
$group_id
$last_city

Commenting

In general, code should be commented prolifically. It not only helps
describe the flow and intent of the code for less experienced
programmers, but can prove invaluable when returning to your own code
months down the line. There is not a required format for comments, but
the following are recommended.

DocBlock [http://manual.phpdoc.org/HTMLSmartyConverter/HandS/phpDocumentor/tutorial_phpDocumentor.howto.pkg.html#basics.docblock]
style comments preceding class, method, and property declarations so they can be
picked up by IDEs:

/**
 * Super Class
 *
 * @package Package Name
 * @subpackage Subpackage
 * @category Category
 * @author Author Name
 * @link http://example.com
 */
class Super_class {

/**
 * Encodes string for use in XML
 *
 * @param string $str Input string
 * @return string
 */
function xml_encode($str)

/**
 * Data for class manipulation
 *
 * @var array
 */
public $data = array();

Use single line comments within code, leaving a blank line between large
comment blocks and code.

// break up the string by newlines
$parts = explode("\n", $str);

// A longer comment that needs to give greater detail on what is
// occurring and why can use multiple single-line comments. Try to
// keep the width reasonable, around 70 characters is the easiest to
// read. Don't hesitate to link to permanent external resources
// that may provide greater detail:
//
// http://example.com/information_about_something/in_particular/

$parts = $this->foo($parts);

Constants

Constants follow the same guidelines as do variables, except constants
should always be fully uppercase. Always use CodeIgniter constants when
appropriate, i.e. SLASH, LD, RD, PATH_CACHE, etc.

INCORRECT:

myConstant // missing underscore separator and not fully uppercase
N // no single-letter constants
S_C_VER // not descriptive
$str = str_replace('{foo}', 'bar', $str); // should use LD and RD constants

CORRECT:

MY_CONSTANT
NEWLINE
SUPER_CLASS_VERSION
$str = str_replace(LD.'foo'.RD, 'bar', $str);

TRUE, FALSE, and NULL

TRUE, FALSE, and NULL keywords should always be fully
uppercase.

INCORRECT:

if ($foo == true)
$bar = false;
function foo($bar = null)

CORRECT:

if ($foo == TRUE)
$bar = FALSE;
function foo($bar = NULL)

Logical Operators

Use of the || “or” comparison operator is discouraged, as its clarity
on some output devices is low (looking like the number 11, for instance).
&& is preferred over AND but either are acceptable, and a space should
always precede and follow !.

INCORRECT:

if ($foo || $bar)
if ($foo AND $bar) // okay but not recommended for common syntax highlighting applications
if (!$foo)
if (! is_array($foo))

CORRECT:

if ($foo OR $bar)
if ($foo && $bar) // recommended
if (! $foo)
if (! is_array($foo))

Comparing Return Values and Typecasting

Some PHP functions return FALSE on failure, but may also have a valid
return value of “” or 0, which would evaluate to FALSE in loose
comparisons. Be explicit by comparing the variable type when using these
return values in conditionals to ensure the return value is indeed what
you expect, and not a value that has an equivalent loose-type
evaluation.

Use the same stringency in returning and checking your own variables.
Use === and !== as necessary.

INCORRECT:

// If 'foo' is at the beginning of the string, strpos will return a 0,
// resulting in this conditional evaluating as TRUE
if (strpos($str, 'foo') == FALSE)

CORRECT:

if (strpos($str, 'foo') === FALSE)

INCORRECT:

function build_string($str = "")
{
 if ($str == "") // uh-oh! What if FALSE or the integer 0 is passed as an argument?
 {

 }
}

CORRECT:

function build_string($str = "")
{
 if ($str === "")
 {

 }
}

See also information regarding typecasting [http://php.net/manual/en/language.types.type-juggling.php#language.types.typecasting],
which can be quite useful. Typecasting has a slightly different effect
which may be desirable. When casting a variable as a string, for
instance, NULL and boolean FALSE variables become empty strings, 0 (and
other numbers) become strings of digits, and boolean TRUE becomes “1”:

$str = (string) $str; // cast $str as a string

Debugging Code

Do not leave debugging code in your submissions, even when commented out.
Things such as var_dump(), print_r(), die()/exit() should not be included
in your code unless it serves a specific purpose other than debugging.

Whitespace in Files

No whitespace can precede the opening PHP tag or follow the closing PHP
tag. Output is buffered, so whitespace in your files can cause output to
begin before CodeIgniter outputs its content, leading to errors and an
inability for CodeIgniter to send proper headers.

Compatibility

CodeIgniter recommends PHP 5.6 or newer to be used, but it should be
compatible with PHP 5.3.7. Your code must either be compatible with this
requirement, provide a suitable fallback, or be an optional feature that
dies quietly without affecting a user’s application.

Additionally, do not use PHP functions that require non-default libraries
to be installed unless your code contains an alternative method when the
function is not available.

One File per Class

Use separate files for each class, unless the classes are closely related.
An example of a CodeIgniter file that contains multiple classes is the
Xmlrpc library file.

Whitespace

Use tabs for whitespace in your code, not spaces. This may seem like a
small thing, but using tabs instead of whitespace allows the developer
looking at your code to have indentation at levels that they prefer and
customize in whatever application they use. And as a side benefit, it
results in (slightly) more compact files, storing one tab character
versus, say, four space characters.

Line Breaks

Files must be saved with Unix line breaks. This is more of an issue for
developers who work in Windows, but in any case ensure that your text
editor is setup to save files with Unix line breaks.

Code Indenting

Use Allman style indenting. With the exception of Class declarations,
braces are always placed on a line by themselves, and indented at the
same level as the control statement that “owns” them.

INCORRECT:

function foo($bar) {
 // ...
}

foreach ($arr as $key => $val) {
 // ...
}

if ($foo == $bar) {
 // ...
} else {
 // ...
}

for ($i = 0; $i < 10; $i++)
 {
 for ($j = 0; $j < 10; $j++)
 {
 // ...
 }
 }

try {
 // ...
}
catch() {
 // ...
}

CORRECT:

function foo($bar)
{
 // ...
}

foreach ($arr as $key => $val)
{
 // ...
}

if ($foo == $bar)
{
 // ...
}
else
{
 // ...
}

for ($i = 0; $i < 10; $i++)
{
 for ($j = 0; $j < 10; $j++)
 {
 // ...
 }
}

try
{
 // ...
}
catch()
{
 // ...
}

Bracket and Parenthetic Spacing

In general, parenthesis and brackets should not use any additional
spaces. The exception is that a space should always follow PHP control
structures that accept arguments with parenthesis (declare, do-while,
elseif, for, foreach, if, switch, while), to help distinguish them from
functions and increase readability.

INCORRECT:

$arr[$foo] = 'foo';

CORRECT:

$arr[$foo] = 'foo'; // no spaces around array keys

INCORRECT:

function foo ($bar)
{

}

CORRECT:

function foo($bar) // no spaces around parenthesis in function declarations
{

}

INCORRECT:

foreach($query->result() as $row)

CORRECT:

foreach ($query->result() as $row) // single space following PHP control structures, but not in interior parenthesis

Localized Text

CodeIgniter libraries should take advantage of corresponding language files
whenever possible.

INCORRECT:

return "Invalid Selection";

CORRECT:

return $this->lang->line('invalid_selection');

Private Methods and Variables

Methods and variables that are only accessed internally,
such as utility and helper functions that your public methods use for
code abstraction, should be prefixed with an underscore.

public function convert_text()
private function _convert_text()

PHP Errors

Code must run error free and not rely on warnings and notices to be
hidden to meet this requirement. For instance, never access a variable
that you did not set yourself (such as $_POST array keys) without first
checking to see that it isset().

Make sure that your dev environment has error reporting enabled
for ALL users, and that display_errors is enabled in the PHP
environment. You can check this setting with:

if (ini_get('display_errors') == 1)
{
 exit "Enabled";
}

On some servers where display_errors is disabled, and you do not have
the ability to change this in the php.ini, you can often enable it with:

ini_set('display_errors', 1);

Note

Setting the display_errors [http://php.net/manual/en/errorfunc.configuration.php#ini.display-errors]
setting with ini_set() at runtime is not identical to having
it enabled in the PHP environment. Namely, it will not have any
effect if the script has fatal errors.

Short Open Tags

Always use full PHP opening tags, in case a server does not have
short_open_tag enabled.

INCORRECT:

<? echo $foo; ?>

<?=$foo?>

CORRECT:

<?php echo $foo; ?>

Note

PHP 5.4 will always have the <?= tag available.

One Statement Per Line

Never combine statements on one line.

INCORRECT:

$foo = 'this'; $bar = 'that'; $bat = str_replace($foo, $bar, $bag);

CORRECT:

$foo = 'this';
$bar = 'that';
$bat = str_replace($foo, $bar, $bag);

Strings

Always use single quoted strings unless you need variables parsed, and
in cases where you do need variables parsed, use braces to prevent
greedy token parsing. You may also use double-quoted strings if the
string contains single quotes, so you do not have to use escape
characters.

INCORRECT:

"My String" // no variable parsing, so no use for double quotes
"My string $foo" // needs braces
'SELECT foo FROM bar WHERE baz = \'bag\'' // ugly

CORRECT:

'My String'
"My string {$foo}"
"SELECT foo FROM bar WHERE baz = 'bag'"

SQL Queries

SQL keywords are always capitalized: SELECT, INSERT, UPDATE, WHERE,
AS, JOIN, ON, IN, etc.

Break up long queries into multiple lines for legibility, preferably
breaking for each clause.

INCORRECT:

// keywords are lowercase and query is too long for
// a single line (... indicates continuation of line)
$query = $this->db->query("select foo, bar, baz, foofoo, foobar as raboof, foobaz from exp_pre_email_addresses
...where foo != 'oof' and baz != 'zab' order by foobaz limit 5, 100");

CORRECT:

$query = $this->db->query("SELECT foo, bar, baz, foofoo, foobar AS raboof, foobaz
 FROM exp_pre_email_addresses
 WHERE foo != 'oof'
 AND baz != 'zab'
 ORDER BY foobaz
 LIMIT 5, 100");

Default Function Arguments

Whenever appropriate, provide function argument defaults, which helps
prevent PHP errors with mistaken calls and provides common fallback
values which can save a few lines of code. Example:

function foo($bar = '', $baz = FALSE)

Libraries

	Benchmarking Class

	Caching Driver

	Calendaring Class

	Shopping Cart Class

	Config Class

	Email Class

	Encrypt Class

	Encryption Library

	File Uploading Class

	Form Validation

	FTP Class

	Image Manipulation Class

	Input Class

	Javascript Class

	Language Class

	Loader Class

	Migrations Class

	Output Class

	Pagination Class

	Template Parser Class

	Security Class

	Session Library

	HTML Table Class

	Trackback Class

	Typography Class

	Unit Testing Class

	URI Class

	User Agent Class

	XML-RPC and XML-RPC Server Classes

	Zip Encoding Class

Benchmarking Class

CodeIgniter has a Benchmarking class that is always active, enabling the
time difference between any two marked points to be calculated.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

In addition, the benchmark is always started the moment the framework is
invoked, and ended by the output class right before sending the final
view to the browser, enabling a very accurate timing of the entire
system execution to be shown.

	Using the Benchmark Class
	Profiling Your Benchmark Points

	Displaying Total Execution Time

	Displaying Memory Consumption

	Class Reference

Using the Benchmark Class

The Benchmark class can be used within your
controllers,
views, or your models.
The process for usage is this:

	Mark a start point

	Mark an end point

	Run the “elapsed time” function to view the results

Here’s an example using real code:

$this->benchmark->mark('code_start');

// Some code happens here

$this->benchmark->mark('code_end');

echo $this->benchmark->elapsed_time('code_start', 'code_end');

Note

The words “code_start” and “code_end” are arbitrary. They
are simply words used to set two markers. You can use any words you
want, and you can set multiple sets of markers. Consider this example:

$this->benchmark->mark('dog');

// Some code happens here

$this->benchmark->mark('cat');

// More code happens here

$this->benchmark->mark('bird');

echo $this->benchmark->elapsed_time('dog', 'cat');
echo $this->benchmark->elapsed_time('cat', 'bird');
echo $this->benchmark->elapsed_time('dog', 'bird');

Profiling Your Benchmark Points

If you want your benchmark data to be available to the
Profiler all of your marked points must
be set up in pairs, and each mark point name must end with _start and
_end. Each pair of points must otherwise be named identically. Example:

$this->benchmark->mark('my_mark_start');

// Some code happens here...

$this->benchmark->mark('my_mark_end');

$this->benchmark->mark('another_mark_start');

// Some more code happens here...

$this->benchmark->mark('another_mark_end');

Please read the Profiler page for more
information.

Displaying Total Execution Time

If you would like to display the total elapsed time from the moment
CodeIgniter starts to the moment the final output is sent to the
browser, simply place this in one of your view templates:

<?php echo $this->benchmark->elapsed_time();?>

You’ll notice that it’s the same function used in the examples above to
calculate the time between two point, except you are not using any
parameters. When the parameters are absent, CodeIgniter does not stop
the benchmark until right before the final output is sent to the
browser. It doesn’t matter where you use the function call, the timer
will continue to run until the very end.

An alternate way to show your elapsed time in your view files is to use
this pseudo-variable, if you prefer not to use the pure PHP:

{elapsed_time}

Note

If you want to benchmark anything within your controller
functions you must set your own start/end points.

Displaying Memory Consumption

If your PHP installation is configured with –enable-memory-limit, you
can display the amount of memory consumed by the entire system using the
following code in one of your view file:

<?php echo $this->benchmark->memory_usage();?>

Note

This function can only be used in your view files. The consumption
will reflect the total memory used by the entire app.

An alternate way to show your memory usage in your view files is to use
this pseudo-variable, if you prefer not to use the pure PHP:

{memory_usage}

Class Reference

	
class CI_Benchmark

	
	
mark($name)

	

	Parameters:	
	$name (string) – the name you wish to assign to your marker

	Return type:	void

Sets a benchmark marker.

	
elapsed_time([$point1 = ''[, $point2 = ''[, $decimals = 4]]])

	

	Parameters:	
	$point1 (string) – a particular marked point

	$point2 (string) – a particular marked point

	$decimals (int) – number of decimal places for precision

	Returns:	Elapsed time

	Return type:	string

Calculates and returns the time difference between two marked points.

If the first parameter is empty this function instead returns the
{elapsed_time} pseudo-variable. This permits the full system
execution time to be shown in a template. The output class will
swap the real value for this variable.

	
memory_usage()

	

	Returns:	Memory usage info

	Return type:	string

Simply returns the {memory_usage} marker.

This permits it to be put it anywhere in a template without the memory
being calculated until the end. The Output Class will
swap the real value for this variable.

Caching Driver

CodeIgniter features wrappers around some of the most popular forms of
fast and dynamic caching. All but file-based caching require specific
server requirements, and a Fatal Exception will be thrown if server
requirements are not met.

	Example Usage

	Class Reference

	Drivers
	Alternative PHP Cache (APC) Caching

	File-based Caching

	Memcached Caching

	WinCache Caching

	Redis Caching

	Dummy Cache

Example Usage

The following example will load the cache driver, specify APC
as the driver to use, and fall back to file-based caching if APC is not
available in the hosting environment.

$this->load->driver('cache', array('adapter' => 'apc', 'backup' => 'file'));

if (! $foo = $this->cache->get('foo'))
{
 echo 'Saving to the cache!
';
 $foo = 'foobarbaz!';

 // Save into the cache for 5 minutes
 $this->cache->save('foo', $foo, 300);
}

echo $foo;

You can also prefix cache item names via the key_prefix setting, which is useful
to avoid collisions when you’re running multiple applications on the same environment.

$this->load->driver('cache',
 array('adapter' => 'apc', 'backup' => 'file', 'key_prefix' => 'my_')
);

$this->cache->get('foo'); // Will get the cache entry named 'my_foo'

Class Reference

	
class CI_Cache

	
	
is_supported($driver)

	

	Parameters:	
	$driver (string) – the name of the caching driver

	Returns:	TRUE if supported, FALSE if not

	Return type:	bool

This method is automatically called when accessing drivers via
$this->cache->get(). However, if the individual drivers are used,
make sure to call this method to ensure the driver is supported in the
hosting environment.

if ($this->cache->apc->is_supported())
{
 if ($data = $this->cache->apc->get('my_cache'))
 {
 // do things.
 }
}

	
get($id)

	

	Parameters:	
	$id (string) – Cache item name

	Returns:	Item value or FALSE if not found

	Return type:	mixed

This method will attempt to fetch an item from the cache store. If the
item does not exist, the method will return FALSE.

$foo = $this->cache->get('my_cached_item');

	
save($id, $data[, $ttl = 60[, $raw = FALSE]])

	

	Parameters:	
	$id (string) – Cache item name

	$data (mixed) – the data to save

	$ttl (int) – Time To Live, in seconds (default 60)

	$raw (bool) – Whether to store the raw value

	Returns:	TRUE on success, FALSE on failure

	Return type:	string

This method will save an item to the cache store. If saving fails, the
method will return FALSE.

$this->cache->save('cache_item_id', 'data_to_cache');

Note

The $raw parameter is only utilized by APC and Memcache,
in order to allow usage of increment() and decrement().

	
delete($id)

	

	Parameters:	
	$id (string) – name of cached item

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

This method will delete a specific item from the cache store. If item
deletion fails, the method will return FALSE.

$this->cache->delete('cache_item_id');

	
increment($id[, $offset = 1])

	

	Parameters:	
	$id (string) – Cache ID

	$offset (int) – Step/value to add

	Returns:	New value on success, FALSE on failure

	Return type:	mixed

Performs atomic incrementation of a raw stored value.

// 'iterator' has a value of 2

$this->cache->increment('iterator'); // 'iterator' is now 3

$this->cache->increment('iterator', 3); // 'iterator' is now 6

	
decrement($id[, $offset = 1])

	

	Parameters:	
	$id (string) – Cache ID

	$offset (int) – Step/value to reduce by

	Returns:	New value on success, FALSE on failure

	Return type:	mixed

Performs atomic decrementation of a raw stored value.

// 'iterator' has a value of 6

$this->cache->decrement('iterator'); // 'iterator' is now 5

$this->cache->decrement('iterator', 2); // 'iterator' is now 3

	
clean()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

This method will ‘clean’ the entire cache. If the deletion of the
cache files fails, the method will return FALSE.

$this->cache->clean();

	
cache_info()

	

	Returns:	Information on the entire cache database

	Return type:	mixed

This method will return information on the entire cache.

var_dump($this->cache->cache_info());

Note

The information returned and the structure of the data is dependent
on which adapter is being used.

	
get_metadata($id)

	

	Parameters:	
	$id (string) – Cache item name

	Returns:	Metadata for the cached item

	Return type:	mixed

This method will return detailed information on a specific item in the
cache.

var_dump($this->cache->get_metadata('my_cached_item'));

Note

The information returned and the structure of the data is dependent
on which adapter is being used.

Drivers

Alternative PHP Cache (APC) Caching

All of the methods listed above can be accessed without passing a
specific adapter to the driver loader as follows:

$this->load->driver('cache');
$this->cache->apc->save('foo', 'bar', 10);

For more information on APC, please see
http://php.net/apc.

File-based Caching

Unlike caching from the Output Class, the driver file-based caching
allows for pieces of view files to be cached. Use this with care, and
make sure to benchmark your application, as a point can come where disk
I/O will negate positive gains by caching.

All of the methods listed above can be accessed without passing a
specific adapter to the driver loader as follows:

$this->load->driver('cache');
$this->cache->file->save('foo', 'bar', 10);

Memcached Caching

Multiple Memcached servers can be specified in the memcached.php
configuration file, located in the _application/config/* directory.

All of the methods listed above can be accessed without passing a
specific adapter to the driver loader as follows:

$this->load->driver('cache');
$this->cache->memcached->save('foo', 'bar', 10);

For more information on Memcached, please see
http://php.net/memcached.

WinCache Caching

Under Windows, you can also utilize the WinCache driver.

All of the methods listed above can be accessed without passing a
specific adapter to the driver loader as follows:

$this->load->driver('cache');
$this->cache->wincache->save('foo', 'bar', 10);

For more information on WinCache, please see
http://php.net/wincache.

Redis Caching

Redis is an in-memory key-value store which can operate in LRU cache mode.
To use it, you need Redis server and phpredis PHP extension [https://github.com/phpredis/phpredis].

Config options to connect to redis server must be stored in the application/config/redis.php file.
Available options are:

$config['socket_type'] = 'tcp'; //`tcp` or `unix`
$config['socket'] = '/var/run/redis.sock'; // in case of `unix` socket type
$config['host'] = '127.0.0.1';
$config['password'] = NULL;
$config['port'] = 6379;
$config['timeout'] = 0;

All of the methods listed above can be accessed without passing a
specific adapter to the driver loader as follows:

$this->load->driver('cache');
$this->cache->redis->save('foo', 'bar', 10);

For more information on Redis, please see
http://redis.io.

Dummy Cache

This is a caching backend that will always ‘miss.’ It stores no data,
but lets you keep your caching code in place in environments that don’t
support your chosen cache.

Calendaring Class

The Calendar class enables you to dynamically create calendars. Your
calendars can be formatted through the use of a calendar template,
allowing 100% control over every aspect of its design. In addition, you
can pass data to your calendar cells.

	Using the Calendaring Class
	Initializing the Class

	Displaying a Calendar

	Passing Data to your Calendar Cells

	Setting Display Preferences

	Showing Next/Previous Month Links

	Creating a Calendar Template

	Class Reference

Using the Calendaring Class

Initializing the Class

Like most other classes in CodeIgniter, the Calendar class is
initialized in your controller using the $this->load->library function:

$this->load->library('calendar');

Once loaded, the Calendar object will be available using:

$this->calendar

Displaying a Calendar

Here is a very simple example showing how you can display a calendar:

$this->load->library('calendar');
echo $this->calendar->generate();

The above code will generate a calendar for the current month/year based
on your server time. To show a calendar for a specific month and year
you will pass this information to the calendar generating function:

$this->load->library('calendar');
echo $this->calendar->generate(2006, 6);

The above code will generate a calendar showing the month of June in
2006. The first parameter specifies the year, the second parameter
specifies the month.

Passing Data to your Calendar Cells

To add data to your calendar cells involves creating an associative
array in which the keys correspond to the days you wish to populate and
the array value contains the data. The array is passed to the third
parameter of the calendar generating function. Consider this example:

$this->load->library('calendar');

$data = array(
 3 => 'http://example.com/news/article/2006/06/03/',
 7 => 'http://example.com/news/article/2006/06/07/',
 13 => 'http://example.com/news/article/2006/06/13/',
 26 => 'http://example.com/news/article/2006/06/26/'
);

echo $this->calendar->generate(2006, 6, $data);

Using the above example, day numbers 3, 7, 13, and 26 will become links
pointing to the URLs you’ve provided.

Note

By default it is assumed that your array will contain links.
In the section that explains the calendar template below you’ll see how
you can customize how data passed to your cells is handled so you can
pass different types of information.

Setting Display Preferences

There are seven preferences you can set to control various aspects of
the calendar. Preferences are set by passing an array of preferences in
the second parameter of the loading function. Here is an example:

$prefs = array(
 'start_day' => 'saturday',
 'month_type' => 'long',
 'day_type' => 'short'
);

$this->load->library('calendar', $prefs);

echo $this->calendar->generate();

The above code would start the calendar on saturday, use the “long”
month heading, and the “short” day names. More information regarding
preferences below.

	Preference
	Default
	Options
	Description

	template
	None
	None
	
	A string or array containing your calendar template.

	See the template section below.

	local_time
	time()
	None
	A Unix timestamp corresponding to the current time.

	start_day
	sunday
	Any week day (sunday, monday, tuesday, etc.)
	Sets the day of the week the calendar should start on.

	month_type
	long
	long, short
	
	Determines what version of the month name to use in the header.

	long = January, short = Jan.

	day_type
	abr
	long, short, abr
	
	Determines what version of the weekday names to use in

	the column headers. long = Sunday, short = Sun, abr = Su.

	show_next_prev
	FALSE
	TRUE/FALSE (boolean)
	
	Determines whether to display links allowing you to toggle

	to next/previous months. See information on this feature below.

	next_prev_url
	controller/method
	A URL
	Sets the basepath used in the next/previous calendar links.

	show_other_days
	FALSE
	TRUE/FALSE (boolean)
	
	Determines whether to display days of other months that share the

	first or last week of the calendar month.

Showing Next/Previous Month Links

To allow your calendar to dynamically increment/decrement via the
next/previous links requires that you set up your calendar code similar
to this example:

$prefs = array(
 'show_next_prev' => TRUE,
 'next_prev_url' => 'http://example.com/index.php/calendar/show/'
);

$this->load->library('calendar', $prefs);

echo $this->calendar->generate($this->uri->segment(3), $this->uri->segment(4));

You’ll notice a few things about the above example:

	You must set the “show_next_prev” to TRUE.

	You must supply the URL to the controller containing your calendar in
the “next_prev_url” preference. If you don’t, it will be set to the current
controller/method.

	You must supply the “year” and “month” to the calendar generating
function via the URI segments where they appear (Note: The calendar
class automatically adds the year/month to the base URL you
provide.).

Creating a Calendar Template

By creating a calendar template you have 100% control over the design of
your calendar. Using the string method, each component of your calendar
will be placed within a pair of pseudo-variables as shown here:

$prefs['template'] = '

 {table_open}<table border="0" cellpadding="0" cellspacing="0">{/table_open}

 {heading_row_start}<tr>{/heading_row_start}

 {heading_previous_cell}<th><<</th>{/heading_previous_cell}
 {heading_title_cell}<th colspan="{colspan}">{heading}</th>{/heading_title_cell}
 {heading_next_cell}<th>>></th>{/heading_next_cell}

 {heading_row_end}</tr>{/heading_row_end}

 {week_row_start}<tr>{/week_row_start}
 {week_day_cell}<td>{week_day}</td>{/week_day_cell}
 {week_row_end}</tr>{/week_row_end}

 {cal_row_start}<tr>{/cal_row_start}
 {cal_cell_start}<td>{/cal_cell_start}
 {cal_cell_start_today}<td>{/cal_cell_start_today}
 {cal_cell_start_other}<td class="other-month">{/cal_cell_start_other}

 {cal_cell_content}{day}{/cal_cell_content}
 {cal_cell_content_today}<div class="highlight">{day}</div>{/cal_cell_content_today}

 {cal_cell_no_content}{day}{/cal_cell_no_content}
 {cal_cell_no_content_today}<div class="highlight">{day}</div>{/cal_cell_no_content_today}

 {cal_cell_blank} {/cal_cell_blank}

 {cal_cell_other}{day}{/cal_cel_other}

 {cal_cell_end}</td>{/cal_cell_end}
 {cal_cell_end_today}</td>{/cal_cell_end_today}
 {cal_cell_end_other}</td>{/cal_cell_end_other}
 {cal_row_end}</tr>{/cal_row_end}

 {table_close}</table>{/table_close}
';

$this->load->library('calendar', $prefs);

echo $this->calendar->generate();

Using the array method, you will pass key => value pairs. You can pass as
many or as few values as you’d like. Omitted keys will use the default values
inherited in the calendar class.

Example:

$prefs['template'] = array(
 'table_open' => '<table class="calendar">',
 'cal_cell_start' => '<td class="day">',
 'cal_cell_start_today' => '<td class="today">'
);

$this->load->library('calendar', $prefs);

echo $this->calendar->generate();

Class Reference

	
class CI_Calendar

	
	
initialize([$config = array()])

	

	Parameters:	
	$config (array) – Configuration parameters

	Returns:	CI_Calendar instance (method chaining)

	Return type:	CI_Calendar

Initializes the Calendaring preferences. Accepts an associative array as input, containing display preferences.

	
generate([$year = ''[, $month = ''[, $data = array()]]])

	

	Parameters:	
	$year (int) – Year

	$month (int) – Month

	$data (array) – Data to be shown in the calendar cells

	Returns:	HTML-formatted calendar

	Return type:	string

Generate the calendar.

	
get_month_name($month)

	

	Parameters:	
	$month (int) – Month

	Returns:	Month name

	Return type:	string

Generates a textual month name based on the numeric month provided.

	
get_day_names($day_type = '')

	

	Parameters:	
	$day_type (string) – ‘long’, ‘short’, or ‘abr’

	Returns:	Array of day names

	Return type:	array

Returns an array of day names (Sunday, Monday, etc.) based on the type
provided. Options: long, short, abr. If no $day_type is provided (or
if an invalid type is provided) this method will return the “abbreviated”
style.

	
adjust_date($month, $year)

	

	Parameters:	
	$month (int) – Month

	$year (int) – Year

	Returns:	An associative array containing month and year

	Return type:	array

This method makes sure that you have a valid month/year. For example, if
you submit 13 as the month, the year will increment and the month will
become January:

print_r($this->calendar->adjust_date(13, 2014));

outputs:

Array
(
 [month] => '01'
 [year] => '2015'
)

	
get_total_days($month, $year)

	

	Parameters:	
	$month (int) – Month

	$year (int) – Year

	Returns:	Count of days in the specified month

	Return type:	int

Total days in a given month:

echo $this->calendar->get_total_days(2, 2012);
// 29

Note

This method is an alias for Date Helper function days_in_month().

	
default_template()

	

	Returns:	An array of template values

	Return type:	array

Sets the default template. This method is used when you have not created
your own template.

	
parse_template()

	

	Returns:	CI_Calendar instance (method chaining)

	Return type:	CI_Calendar

Harvests the data within the template {pseudo-variables} used to
display the calendar.

Shopping Cart Class

The Cart Class permits items to be added to a session that stays active
while a user is browsing your site. These items can be retrieved and
displayed in a standard “shopping cart” format, allowing the user to
update the quantity or remove items from the cart.

Important

The Cart library is DEPRECATED and should not be used.
It is currently only kept for backwards compatibility.

Please note that the Cart Class ONLY provides the core “cart”
functionality. It does not provide shipping, credit card authorization,
or other processing components.

	Using the Cart Class
	Initializing the Shopping Cart Class

	Adding an Item to The Cart

	Adding Multiple Items to The Cart

	Displaying the Cart

	Updating The Cart
	What is a Row ID?

	Class Reference

Using the Cart Class

Initializing the Shopping Cart Class

Important

The Cart class utilizes CodeIgniter’s Session
Class to save the cart information to a database, so
before using the Cart class you must set up a database table as
indicated in the Session Documentation, and set the
session preferences in your application/config/config.php file to
utilize a database.

To initialize the Shopping Cart Class in your controller constructor,
use the $this->load->library() method:

$this->load->library('cart');

Once loaded, the Cart object will be available using:

$this->cart

Note

The Cart Class will load and initialize the Session Class
automatically, so unless you are using sessions elsewhere in your
application, you do not need to load the Session class.

Adding an Item to The Cart

To add an item to the shopping cart, simply pass an array with the
product information to the $this->cart->insert() method, as shown
below:

$data = array(
 'id' => 'sku_123ABC',
 'qty' => 1,
 'price' => 39.95,
 'name' => 'T-Shirt',
 'options' => array('Size' => 'L', 'Color' => 'Red')
);

$this->cart->insert($data);

Important

The first four array indexes above (id, qty, price, and
name) are required. If you omit any of them the data will not be
saved to the cart. The fifth index (options) is optional. It is intended
to be used in cases where your product has options associated with it.
Use an array for options, as shown above.

The five reserved indexes are:

	id - Each product in your store must have a unique identifier.
Typically this will be an “sku” or other such identifier.

	qty - The quantity being purchased.

	price - The price of the item.

	name - The name of the item.

	options - Any additional attributes that are needed to identify
the product. These must be passed via an array.

In addition to the five indexes above, there are two reserved words:
rowid and subtotal. These are used internally by the Cart class, so
please do NOT use those words as index names when inserting data into
the cart.

Your array may contain additional data. Anything you include in your
array will be stored in the session. However, it is best to standardize
your data among all your products in order to make displaying the
information in a table easier.

$data = array(
 'id' => 'sku_123ABC',
 'qty' => 1,
 'price' => 39.95,
 'name' => 'T-Shirt',
 'coupon' => 'XMAS-50OFF'
);

$this->cart->insert($data);

The insert() method will return the $rowid if you successfully insert a
single item.

Adding Multiple Items to The Cart

By using a multi-dimensional array, as shown below, it is possible to
add multiple products to the cart in one action. This is useful in cases
where you wish to allow people to select from among several items on the
same page.

$data = array(
 array(
 'id' => 'sku_123ABC',
 'qty' => 1,
 'price' => 39.95,
 'name' => 'T-Shirt',
 'options' => array('Size' => 'L', 'Color' => 'Red')
),
 array(
 'id' => 'sku_567ZYX',
 'qty' => 1,
 'price' => 9.95,
 'name' => 'Coffee Mug'
),
 array(
 'id' => 'sku_965QRS',
 'qty' => 1,
 'price' => 29.95,
 'name' => 'Shot Glass'
)
);

$this->cart->insert($data);

Displaying the Cart

To display the cart you will create a view
file with code similar to the one shown below.

Please note that this example uses the form
helper.

<?php echo form_open('path/to/controller/update/method'); ?>

<table cellpadding="6" cellspacing="1" style="width:100%" border="0">

<tr>
 <th>QTY</th>
 <th>Item Description</th>
 <th style="text-align:right">Item Price</th>
 <th style="text-align:right">Sub-Total</th>
</tr>

<?php $i = 1; ?>

<?php foreach ($this->cart->contents() as $items): ?>

 <?php echo form_hidden($i.'[rowid]', $items['rowid']); ?>

 <tr>
 <td><?php echo form_input(array('name' => $i.'[qty]', 'value' => $items['qty'], 'maxlength' => '3', 'size' => '5')); ?></td>
 <td>
 <?php echo $items['name']; ?>

 <?php if ($this->cart->has_options($items['rowid']) == TRUE): ?>

 <p>
 <?php foreach ($this->cart->product_options($items['rowid']) as $option_name => $option_value): ?>

 <?php echo $option_name; ?>: <?php echo $option_value; ?>

 <?php endforeach; ?>
 </p>

 <?php endif; ?>

 </td>
 <td style="text-align:right"><?php echo $this->cart->format_number($items['price']); ?></td>
 <td style="text-align:right">$<?php echo $this->cart->format_number($items['subtotal']); ?></td>
 </tr>

<?php $i++; ?>

<?php endforeach; ?>

<tr>
 <td colspan="2"> </td>
 <td class="right">Total</td>
 <td class="right">$<?php echo $this->cart->format_number($this->cart->total()); ?></td>
</tr>

</table>

<p><?php echo form_submit('', 'Update your Cart'); ?></p>

Updating The Cart

To update the information in your cart, you must pass an array
containing the Row ID and one or more pre-defined properties to the
$this->cart->update() method.

Note

If the quantity is set to zero, the item will be removed from
the cart.

$data = array(
 'rowid' => 'b99ccdf16028f015540f341130b6d8ec',
 'qty' => 3
);

$this->cart->update($data);

// Or a multi-dimensional array

$data = array(
 array(
 'rowid' => 'b99ccdf16028f015540f341130b6d8ec',
 'qty' => 3
),
 array(
 'rowid' => 'xw82g9q3r495893iajdh473990rikw23',
 'qty' => 4
),
 array(
 'rowid' => 'fh4kdkkkaoe30njgoe92rkdkkobec333',
 'qty' => 2
)
);

$this->cart->update($data);

You may also update any property you have previously defined when
inserting the item such as options, price or other custom fields.

$data = array(
 'rowid' => 'b99ccdf16028f015540f341130b6d8ec',
 'qty' => 1,
 'price' => 49.95,
 'coupon' => NULL
);

$this->cart->update($data);

What is a Row ID?

The row ID is a unique identifier that is generated by the cart code
when an item is added to the cart. The reason a unique ID is created
is so that identical products with different options can be managed
by the cart.

For example, let’s say someone buys two identical t-shirts (same product
ID), but in different sizes. The product ID (and other attributes) will
be identical for both sizes because it’s the same shirt. The only
difference will be the size. The cart must therefore have a means of
identifying this difference so that the two sizes of shirts can be
managed independently. It does so by creating a unique “row ID” based on
the product ID and any options associated with it.

In nearly all cases, updating the cart will be something the user does
via the “view cart” page, so as a developer, it is unlikely that you
will ever have to concern yourself with the “row ID”, other than making
sure your “view cart” page contains this information in a hidden form
field, and making sure it gets passed to the update() method when
the update form is submitted. Please examine the construction of the
“view cart” page above for more information.

Class Reference

	
class CI_Cart

	
	
$product_id_rules = '.a-z0-9_-'

	These are the regular expression rules that we use to validate the product
ID - alpha-numeric, dashes, underscores, or periods by default

	
$product_name_rules = 'w -.:'

	These are the regular expression rules that we use to validate the product ID and product name - alpha-numeric, dashes, underscores, colons or periods by
default

	
$product_name_safe = TRUE

	Whether or not to only allow safe product names. Default TRUE.

	
insert([$items = array()])

	

	Parameters:	
	$items (array) – Items to insert into the cart

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Insert items into the cart and save it to the session table. Returns TRUE
on success and FALSE on failure.

	
update([$items = array()])

	

	Parameters:	
	$items (array) – Items to update in the cart

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

This method permits changing the properties of a given item.
Typically it is called from the “view cart” page if a user makes changes
to the quantity before checkout. That array must contain the rowid
for each item.

	
remove($rowid)

	

	Parameters:	
	$rowid (int) – ID of the item to remove from the cart

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Allows you to remove an item from the shopping cart by passing it the
$rowid.

	
total()

	

	Returns:	Total amount

	Return type:	int

Displays the total amount in the cart.

	
total_items()

	

	Returns:	Total amount of items in the cart

	Return type:	int

Displays the total number of items in the cart.

	
contents([$newest_first = FALSE])

	

	Parameters:	
	$newest_first (bool) – Whether to order the array with newest items first

	Returns:	An array of cart contents

	Return type:	array

Returns an array containing everything in the cart. You can sort the
order by which the array is returned by passing it TRUE where the contents
will be sorted from newest to oldest, otherwise it is sorted from oldest
to newest.

	
get_item($row_id)

	

	Parameters:	
	$row_id (int) – Row ID to retrieve

	Returns:	Array of item data

	Return type:	array

Returns an array containing data for the item matching the specified row
ID, or FALSE if no such item exists.

	
has_options($row_id = '')

	

	Parameters:	
	$row_id (int) – Row ID to inspect

	Returns:	TRUE if options exist, FALSE otherwise

	Return type:	bool

Returns TRUE (boolean) if a particular row in the cart contains options.
This method is designed to be used in a loop with contents(), since
you must pass the rowid to this method, as shown in the Displaying
the Cart example above.

	
product_options([$row_id = ''])

	

	Parameters:	
	$row_id (int) – Row ID

	Returns:	Array of product options

	Return type:	array

Returns an array of options for a particular product. This method is
designed to be used in a loop with contents(), since you
must pass the rowid to this method, as shown in the Displaying the
Cart example above.

	
destroy()

	

	Return type:	void

Permits you to destroy the cart. This method will likely be called
when you are finished processing the customer’s order.

Config Class

The Config class provides a means to retrieve configuration preferences.
These preferences can come from the default config file
(application/config/config.php) or from your own custom config files.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

	Working with the Config Class
	Anatomy of a Config File

	Loading a Config File
	Manual Loading

	Auto-loading

	Fetching Config Items

	Setting a Config Item

	Environments

	Class Reference

Working with the Config Class

Anatomy of a Config File

By default, CodeIgniter has one primary config file, located at
application/config/config.php. If you open the file using your text
editor you’ll see that config items are stored in an array called
$config.

You can add your own config items to this file, or if you prefer to keep
your configuration items separate (assuming you even need config items),
simply create your own file and save it in config folder.

Note

If you do create your own config files use the same format as
the primary one, storing your items in an array called $config.
CodeIgniter will intelligently manage these files so there will be no
conflict even though the array has the same name (assuming an array
index is not named the same as another).

Loading a Config File

Note

CodeIgniter automatically loads the primary config file
(application/config/config.php), so you will only need to load a config
file if you have created your own.

There are two ways to load a config file:

Manual Loading

To load one of your custom config files you will use the following
function within the controller that
needs it:

$this->config->load('filename');

Where filename is the name of your config file, without the .php file
extension.

If you need to load multiple config files normally they will be
merged into one master config array. Name collisions can occur,
however, if you have identically named array indexes in different
config files. To avoid collisions you can set the second parameter to
TRUE and each config file will be stored in an array index
corresponding to the name of the config file. Example:

// Stored in an array with this prototype: $this->config['blog_settings'] = $config
$this->config->load('blog_settings', TRUE);

Please see the section entitled Fetching Config Items below to learn
how to retrieve config items set this way.

The third parameter allows you to suppress errors in the event that a
config file does not exist:

$this->config->load('blog_settings', FALSE, TRUE);

Auto-loading

If you find that you need a particular config file globally, you can
have it loaded automatically by the system. To do this, open the
autoload.php file, located at application/config/autoload.php,
and add your config file as indicated in the file.

Fetching Config Items

To retrieve an item from your config file, use the following function:

$this->config->item('item_name');

Where item_name is the $config array index you want to retrieve. For
example, to fetch your language choice you’ll do this:

$lang = $this->config->item('language');

The function returns NULL if the item you are trying to fetch
does not exist.

If you are using the second parameter of the $this->config->load
function in order to assign your config items to a specific index you
can retrieve it by specifying the index name in the second parameter of
the $this->config->item() function. Example:

// Loads a config file named blog_settings.php and assigns it to an index named "blog_settings"
$this->config->load('blog_settings', TRUE);

// Retrieve a config item named site_name contained within the blog_settings array
$site_name = $this->config->item('site_name', 'blog_settings');

// An alternate way to specify the same item:
$blog_config = $this->config->item('blog_settings');
$site_name = $blog_config['site_name'];

Setting a Config Item

If you would like to dynamically set a config item or change an existing
one, you can do so using:

$this->config->set_item('item_name', 'item_value');

Where item_name is the $config array index you want to change, and
item_value is its value.

Environments

You may load different configuration files depending on the current
environment. The ENVIRONMENT constant is defined in index.php, and is
described in detail in the Handling
Environments section.

To create an environment-specific configuration file, create or copy a
configuration file in application/config/{ENVIRONMENT}/{FILENAME}.php

For example, to create a production-only config.php, you would:

	Create the directory application/config/production/

	Copy your existing config.php into the above directory

	Edit application/config/production/config.php so it contains your
production settings

When you set the ENVIRONMENT constant to ‘production’, the settings for
your new production-only config.php will be loaded.

You can place the following configuration files in environment-specific
folders:

	Default CodeIgniter configuration files

	Your own custom configuration files

Note

CodeIgniter always loads the global config file first (i.e., the one in application/config/),
then tries to load the configuration files for the current environment.
This means you are not obligated to place all of your configuration files in an
environment folder. Only the files that change per environment. Additionally you don’t
have to copy all the config items in the environment config file. Only the config items
that you wish to change for your environment. The config items declared in your environment
folders always overwrite those in your global config files.

Class Reference

	
class CI_Config

	
	
$config

	Array of all loaded config values

	
$is_loaded

	Array of all loaded config files

	
item($item[, $index=''])

	

	Parameters:	
	$item (string) – Config item name

	$index (string) – Index name

	Returns:	Config item value or NULL if not found

	Return type:	mixed

Fetch a config file item.

	
set_item($item, $value)

	

	Parameters:	
	$item (string) – Config item name

	$value (string) – Config item value

	Return type:	void

Sets a config file item to the specified value.

	
slash_item($item)

	

	Parameters:	
	$item (string) – config item name

	Returns:	Config item value with a trailing forward slash or NULL if not found

	Return type:	mixed

This method is identical to item(), except it appends a forward
slash to the end of the item, if it exists.

	
load([$file = ''[, $use_sections = FALSE[, $fail_gracefully = FALSE]]])

	

	Parameters:	
	$file (string) – Configuration file name

	$use_sections (bool) – Whether config values should be loaded into their own section (index of the main config array)

	$fail_gracefully (bool) – Whether to return FALSE or to display an error message

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Loads a configuration file.

	
site_url()

	

	Returns:	Site URL

	Return type:	string

This method retrieves the URL to your site, along with the “index” value
you’ve specified in the config file.

This method is normally accessed via the corresponding functions in the
URL Helper.

	
base_url()

	

	Returns:	Base URL

	Return type:	string

This method retrieves the URL to your site, plus an optional path such
as to a stylesheet or image.

This method is normally accessed via the corresponding functions in the
URL Helper.

	
system_url()

	

	Returns:	URL pointing at your CI system/ directory

	Return type:	string

This method retrieves the URL to your CodeIgniter system/ directory.

Note

This method is DEPRECATED because it encourages usage of
insecure coding practices. Your system/ directory shouldn’t
be publicly accessible.

Email Class

CodeIgniter’s robust Email Class supports the following features:

	Multiple Protocols: Mail, Sendmail, and SMTP

	TLS and SSL Encryption for SMTP

	Multiple recipients

	CC and BCCs

	HTML or Plaintext email

	Attachments

	Word wrapping

	Priorities

	BCC Batch Mode, enabling large email lists to be broken into small
BCC batches.

	Email Debugging tools

	Using the Email Library
	Sending Email

	Setting Email Preferences
	Setting Email Preferences in a Config File

	Email Preferences

	Overriding Word Wrapping

	Class Reference

Using the Email Library

Sending Email

Sending email is not only simple, but you can configure it on the fly or
set your preferences in a config file.

Here is a basic example demonstrating how you might send email. Note:
This example assumes you are sending the email from one of your
controllers.

$this->load->library('email');

$this->email->from('your@example.com', 'Your Name');
$this->email->to('someone@example.com');
$this->email->cc('another@another-example.com');
$this->email->bcc('them@their-example.com');

$this->email->subject('Email Test');
$this->email->message('Testing the email class.');

$this->email->send();

Setting Email Preferences

There are 21 different preferences available to tailor how your email
messages are sent. You can either set them manually as described here,
or automatically via preferences stored in your config file, described
below:

Preferences are set by passing an array of preference values to the
email initialize method. Here is an example of how you might set some
preferences:

$config['protocol'] = 'sendmail';
$config['mailpath'] = '/usr/sbin/sendmail';
$config['charset'] = 'iso-8859-1';
$config['wordwrap'] = TRUE;

$this->email->initialize($config);

Note

Most of the preferences have default values that will be used
if you do not set them.

Setting Email Preferences in a Config File

If you prefer not to set preferences using the above method, you can
instead put them into a config file. Simply create a new file called the
email.php, add the $config array in that file. Then save the file at
config/email.php and it will be used automatically. You will NOT need to
use the $this->email->initialize() method if you save your
preferences in a config file.

Email Preferences

The following is a list of all the preferences that can be set when
sending email.

	Preference
	Default Value
	Options
	Description

	useragent
	CodeIgniter
	None
	The “user agent”.

	protocol
	mail
	mail, sendmail, or smtp
	The mail sending protocol.

	mailpath
	/usr/sbin/sendmail
	None
	The server path to Sendmail.

	smtp_host
	No Default
	None
	SMTP Server Address.

	smtp_user
	No Default
	None
	SMTP Username.

	smtp_pass
	No Default
	None
	SMTP Password.

	smtp_port
	25
	None
	SMTP Port.

	smtp_timeout
	5
	None
	SMTP Timeout (in seconds).

	smtp_keepalive
	FALSE
	TRUE or FALSE (boolean)
	Enable persistent SMTP connections.

	smtp_crypto
	No Default
	tls or ssl
	SMTP Encryption

	wordwrap
	TRUE
	TRUE or FALSE (boolean)
	Enable word-wrap.

	wrapchars
	76
	
	Character count to wrap at.

	mailtype
	text
	text or html
	Type of mail. If you send HTML email you must send it as a complete web
page. Make sure you don’t have any relative links or relative image
paths otherwise they will not work.

	charset
	$config['charset']
	
	Character set (utf-8, iso-8859-1, etc.).

	validate
	FALSE
	TRUE or FALSE (boolean)
	Whether to validate the email address.

	priority
	3
	1, 2, 3, 4, 5
	Email Priority. 1 = highest. 5 = lowest. 3 = normal.

	crlf
	\n
	“\r\n” or “\n” or “\r”
	Newline character. (Use “\r\n” to comply with RFC 822).

	newline
	\n
	“\r\n” or “\n” or “\r”
	Newline character. (Use “\r\n” to comply with RFC 822).

	bcc_batch_mode
	FALSE
	TRUE or FALSE (boolean)
	Enable BCC Batch Mode.

	bcc_batch_size
	200
	None
	Number of emails in each BCC batch.

	dsn
	FALSE
	TRUE or FALSE (boolean)
	Enable notify message from server

Overriding Word Wrapping

If you have word wrapping enabled (recommended to comply with RFC 822)
and you have a very long link in your email it can get wrapped too,
causing it to become un-clickable by the person receiving it.
CodeIgniter lets you manually override word wrapping within part of your
message like this:

The text of your email that
gets wrapped normally.

{unwrap}http://example.com/a_long_link_that_should_not_be_wrapped.html{/unwrap}

More text that will be
wrapped normally.

Place the item you do not want word-wrapped between: {unwrap} {/unwrap}

Class Reference

	
class CI_Email

	
	
from($from[, $name = ''[, $return_path = NULL]])

	

	Parameters:	
	$from (string) – “From” e-mail address

	$name (string) – “From” display name

	$return_path (string) – Optional email address to redirect undelivered e-mail to

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the email address and name of the person sending the email:

$this->email->from('you@example.com', 'Your Name');

You can also set a Return-Path, to help redirect undelivered mail:

$this->email->from('you@example.com', 'Your Name', 'returned_emails@example.com');

Note

Return-Path can’t be used if you’ve configured ‘smtp’ as
your protocol.

	
reply_to($replyto[, $name = ''])

	

	Parameters:	
	$replyto (string) – E-mail address for replies

	$name (string) – Display name for the reply-to e-mail address

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the reply-to address. If the information is not provided the
information in the :meth:from method is used. Example:

$this->email->reply_to('you@example.com', 'Your Name');

	
to($to)

	

	Parameters:	
	$to (mixed) – Comma-delimited string or an array of e-mail addresses

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the email address(s) of the recipient(s). Can be a single e-mail,
a comma-delimited list or an array:

$this->email->to('someone@example.com');

$this->email->to('one@example.com, two@example.com, three@example.com');

$this->email->to(
 array('one@example.com', 'two@example.com', 'three@example.com')
);

	
cc($cc)

	

	Parameters:	
	$cc (mixed) – Comma-delimited string or an array of e-mail addresses

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the CC email address(s). Just like the “to”, can be a single e-mail,
a comma-delimited list or an array.

	
bcc($bcc[, $limit = ''])

	

	Parameters:	
	$bcc (mixed) – Comma-delimited string or an array of e-mail addresses

	$limit (int) – Maximum number of e-mails to send per batch

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the BCC email address(s). Just like the to() method, can be a single
e-mail, a comma-delimited list or an array.

If $limit is set, “batch mode” will be enabled, which will send
the emails to batches, with each batch not exceeding the specified
$limit.

	
subject($subject)

	

	Parameters:	
	$subject (string) – E-mail subject line

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the email subject:

$this->email->subject('This is my subject');

	
message($body)

	

	Parameters:	
	$body (string) – E-mail message body

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the e-mail message body:

$this->email->message('This is my message');

	
set_alt_message($str)

	

	Parameters:	
	$str (string) – Alternative e-mail message body

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the alternative e-mail message body:

$this->email->set_alt_message('This is the alternative message');

This is an optional message string which can be used if you send
HTML formatted email. It lets you specify an alternative message
with no HTML formatting which is added to the header string for
people who do not accept HTML email. If you do not set your own
message CodeIgniter will extract the message from your HTML email
and strip the tags.

	
set_header($header, $value)

	

	Parameters:	
	$header (string) – Header name

	$value (string) – Header value

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Appends additional headers to the e-mail:

$this->email->set_header('Header1', 'Value1');
$this->email->set_header('Header2', 'Value2');

	
clear([$clear_attachments = FALSE])

	

	Parameters:	
	$clear_attachments (bool) – Whether or not to clear attachments

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Initializes all the email variables to an empty state. This method
is intended for use if you run the email sending method in a loop,
permitting the data to be reset between cycles.

foreach ($list as $name => $address)
{
 $this->email->clear();

 $this->email->to($address);
 $this->email->from('your@example.com');
 $this->email->subject('Here is your info '.$name);
 $this->email->message('Hi '.$name.' Here is the info you requested.');
 $this->email->send();
}

If you set the parameter to TRUE any attachments will be cleared as
well:

$this->email->clear(TRUE);

	
send([$auto_clear = TRUE])

	

	Parameters:	
	$auto_clear (bool) – Whether to clear message data automatically

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

The e-mail sending method. Returns boolean TRUE or FALSE based on
success or failure, enabling it to be used conditionally:

if (! $this->email->send())
{
 // Generate error
}

This method will automatically clear all parameters if the request was
successful. To stop this behaviour pass FALSE:

if ($this->email->send(FALSE))
{
 // Parameters won't be cleared
}

Note

In order to use the print_debugger() method, you need
to avoid clearing the email parameters.

	
attach($filename[, $disposition = ''[, $newname = NULL[, $mime = '']]])

	

	Parameters:	
	$filename (string) – File name

	$disposition (string) – ‘disposition’ of the attachment. Most
email clients make their own decision regardless of the MIME
specification used here. https://www.iana.org/assignments/cont-disp/cont-disp.xhtml

	$newname (string) – Custom file name to use in the e-mail

	$mime (string) – MIME type to use (useful for buffered data)

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Enables you to send an attachment. Put the file path/name in the first
parameter. For multiple attachments use the method multiple times.
For example:

$this->email->attach('/path/to/photo1.jpg');
$this->email->attach('/path/to/photo2.jpg');
$this->email->attach('/path/to/photo3.jpg');

To use the default disposition (attachment), leave the second parameter blank,
otherwise use a custom disposition:

$this->email->attach('image.jpg', 'inline');

You can also use a URL:

$this->email->attach('http://example.com/filename.pdf');

If you’d like to use a custom file name, you can use the third parameter:

$this->email->attach('filename.pdf', 'attachment', 'report.pdf');

If you need to use a buffer string instead of a real - physical - file you can
use the first parameter as buffer, the third parameter as file name and the fourth
parameter as mime-type:

$this->email->attach($buffer, 'attachment', 'report.pdf', 'application/pdf');

	
attachment_cid($filename)

	

	Parameters:	
	$filename (string) – Existing attachment filename

	Returns:	Attachment Content-ID or FALSE if not found

	Return type:	string

Sets and returns an attachment’s Content-ID, which enables your to embed an inline
(picture) attachment into HTML. First parameter must be the already attached file name.

$filename = '/img/photo1.jpg';
$this->email->attach($filename);
foreach ($list as $address)
{
 $this->email->to($address);
 $cid = $this->email->attachment_cid($filename);
 $this->email->message('');
 $this->email->send();
}

Note

Content-ID for each e-mail must be re-created for it to be unique.

	
print_debugger([$include = array('headers', 'subject', 'body')])

	

	Parameters:	
	$include (array) – Which parts of the message to print out

	Returns:	Formatted debug data

	Return type:	string

Returns a string containing any server messages, the email headers, and
the email message. Useful for debugging.

You can optionally specify which parts of the message should be printed.
Valid options are: headers, subject, body.

Example:

// You need to pass FALSE while sending in order for the email data
// to not be cleared - if that happens, print_debugger() would have
// nothing to output.
$this->email->send(FALSE);

// Will only print the email headers, excluding the message subject and body
$this->email->print_debugger(array('headers'));

Note

By default, all of the raw data will be printed.

Encrypt Class

The Encrypt Class provides two-way data encryption. It encrypted using
the Mcrypt PHP extension, which is required for the Encrypt Class to run.

Important

This library has been DEPRECATED and is only kept for
backwards compatibility. Please use the new Encryption Library.

	Using the Encrypt Library
	Setting your Key

	Message Length

	Initializing the Class

	Class Reference

Using the Encrypt Library

Setting your Key

A key is a piece of information that controls the cryptographic
process and permits an encrypted string to be decoded. In fact, the key
you chose will provide the only means to decode data that was
encrypted with that key, so not only must you choose the key carefully,
you must never change it if you intend use it for persistent data.

It goes without saying that you should guard your key carefully. Should
someone gain access to your key, the data will be easily decoded. If
your server is not totally under your control it’s impossible to ensure
key security so you may want to think carefully before using it for
anything that requires high security, like storing credit card numbers.

To take maximum advantage of the encryption algorithm, your key should
be 32 characters in length (256 bits). The key should be as random a
string as you can concoct, with numbers and uppercase and lowercase
letters. Your key should not be a simple text string. In order to be
cryptographically secure it needs to be as random as possible.

Your key can be either stored in your application/config/config.php, or
you can design your own storage mechanism and pass the key dynamically
when encoding/decoding.

To save your key to your application/config/config.php, open the file
and set:

$config['encryption_key'] = "YOUR KEY";

Message Length

It’s important for you to know that the encoded messages the encryption
function generates will be approximately 2.6 times longer than the
original message. For example, if you encrypt the string “my super
secret data”, which is 21 characters in length, you’ll end up with an
encoded string that is roughly 55 characters (we say “roughly” because
the encoded string length increments in 64 bit clusters, so it’s not
exactly linear). Keep this information in mind when selecting your data
storage mechanism. Cookies, for example, can only hold 4K of
information.

Initializing the Class

Like most other classes in CodeIgniter, the Encrypt class is
initialized in your controller using the $this->load->library()
method:

$this->load->library('encrypt');

Once loaded, the Encrypt library object will be available using:

$this->encrypt

Class Reference

	
class CI_Encrypt

	
	
encode($string[, $key = ''])

	

	Parameters:	
	$string (string) – Data to encrypt

	$key (string) – Encryption key

	Returns:	Encrypted string

	Return type:	string

Performs the data encryption and returns it as a string. Example:

$msg = 'My secret message';

$encrypted_string = $this->encrypt->encode($msg);

You can optionally pass your encryption key via the second parameter if
you don’t want to use the one in your config file:

$msg = 'My secret message';
$key = 'super-secret-key';

$encrypted_string = $this->encrypt->encode($msg, $key);

	
decode($string[, $key = ''])

	

	Parameters:	
	$string (string) – String to decrypt

	$key (string) – Encryption key

	Returns:	Plain-text string

	Return type:	string

Decrypts an encoded string. Example:

$encrypted_string = 'APANtByIGI1BpVXZTJgcsAG8GZl8pdwwa84';

$plaintext_string = $this->encrypt->decode($encrypted_string);

You can optionally pass your encryption key via the second parameter if
you don’t want to use the one in your config file:

$msg = 'My secret message';
$key = 'super-secret-key';

$encrypted_string = $this->encrypt->decode($msg, $key);

	
set_cipher($cipher)

	

	Parameters:	
	$cipher (int) – Valid PHP MCrypt cypher constant

	Returns:	CI_Encrypt instance (method chaining)

	Return type:	CI_Encrypt

Permits you to set an Mcrypt cipher. By default it uses
MCRYPT_RIJNDAEL_256. Example:

$this->encrypt->set_cipher(MCRYPT_BLOWFISH);

Please visit php.net for a list of available ciphers [http://php.net/mcrypt].

If you’d like to manually test whether your server supports MCrypt you
can use:

echo extension_loaded('mcrypt') ? 'Yup' : 'Nope';

	
set_mode($mode)

	

	Parameters:	
	$mode (int) – Valid PHP MCrypt mode constant

	Returns:	CI_Encrypt instance (method chaining)

	Return type:	CI_Encrypt

Permits you to set an Mcrypt mode. By default it uses MCRYPT_MODE_CBC.
Example:

$this->encrypt->set_mode(MCRYPT_MODE_CFB);

Please visit php.net for a list of available modes [http://php.net/mcrypt].

	
encode_from_legacy($string[, $legacy_mode = MCRYPT_MODE_ECB[, $key = '']])

	

	Parameters:	
	$string (string) – String to encrypt

	$legacy_mode (int) – Valid PHP MCrypt cipher constant

	$key (string) – Encryption key

	Returns:	Newly encrypted string

	Return type:	string

Enables you to re-encode data that was originally encrypted with
CodeIgniter 1.x to be compatible with the Encrypt library in
CodeIgniter 2.x. It is only necessary to use this method if you have
encrypted data stored permanently such as in a file or database and are
on a server that supports Mcrypt. “Light” use encryption such as
encrypted session data or transitory encrypted flashdata require no
intervention on your part. However, existing encrypted Sessions will be
destroyed since data encrypted prior to 2.x will not be decoded.

Important

Why only a method to re-encode the data instead of maintaining legacy
methods for both encoding and decoding? The algorithms in the
Encrypt library have improved in CodeIgniter 2.x both for performance
and security, and we do not wish to encourage continued use of the older
methods. You can of course extend the Encryption library if you wish and
replace the new methods with the old and retain seamless compatibility
with CodeIgniter 1.x encrypted data, but this a decision that a
developer should make cautiously and deliberately, if at all.

$new_data = $this->encrypt->encode_from_legacy($old_encrypted_string);

	Parameter
	Default
	Description

	$orig_data
	n/a
	The original encrypted data from CodeIgniter 1.x’s Encryption library

	$legacy_mode
	MCRYPT_MODE_ECB
	The Mcrypt mode that was used to generate the original encrypted data.
CodeIgniter 1.x’s default was MCRYPT_MODE_ECB, and it will assume that
to be the case unless overridden by this parameter.

	$key
	n/a
	The encryption key. This it typically specified in your config file as
outlined above.

Encryption Library

Important

DO NOT use this or any other encryption library for
user password storage! Passwords must be hashed instead, and you
should do that via PHP’s own Password Hashing extension [http://php.net/password].

The Encryption Library provides two-way data encryption. To do so in
a cryptographically secure way, it utilizes PHP extensions that are
unfortunately not always available on all systems.
You must meet one of the following dependencies in order to use this
library:

	OpenSSL [http://php.net/openssl]

	MCrypt [http://php.net/mcrypt] (and MCRYPT_DEV_URANDOM availability)

If neither of the above dependencies is met, we simply cannot offer
you a good enough implementation to meet the high standards required
for proper cryptography.

	Using the Encryption Library
	Initializing the Class

	Default behavior

	Setting your encryption_key

	Supported encryption ciphers and modes
	Portable ciphers

	Driver-specific ciphers

	Encryption modes

	Message Length

	Configuring the library

	Encrypting and decrypting data
	How it works

	Using custom parameters

	Supported HMAC authentication algorithms

	Class Reference

Using the Encryption Library

Initializing the Class

Like most other classes in CodeIgniter, the Encryption library is
initialized in your controller using the $this->load->library()
method:

$this->load->library('encryption');

Once loaded, the Encryption library object will be available using:

$this->encryption

Default behavior

By default, the Encryption Library will use the AES-128 cipher in CBC
mode, using your configured encryption_key and SHA512 HMAC authentication.

Note

AES-128 is chosen both because it is proven to be strong and
because of its wide availability across different cryptographic
software and programming languages’ APIs.

However, the encryption_key is not used as is.

If you are somewhat familiar with cryptography, you should already know
that a HMAC also requires a secret key and using the same key for both
encryption and authentication is a bad practice.

Because of that, two separate keys are derived from your already configured
encryption_key: one for encryption and one for authentication. This is
done via a technique called HMAC-based Key Derivation Function [http://en.wikipedia.org/wiki/HKDF] (HKDF).

Setting your encryption_key

An encryption key is a piece of information that controls the
cryptographic process and permits a plain-text string to be encrypted,
and afterwards - decrypted. It is the secret “ingredient” in the whole
process that allows you to be the only one who is able to decrypt data
that you’ve decided to hide from the eyes of the public.
After one key is used to encrypt data, that same key provides the only
means to decrypt it, so not only must you chose one carefully, but you
must not lose it or you will also lose access to the data.

It must be noted that to ensure maximum security, such key should not
only be as strong as possible, but also often changed. Such behavior
however is rarely practical or possible to implement, and that is why
CodeIgniter gives you the ability to configure a single key that is to be
used (almost) every time.

It goes without saying that you should guard your key carefully. Should
someone gain access to your key, the data will be easily decrypted. If
your server is not totally under your control it’s impossible to ensure
key security so you may want to think carefully before using it for
anything that requires high security, like storing credit card numbers.

Your encryption key must be as long as the encyption algorithm in use
allows. For AES-128, that’s 128 bits or 16 bytes (charcters) long.
You will find a table below that shows the supported key lengths of
different ciphers.

The key should be as random as possible and it must not be a regular
text string, nor the output of a hashing function, etc. In order to create
a proper key, you must use the Encryption library’s create_key() method

// $key will be assigned a 16-byte (128-bit) random key
$key = $this->encryption->create_key(16);

The key can be either stored in your application/config/config.php, or
you can design your own storage mechanism and pass the key dynamically
when encrypting/decrypting.

To save your key to your application/config/config.php, open the file
and set:

$config['encryption_key'] = 'YOUR KEY';

You’ll notice that the create_key() method outputs binary data, which
is hard to deal with (i.e. a copy-paste may damage it), so you may use
bin2hex(), hex2bin() or Base64-encoding to work with the key in
a more friendly manner. For example:

// Get a hex-encoded representation of the key:
$key = bin2hex($this->encryption->create_key(16));

// Put the same value in your config with hex2bin(),
// so that it is still passed as binary to the library:
$config['encryption_key'] = hex2bin(<your hex-encoded key>);

Supported encryption ciphers and modes

Note

The terms ‘cipher’ and ‘encryption algorithm’ are interchangeable.

Portable ciphers

Because MCrypt and OpenSSL (also called drivers throughout this document)
each support different sets of encryption algorithms and often implement
them in different ways, our Encryption library is designed to use them in
a portable fashion, or in other words - it enables you to use them
interchangeably, at least for the ciphers supported by both drivers.

It is also implemented in a way that aims to match the standard
implementations in other programming languages and libraries.

Here’s a list of the so called “portable” ciphers, where
“CodeIgniter name” is the string value that you’d have to pass to the
Encryption library to use that cipher:

	Cipher name
	CodeIgniter name
	Key lengths (bits / bytes)
	Supported modes

	AES-128 / Rijndael-128
	aes-128
	128 / 16
	CBC, CTR, CFB, CFB8, OFB, ECB

	AES-192
	aes-192
	192 / 24
	CBC, CTR, CFB, CFB8, OFB, ECB

	AES-256
	aes-256
	256 / 32
	CBC, CTR, CFB, CFB8, OFB, ECB

	DES
	des
	56 / 7
	CBC, CFB, CFB8, OFB, ECB

	TripleDES
	tripledes
	56 / 7, 112 / 14, 168 / 21
	CBC, CFB, CFB8, OFB

	Blowfish
	blowfish
	128-448 / 16-56
	CBC, CFB, OFB, ECB

	CAST5 / CAST-128
	cast5
	88-128 / 11-16
	CBC, CFB, OFB, ECB

	RC4 / ARCFour
	rc4
	40-2048 / 5-256
	Stream

Important

Because of how MCrypt works, if you fail to provide a key
with the appropriate length, you might end up using a different
algorithm than the one configured, so be really careful with that!

Note

In case it isn’t clear from the above table, Blowfish, CAST5
and RC4 support variable length keys. That is, any number in the
shown ranges is valid, although in bit terms that only happens
in 8-bit increments.

Note

Even though CAST5 supports key lengths lower than 128 bits
(16 bytes), in fact they will just be zero-padded to the
maximum length, as specified in RFC 2144 [http://tools.ietf.org/rfc/rfc2144.txt].

Note

Blowfish supports key lengths as small as 32 bits (4 bytes), but
our tests have shown that only lengths of 128 bits (16 bytes) or
higher are properly supported by both MCrypt and OpenSSL. It is
also a bad practice to use such low-length keys anyway.

Driver-specific ciphers

As noted above, MCrypt and OpenSSL support different sets of encryption
ciphers. For portability reasons and because we haven’t tested them
properly, we do not advise you to use the ones that are driver-specific,
but regardless, here’s a list of most of them:

	Cipher name
	Driver
	Key lengths (bits / bytes)
	Supported modes

	AES-128
	OpenSSL
	128 / 16
	CBC, CTR, CFB, CFB8, OFB, ECB, XTS

	AES-192
	OpenSSL
	192 / 24
	CBC, CTR, CFB, CFB8, OFB, ECB, XTS

	AES-256
	OpenSSL
	256 / 32
	CBC, CTR, CFB, CFB8, OFB, ECB, XTS

	Rijndael-128
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	Rijndael-192
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	Rijndael-256
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	GOST
	MCrypt
	256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	Twofish
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	CAST-128
	MCrypt
	40-128 / 5-16
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	CAST-256
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	Loki97
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	SaferPlus
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	Serpent
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	XTEA
	MCrypt
	128 / 16
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	RC2
	MCrypt
	8-1024 / 1-128
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	RC2
	OpenSSL
	8-1024 / 1-128
	CBC, CFB, OFB, ECB

	Camellia-128
	OpenSSL
	128 / 16
	CBC, CFB, CFB8, OFB, ECB

	Camellia-192
	OpenSSL
	192 / 24
	CBC, CFB, CFB8, OFB, ECB

	Camellia-256
	OpenSSL
	256 / 32
	CBC, CFB, CFB8, OFB, ECB

	Seed
	OpenSSL
	128 / 16
	CBC, CFB, OFB, ECB

Note

If you wish to use one of those ciphers, you’d have to pass
its name in lower-case to the Encryption library.

Note

You’ve probably noticed that all AES cipers (and Rijndael-128)
are also listed in the portable ciphers list. This is because
drivers support different modes for these ciphers. Also, it is
important to note that AES-128 and Rijndael-128 are actually
the same cipher, but only when used with a 128-bit key.

Note

CAST-128 / CAST-5 is also listed in both the portable and
driver-specific ciphers list. This is because OpenSSL’s
implementation doesn’t appear to be working correctly with
key sizes of 80 bits and lower.

Note

RC2 is listed as supported by both MCrypt and OpenSSL.
However, both drivers implement them differently and they
are not portable. It is probably worth noting that we only
found one obscure source confirming that it is MCrypt that
is not properly implementing it.

Encryption modes

Different modes of encryption have different characteristics and serve
for different purposes. Some are stronger than others, some are faster
and some offer extra features.
We are not going in depth into that here, we’ll leave that to the
cryptography experts. The table below is to provide brief informational
reference to our more experienced users. If you are a beginner, just
stick to the CBC mode - it is widely accepted as strong and secure for
general purposes.

	Mode name
	CodeIgniter name
	Driver support
	Additional info

	CBC
	cbc
	MCrypt, OpenSSL
	A safe default choice

	CTR
	ctr
	MCrypt, OpenSSL
	Considered as theoretically better than CBC, but not as widely available

	CFB
	cfb
	MCrypt, OpenSSL
	N/A

	CFB8
	cfb8
	MCrypt, OpenSSL
	Same as CFB, but operates in 8-bit mode (not recommended).

	OFB
	ofb
	MCrypt, OpenSSL
	N/A

	OFB8
	ofb8
	MCrypt
	Same as OFB, but operates in 8-bit mode (not recommended).

	ECB
	ecb
	MCrypt, OpenSSL
	Ignores IV (not recommended).

	XTS
	xts
	OpenSSL
	Usually used for encrypting random access data such as RAM or hard-disk storage.

	Stream
	stream
	MCrypt, OpenSSL
	This is not actually a mode, it just says that a stream cipher is being used. Required because of the general cipher+mode initialization process.

Message Length

It’s probably important for you to know that an encrypted string is usually
longer than the original, plain-text string (depending on the cipher).

This is influenced by the cipher algorithm itself, the IV prepended to the
cipher-text and the HMAC authentication message that is also prepended.
Furthermore, the encrypted message is also Base64-encoded so that it is safe
for storage and transmission, regardless of a possible character set in use.

Keep this information in mind when selecting your data storage mechanism.
Cookies, for example, can only hold 4K of information.

Configuring the library

For usability, performance, but also historical reasons tied to our old
Encrypt Class, the Encryption library is designed to
use repeatedly the same driver, encryption cipher, mode and key.

As noted in the “Default behavior” section above, this means using an
auto-detected driver (OpenSSL has a higher priority), the AES-128 ciper
in CBC mode, and your $config['encryption_key'] value.

If you wish to change that however, you need to use the initialize()
method. It accepts an associative array of parameters, all of which are
optional:

	Option
	Possible values

	driver
	‘mcrypt’, ‘openssl’

	cipher
	Cipher name (see Supported encryption ciphers and modes)

	mode
	Encryption mode (see Encryption modes)

	key
	Encryption key

For example, if you were to change the encryption algorithm and
mode to AES-256 in CTR mode, this is what you should do:

$this->encryption->initialize(
 array(
 'cipher' => 'aes-256',
 'mode' => 'ctr',
 'key' => '<a 32-character random string>'
)
);

Note that we only mentioned that you want to change the ciper and mode,
but we also included a key in the example. As previously noted, it is
important that you choose a key with a proper size for the used algorithm.

There’s also the ability to change the driver, if for some reason you
have both, but want to use MCrypt instead of OpenSSL:

// Switch to the MCrypt driver
$this->encryption->initialize(array('driver' => 'mcrypt'));

// Switch back to the OpenSSL driver
$this->encryption->initialize(array('driver' => 'openssl'));

Encrypting and decrypting data

Encrypting and decrypting data with the already configured library
settings is simple. As simple as just passing the string to the
encrypt() and/or decrypt() methods:

$plain_text = 'This is a plain-text message!';
$ciphertext = $this->encryption->encrypt($plain_text);

// Outputs: This is a plain-text message!
echo $this->encryption->decrypt($ciphertext);

And that’s it! The Encryption library will do everything necessary
for the whole process to be cryptographically secure out-of-the-box.
You don’t need to worry about it.

Important

Both methods will return FALSE in case of an error.
While for encrypt() this can only mean incorrect
configuration, you should always check the return value
of decrypt() in production code.

How it works

If you must know how the process works, here’s what happens under
the hood:

	$this->encryption->encrypt($plain_text)
	Derive an encryption key and a HMAC key from your configured
encryption_key via HKDF, using the SHA-512 digest algorithm.

	Generate a random initialization vector (IV).

	Encrypt the data via AES-128 in CBC mode (or another previously
configured cipher and mode), using the above-mentioned derived
encryption key and IV.

	Prepend said IV to the resulting cipher-text.

	Base64-encode the resulting string, so that it can be safely
stored or transferred without worrying about character sets.

	Create a SHA-512 HMAC authentication message using the derived
HMAC key to ensure data integrity and prepend it to the Base64
string.

	$this->encryption->decrypt($ciphertext)
	Derive an encryption key and a HMAC key from your configured
encryption_key via HKDF, using the SHA-512 digest algorithm.
Because your configured encryption_key is the same, this
will produce the same result as in the encrypt() method
above - otherwise you won’t be able to decrypt it.

	Check if the string is long enough, separate the HMAC out of
it and validate if it is correct (this is done in a way that
prevents timing attacks against it). Return FALSE if either of
the checks fails.

	Base64-decode the string.

	Separate the IV out of the cipher-text and decrypt the said
cipher-text using that IV and the derived encryption key.

Using custom parameters

Let’s say you have to interact with another system that is out
of your control and uses another method to encrypt data. A
method that will most certainly not match the above-described
sequence and probably not use all of the steps either.

The Encryption library allows you to change how its encryption
and decryption processes work, so that you can easily tailor a
custom solution for such situations.

Note

It is possible to use the library in this way, without
setting an encryption_key in your configuration file.

All you have to do is to pass an associative array with a few
parameters to either the encrypt() or decrypt() method.
Here’s an example:

// Assume that we have $ciphertext, $key and $hmac_key
// from on outside source

$message = $this->encryption->decrypt(
 $ciphertext,
 array(
 'cipher' => 'blowfish',
 'mode' => 'cbc',
 'key' => $key,
 'hmac_digest' => 'sha256',
 'hmac_key' => $hmac_key
)
);

In the above example, we are decrypting a message that was encrypted
using the Blowfish cipher in CBC mode and authenticated via a SHA-256
HMAC.

Important

Note that both ‘key’ and ‘hmac_key’ are used in this
example. When using custom parameters, encryption and HMAC keys
are not derived like the default behavior of the library is.

Below is a list of the available options.

However, unless you really need to and you know what you are doing,
we advise you to not change the encryption process as this could
impact security, so please do so with caution.

	Option
	Default value
	Mandatory / Optional
	Description

	cipher
	N/A
	Yes
	Encryption algorithm (see Supported encryption ciphers and modes).

	mode
	N/A
	Yes
	Encryption mode (see Encryption modes).

	key
	N/A
	Yes
	Encryption key.

	hmac
	TRUE
	No
	Whether to use a HMAC.
Boolean. If set to FALSE, then hmac_digest and
hmac_key will be ignored.

	hmac_digest
	sha512
	No
	HMAC message digest algorithm (see Supported HMAC authentication algorithms).

	hmac_key
	N/A
	Yes, unless hmac is FALSE
	HMAC key.

	raw_data
	FALSE
	No
	Whether the cipher-text should be raw.
Boolean. If set to TRUE, then Base64 encoding and
decoding will not be performed and HMAC will not
be a hexadecimal string.

Important

encrypt() and decrypt() will return FALSE if
a mandatory parameter is not provided or if a provided
value is incorrect. This includes hmac_key, unless hmac
is set to FALSE.

Supported HMAC authentication algorithms

For HMAC message authentication, the Encryption library supports
usage of the SHA-2 family of algorithms:

	Algorithm
	Raw length (bytes)
	Hex-encoded length (bytes)

	sha512
	64
	128

	sha384
	48
	96

	sha256
	32
	64

	sha224
	28
	56

The reason for not including other popular algorithms, such as
MD5 or SHA1 is that they are no longer considered secure enough
and as such, we don’t want to encourage their usage.
If you absolutely need to use them, it is easy to do so via PHP’s
native hash_hmac() [http://php.net/manual/en/function.hash-hmac.php] function.

Stronger algorithms of course will be added in the future as they
appear and become widely available.

Class Reference

	
class CI_Encryption

	
	
initialize($params)

	

	Parameters:	
	$params (array) – Configuration parameters

	Returns:	CI_Encryption instance (method chaining)

	Return type:	CI_Encryption

Initializes (configures) the library to use a different
driver, cipher, mode or key.

Example:

$this->encryption->initialize(
 array('mode' => 'ctr')
);

Please refer to the Configuring the library section for detailed info.

	
encrypt($data[, $params = NULL])

	

	Parameters:	
	$data (string) – Data to encrypt

	$params (array) – Optional parameters

	Returns:	Encrypted data or FALSE on failure

	Return type:	string

Encrypts the input data and returns its ciphertext.

Example:

$ciphertext = $this->encryption->encrypt('My secret message');

Please refer to the Using custom parameters section for information
on the optional parameters.

	
decrypt($data[, $params = NULL])

	

	Parameters:	
	$data (string) – Data to decrypt

	$params (array) – Optional parameters

	Returns:	Decrypted data or FALSE on failure

	Return type:	string

Decrypts the input data and returns it in plain-text.

Example:

echo $this->encryption->decrypt($ciphertext);

Please refer to the Using custom parameters secrion for information
on the optional parameters.

	
create_key($length)

	

	Parameters:	
	$length (int) – Output length

	Returns:	A pseudo-random cryptographic key with the specified length, or FALSE on failure

	Return type:	string

Creates a cryptographic key by fetching random data from
the operating system’s sources (i.e. /dev/urandom).

	
hkdf($key[, $digest = 'sha512'[, $salt = NULL[, $length = NULL[, $info = '']]]])

	

	Parameters:	
	$key (string) – Input key material

	$digest (string) – A SHA-2 family digest algorithm

	$salt (string) – Optional salt

	$length (int) – Optional output length

	$info (string) – Optional context/application-specific info

	Returns:	A pseudo-random key or FALSE on failure

	Return type:	string

Derives a key from another, presumably weaker key.

This method is used internally to derive an encryption and HMAC key
from your configured encryption_key.

It is publicly available due to its otherwise general purpose. It is
described in RFC 5869 [https://tools.ietf.org/rfc/rfc5869.txt].

However, as opposed to the description in RFC 5869, this implementation
doesn’t support SHA1.

Example:

$hmac_key = $this->encryption->hkdf(
 $key,
 'sha512',
 NULL,
 NULL,
 'authentication'
);

// $hmac_key is a pseudo-random key with a length of 64 bytes

File Uploading Class

CodeIgniter’s File Uploading Class permits files to be uploaded. You can
set various preferences, restricting the type and size of the files.

	The Process
	Creating the Upload Form

	The Success Page

	The Controller

	The Upload Directory

	Try it!

	Reference Guide
	Initializing the Upload Class

	Setting Preferences

	Preferences

	Setting preferences in a config file

	Class Reference

The Process

Uploading a file involves the following general process:

	An upload form is displayed, allowing a user to select a file and
upload it.

	When the form is submitted, the file is uploaded to the destination
you specify.

	Along the way, the file is validated to make sure it is allowed to be
uploaded based on the preferences you set.

	Once uploaded, the user will be shown a success message.

To demonstrate this process here is brief tutorial. Afterward you’ll
find reference information.

Creating the Upload Form

Using a text editor, create a form called upload_form.php. In it, place
this code and save it to your application/views/ directory:

<html>
<head>
<title>Upload Form</title>
</head>
<body>

<?php echo $error;?>

<?php echo form_open_multipart('upload/do_upload');?>

<input type="file" name="userfile" size="20" />

<input type="submit" value="upload" />

</form>

</body>
</html>

You’ll notice we are using a form helper to create the opening form tag.
File uploads require a multipart form, so the helper creates the proper
syntax for you. You’ll also notice we have an $error variable. This is
so we can show error messages in the event the user does something
wrong.

The Success Page

Using a text editor, create a form called upload_success.php. In it,
place this code and save it to your application/views/ directory:

<html>
<head>
<title>Upload Form</title>
</head>
<body>

<h3>Your file was successfully uploaded!</h3>

<?php foreach ($upload_data as $item => $value):?>
<?php echo $item;?>: <?php echo $value;?>
<?php endforeach; ?>

<p><?php echo anchor('upload', 'Upload Another File!'); ?></p>

</body>
</html>

The Controller

Using a text editor, create a controller called Upload.php. In it, place
this code and save it to your application/controllers/ directory:

<?php

class Upload extends CI_Controller {

 public function __construct()
 {
 parent::__construct();
 $this->load->helper(array('form', 'url'));
 }

 public function index()
 {
 $this->load->view('upload_form', array('error' => ' '));
 }

 public function do_upload()
 {
 $config['upload_path'] = './uploads/';
 $config['allowed_types'] = 'gif|jpg|png';
 $config['max_size'] = 100;
 $config['max_width'] = 1024;
 $config['max_height'] = 768;

 $this->load->library('upload', $config);

 if (! $this->upload->do_upload('userfile'))
 {
 $error = array('error' => $this->upload->display_errors());

 $this->load->view('upload_form', $error);
 }
 else
 {
 $data = array('upload_data' => $this->upload->data());

 $this->load->view('upload_success', $data);
 }
 }
}
?>

The Upload Directory

You’ll need a destination directory for your uploaded images. Create a
directory at the root of your CodeIgniter installation called uploads
and set its file permissions to 777.

Try it!

To try your form, visit your site using a URL similar to this one:

example.com/index.php/upload/

You should see an upload form. Try uploading an image file (either a
jpg, gif, or png). If the path in your controller is correct it should
work.

Reference Guide

Initializing the Upload Class

Like most other classes in CodeIgniter, the Upload class is initialized
in your controller using the $this->load->library() method:

$this->load->library('upload');

Once the Upload class is loaded, the object will be available using:
$this->upload

Setting Preferences

Similar to other libraries, you’ll control what is allowed to be upload
based on your preferences. In the controller you built above you set the
following preferences:

$config['upload_path'] = './uploads/';
$config['allowed_types'] = 'gif|jpg|png';
$config['max_size'] = '100';
$config['max_width'] = '1024';
$config['max_height'] = '768';

$this->load->library('upload', $config);

// Alternately you can set preferences by calling the ``initialize()`` method. Useful if you auto-load the class:
$this->upload->initialize($config);

The above preferences should be fairly self-explanatory. Below is a
table describing all available preferences.

Preferences

The following preferences are available. The default value indicates
what will be used if you do not specify that preference.

	Preference
	Default Value
	Options
	Description

	upload_path
	None
	None
	The path to the directory where the upload should be placed. The
directory must be writable and the path can be absolute or relative.

	allowed_types
	None
	None
	The mime types corresponding to the types of files you allow to be
uploaded. Usually the file extension can be used as the mime type.
Can be either an array or a pipe-separated string.

	file_name
	None
	Desired file name
	If set CodeIgniter will rename the uploaded file to this name. The
extension provided in the file name must also be an allowed file type.
If no extension is provided in the original file_name will be used.

	file_ext_tolower
	FALSE
	TRUE/FALSE (boolean)
	If set to TRUE, the file extension will be forced to lower case

	overwrite
	FALSE
	TRUE/FALSE (boolean)
	If set to true, if a file with the same name as the one you are
uploading exists, it will be overwritten. If set to false, a number will
be appended to the filename if another with the same name exists.

	max_size
	0
	None
	The maximum size (in kilobytes) that the file can be. Set to zero for no
limit. Note: Most PHP installations have their own limit, as specified
in the php.ini file. Usually 2 MB (or 2048 KB) by default.

	max_width
	0
	None
	The maximum width (in pixels) that the image can be. Set to zero for no
limit.

	max_height
	0
	None
	The maximum height (in pixels) that the image can be. Set to zero for no
limit.

	min_width
	0
	None
	The minimum width (in pixels) that the image can be. Set to zero for no
limit.

	min_height
	0
	None
	The minimum height (in pixels) that the image can be. Set to zero for no
limit.

	max_filename
	0
	None
	The maximum length that a file name can be. Set to zero for no limit.

	max_filename_increment
	100
	None
	When overwrite is set to FALSE, use this to set the maximum filename
increment for CodeIgniter to append to the filename.

	encrypt_name
	FALSE
	TRUE/FALSE (boolean)
	If set to TRUE the file name will be converted to a random encrypted
string. This can be useful if you would like the file saved with a name
that can not be discerned by the person uploading it.

	remove_spaces
	TRUE
	TRUE/FALSE (boolean)
	If set to TRUE, any spaces in the file name will be converted to
underscores. This is recommended.

	detect_mime
	TRUE
	TRUE/FALSE (boolean)
	If set to TRUE, a server side detection of the file type will be
performed to avoid code injection attacks. DO NOT disable this option
unless you have no other option as that would cause a security risk.

	mod_mime_fix
	TRUE
	TRUE/FALSE (boolean)
	If set to TRUE, multiple filename extensions will be suffixed with an
underscore in order to avoid triggering Apache mod_mime [http://httpd.apache.org/docs/2.0/mod/mod_mime.html#multipleext].
DO NOT turn off this option if your upload directory is public, as this
is a security risk.

Setting preferences in a config file

If you prefer not to set preferences using the above method, you can
instead put them into a config file. Simply create a new file called the
upload.php, add the $config array in that file. Then save the file in:
config/upload.php and it will be used automatically. You will NOT
need to use the $this->upload->initialize() method if you save your
preferences in a config file.

Class Reference

	
class CI_Upload

	
	
initialize([array $config = array()[, $reset = TRUE]])

	

	Parameters:	
	$config (array) – Preferences

	$reset (bool) – Whether to reset preferences (that are not provided in $config) to their defaults

	Returns:	CI_Upload instance (method chaining)

	Return type:	CI_Upload

	
do_upload([$field = 'userfile'])

	

	Parameters:	
	$field (string) – Name of the form field

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Performs the upload based on the preferences you’ve set.

Note

By default the upload routine expects the file to come from
a form field called userfile, and the form must be of type
“multipart”.

<form method="post" action="some_action" enctype="multipart/form-data" />

If you would like to set your own field name simply pass its value to
the do_upload() method:

$field_name = "some_field_name";
$this->upload->do_upload($field_name);

	
display_errors([$open = '<p>'[, $close = '</p>']])

	

	Parameters:	
	$open (string) – Opening markup

	$close (string) – Closing markup

	Returns:	Formatted error message(s)

	Return type:	string

Retrieves any error messages if the do_upload() method returned
false. The method does not echo automatically, it returns the data so
you can assign it however you need.

Formatting Errors

By default the above method wraps any errors within <p> tags. You can
set your own delimiters like this:

$this->upload->display_errors('<p>', '</p>');

	
data([$index = NULL])

	

	Parameters:	
	$data (string) – Element to return instead of the full array

	Returns:	Information about the uploaded file

	Return type:	mixed

This is a helper method that returns an array containing all of the
data related to the file you uploaded. Here is the array prototype:

Array
(
 [file_name] => mypic.jpg
 [file_type] => image/jpeg
 [file_path] => /path/to/your/upload/
 [full_path] => /path/to/your/upload/jpg.jpg
 [raw_name] => mypic
 [orig_name] => mypic.jpg
 [client_name] => mypic.jpg
 [file_ext] => .jpg
 [file_size] => 22.2
 [is_image] => 1
 [image_width] => 800
 [image_height] => 600
 [image_type] => jpeg
 [image_size_str] => width="800" height="200"
)

To return one element from the array:

$this->upload->data('file_name'); // Returns: mypic.jpg

Here’s a table explaining the above-displayed array items:

	Item
	Description

	file_name
	Name of the file that was uploaded, including the filename extension

	file_type
	File MIME type identifier

	file_path
	Absolute server path to the file

	full_path
	Absolute server path, including the file name

	raw_name
	File name, without the extension

	orig_name
	Original file name. This is only useful if you use the encrypted name option.

	client_name
	File name supplied by the client user agent, but possibly sanitized

	file_ext
	Filename extension, period included

	file_size
	File size in kilobytes

	is_image
	Whether the file is an image or not. 1 = image. 0 = not.

	image_width
	Image width

	image_height
	Image height

	image_type
	Image type (usually the file name extension without the period)

	image_size_str
	A string containing the width and height (useful to put into an image tag)

Form Validation

CodeIgniter provides a comprehensive form validation and data prepping
class that helps minimize the amount of code you’ll write.

Page Contents

	Form Validation
	Overview

	Form Validation Tutorial
	The Form

	The Success Page

	The Controller

	Try it!

	Explanation

	Setting Validation Rules

	Setting Rules Using an Array

	Cascading Rules

	Prepping Data

	Re-populating the form

	Callbacks: Your own Validation Methods

	Callable: Use anything as a rule

	Setting Error Messages

	Translating Field Names

	Changing the Error Delimiters

	Showing Errors Individually

	Validating an Array (other than $_POST)

	Saving Sets of Validation Rules to a Config File
	How to save your rules

	Creating Sets of Rules

	Calling a Specific Rule Group

	Associating a Controller Method with a Rule Group

	Using Arrays as Field Names

	Rule Reference

	Prepping Reference

	Class Reference

	Helper Reference

Overview

Before explaining CodeIgniter’s approach to data validation, let’s
describe the ideal scenario:

	A form is displayed.

	You fill it in and submit it.

	If you submitted something invalid, or perhaps missed a required
item, the form is redisplayed containing your data along with an
error message describing the problem.

	This process continues until you have submitted a valid form.

On the receiving end, the script must:

	Check for required data.

	Verify that the data is of the correct type, and meets the correct
criteria. For example, if a username is submitted it must be
validated to contain only permitted characters. It must be of a
minimum length, and not exceed a maximum length. The username can’t
be someone else’s existing username, or perhaps even a reserved word.
Etc.

	Sanitize the data for security.

	Pre-format the data if needed (Does the data need to be trimmed? HTML
encoded? Etc.)

	Prep the data for insertion in the database.

Although there is nothing terribly complex about the above process, it
usually requires a significant amount of code, and to display error
messages, various control structures are usually placed within the form
HTML. Form validation, while simple to create, is generally very messy
and tedious to implement.

Form Validation Tutorial

What follows is a “hands on” tutorial for implementing CodeIgniter’s Form
Validation.

In order to implement form validation you’ll need three things:

	A View file containing a form.

	A View file containing a “success” message to be displayed upon
successful submission.

	A controller method to receive and
process the submitted data.

Let’s create those three things, using a member sign-up form as the
example.

The Form

Using a text editor, create a form called myform.php. In it, place this
code and save it to your application/views/ folder:

<html>
<head>
<title>My Form</title>
</head>
<body>

<?php echo validation_errors(); ?>

<?php echo form_open('form'); ?>

<h5>Username</h5>
<input type="text" name="username" value="" size="50" />

<h5>Password</h5>
<input type="text" name="password" value="" size="50" />

<h5>Password Confirm</h5>
<input type="text" name="passconf" value="" size="50" />

<h5>Email Address</h5>
<input type="text" name="email" value="" size="50" />

<div><input type="submit" value="Submit" /></div>

</form>

</body>
</html>

The Success Page

Using a text editor, create a form called formsuccess.php. In it, place
this code and save it to your application/views/ folder:

<html>
<head>
<title>My Form</title>
</head>
<body>

<h3>Your form was successfully submitted!</h3>

<p><?php echo anchor('form', 'Try it again!'); ?></p>

</body>
</html>

The Controller

Using a text editor, create a controller called Form.php. In it, place
this code and save it to your application/controllers/ folder:

<?php

class Form extends CI_Controller {

 public function index()
 {
 $this->load->helper(array('form', 'url'));

 $this->load->library('form_validation');

 if ($this->form_validation->run() == FALSE)
 {
 $this->load->view('myform');
 }
 else
 {
 $this->load->view('formsuccess');
 }
 }
}

Try it!

To try your form, visit your site using a URL similar to this one:

example.com/index.php/form/

If you submit the form you should simply see the form reload. That’s
because you haven’t set up any validation rules yet.

Since you haven’t told the Form Validation class to validate anything
yet, it returns FALSE (boolean false) by default. ``The run()`` method
only returns TRUE if it has successfully applied your rules without any
of them failing.

Explanation

You’ll notice several things about the above pages:

The form (myform.php) is a standard web form with a couple exceptions:

	It uses a form helper to create the form opening. Technically, this
isn’t necessary. You could create the form using standard HTML.
However, the benefit of using the helper is that it generates the
action URL for you, based on the URL in your config file. This makes
your application more portable in the event your URLs change.

	At the top of the form you’ll notice the following function call:

<?php echo validation_errors(); ?>

This function will return any error messages sent back by the
validator. If there are no messages it returns an empty string.

The controller (Form.php) has one method: index(). This method
initializes the validation class and loads the form helper and URL
helper used by your view files. It also runs the validation routine.
Based on whether the validation was successful it either presents the
form or the success page.

Setting Validation Rules

CodeIgniter lets you set as many validation rules as you need for a
given field, cascading them in order, and it even lets you prep and
pre-process the field data at the same time. To set validation rules you
will use the set_rules() method:

$this->form_validation->set_rules();

The above method takes three parameters as input:

	The field name - the exact name you’ve given the form field.

	A “human” name for this field, which will be inserted into the error
message. For example, if your field is named “user” you might give it
a human name of “Username”.

	The validation rules for this form field.

	(optional) Set custom error messages on any rules given for current field. If not provided will use the default one.

Note

If you would like the field name to be stored in a language
file, please see Translating Field Names.

Here is an example. In your controller (Form.php), add this code just
below the validation initialization method:

$this->form_validation->set_rules('username', 'Username', 'required');
$this->form_validation->set_rules('password', 'Password', 'required');
$this->form_validation->set_rules('passconf', 'Password Confirmation', 'required');
$this->form_validation->set_rules('email', 'Email', 'required');

Your controller should now look like this:

<?php

class Form extends CI_Controller {

 public function index()
 {
 $this->load->helper(array('form', 'url'));

 $this->load->library('form_validation');

 $this->form_validation->set_rules('username', 'Username', 'required');
 $this->form_validation->set_rules('password', 'Password', 'required',
 array('required' => 'You must provide a %s.')
);
 $this->form_validation->set_rules('passconf', 'Password Confirmation', 'required');
 $this->form_validation->set_rules('email', 'Email', 'required');

 if ($this->form_validation->run() == FALSE)
 {
 $this->load->view('myform');
 }
 else
 {
 $this->load->view('formsuccess');
 }
 }
}

Now submit the form with the fields blank and you should see the error
messages. If you submit the form with all the fields populated you’ll
see your success page.

Note

The form fields are not yet being re-populated with the data
when there is an error. We’ll get to that shortly.

Setting Rules Using an Array

Before moving on it should be noted that the rule setting method can
be passed an array if you prefer to set all your rules in one action. If
you use this approach, you must name your array keys as indicated:

$config = array(
 array(
 'field' => 'username',
 'label' => 'Username',
 'rules' => 'required'
),
 array(
 'field' => 'password',
 'label' => 'Password',
 'rules' => 'required',
 'errors' => array(
 'required' => 'You must provide a %s.',
),
),
 array(
 'field' => 'passconf',
 'label' => 'Password Confirmation',
 'rules' => 'required'
),
 array(
 'field' => 'email',
 'label' => 'Email',
 'rules' => 'required'
)
);

$this->form_validation->set_rules($config);

Cascading Rules

CodeIgniter lets you pipe multiple rules together. Let’s try it. Change
your rules in the third parameter of rule setting method, like this:

$this->form_validation->set_rules(
 'username', 'Username',
 'required|min_length[5]|max_length[12]|is_unique[users.username]',
 array(
 'required' => 'You have not provided %s.',
 'is_unique' => 'This %s already exists.'
)
);
$this->form_validation->set_rules('password', 'Password', 'required');
$this->form_validation->set_rules('passconf', 'Password Confirmation', 'required|matches[password]');
$this->form_validation->set_rules('email', 'Email', 'required|valid_email|is_unique[users.email]');

The above code sets the following rules:

	The username field be no shorter than 5 characters and no longer than
12.

	The password field must match the password confirmation field.

	The email field must contain a valid email address.

Give it a try! Submit your form without the proper data and you’ll see
new error messages that correspond to your new rules. There are numerous
rules available which you can read about in the validation reference.

Note

You can also pass an array of rules to set_rules(),
instead of a string. Example:

$this->form_validation->set_rules('username', 'Username', array('required', 'min_length[5]'));

Prepping Data

In addition to the validation method like the ones we used above, you
can also prep your data in various ways. For example, you can set up
rules like this:

$this->form_validation->set_rules('username', 'Username', 'trim|required|min_length[5]|max_length[12]');
$this->form_validation->set_rules('password', 'Password', 'trim|required|min_length[8]');
$this->form_validation->set_rules('passconf', 'Password Confirmation', 'trim|required|matches[password]');
$this->form_validation->set_rules('email', 'Email', 'trim|required|valid_email');

In the above example, we are “trimming” the fields, checking for length
where necessary and making sure that both password fields match.

Any native PHP function that accepts one parameter can be used as a
rule, like ``htmlspecialchars()``, ``trim()``, etc.

Note

You will generally want to use the prepping functions
after the validation rules so if there is an error, the
original data will be shown in the form.

Re-populating the form

Thus far we have only been dealing with errors. It’s time to repopulate
the form field with the submitted data. CodeIgniter offers several
helper functions that permit you to do this. The one you will use most
commonly is:

set_value('field name')

Open your myform.php view file and update the value in each field
using the set_value() function:

Don’t forget to include each field name in the :php:func:`set_value()`
function calls!

<html>
<head>
<title>My Form</title>
</head>
<body>

<?php echo validation_errors(); ?>

<?php echo form_open('form'); ?>

<h5>Username</h5>
<input type="text" name="username" value="<?php echo set_value('username'); ?>" size="50" />

<h5>Password</h5>
<input type="text" name="password" value="<?php echo set_value('password'); ?>" size="50" />

<h5>Password Confirm</h5>
<input type="text" name="passconf" value="<?php echo set_value('passconf'); ?>" size="50" />

<h5>Email Address</h5>
<input type="text" name="email" value="<?php echo set_value('email'); ?>" size="50" />

<div><input type="submit" value="Submit" /></div>

</form>

</body>
</html>

Now reload your page and submit the form so that it triggers an error.
Your form fields should now be re-populated

Note

The Class Reference section below
contains methods that permit you to re-populate <select> menus,
radio buttons, and checkboxes.

Important

If you use an array as the name of a form field, you
must supply it as an array to the function. Example:

<input type="text" name="colors[]" value="<?php echo set_value('colors[]'); ?>" size="50" />

For more info please see the Using Arrays as Field Names section below.

Callbacks: Your own Validation Methods

The validation system supports callbacks to your own validation
methods. This permits you to extend the validation class to meet your
needs. For example, if you need to run a database query to see if the
user is choosing a unique username, you can create a callback method
that does that. Let’s create an example of this.

In your controller, change the “username” rule to this:

$this->form_validation->set_rules('username', 'Username', 'callback_username_check');

Then add a new method called username_check() to your controller.
Here’s how your controller should now look:

<?php

class Form extends CI_Controller {

 public function index()
 {
 $this->load->helper(array('form', 'url'));

 $this->load->library('form_validation');

 $this->form_validation->set_rules('username', 'Username', 'callback_username_check');
 $this->form_validation->set_rules('password', 'Password', 'required');
 $this->form_validation->set_rules('passconf', 'Password Confirmation', 'required');
 $this->form_validation->set_rules('email', 'Email', 'required|is_unique[users.email]');

 if ($this->form_validation->run() == FALSE)
 {
 $this->load->view('myform');
 }
 else
 {
 $this->load->view('formsuccess');
 }
 }

 public function username_check($str)
 {
 if ($str == 'test')
 {
 $this->form_validation->set_message('username_check', 'The {field} field can not be the word "test"');
 return FALSE;
 }
 else
 {
 return TRUE;
 }
 }

}

Reload your form and submit it with the word “test” as the username. You
can see that the form field data was passed to your callback method
for you to process.

To invoke a callback just put the method name in a rule, with
“callback_” as the rule prefix. If you need to receive an extra
parameter in your callback method, just add it normally after the
method name between square brackets, as in: callback_foo[bar],
then it will be passed as the second argument of your callback method.

Note

You can also process the form data that is passed to your
callback and return it. If your callback returns anything other than a
boolean TRUE/FALSE it is assumed that the data is your newly processed
form data.

Callable: Use anything as a rule

If callback rules aren’t good enough for you (for example, because they are
limited to your controller), don’t get disappointed, there’s one more way
to create custom rules: anything that is_callable() would return TRUE for.

Consider the following example:

$this->form_validation->set_rules(
 'username', 'Username',
 array(
 'required',
 array($this->users_model, 'valid_username')
)
);

The above code would use the valid_username() method from your
Users_model object.

This is just an example of course, and callbacks aren’t limited to models.
You can use any object/method that accepts the field value as its’ first
parameter. You can also use an anonymous function:

$this->form_validation->set_rules(
 'username', 'Username',
 array(
 'required',
 function($value)
 {
 // Check $value
 }
)
);

Of course, since a Callable rule by itself is not a string, it isn’t
a rule name either. That is a problem when you want to set error messages
for them. In order to get around that problem, you can put such rules as
the second element of an array, with the first one being the rule name:

$this->form_validation->set_rules(
 'username', 'Username',
 array(
 'required',
 array('username_callable', array($this->users_model, 'valid_username'))
)
);

Anonymous function version:

$this->form_validation->set_rules(
 'username', 'Username',
 array(
 'required',
 array(
 'username_callable',
 function($str)
 {
 // Check validity of $str and return TRUE or FALSE
 }
)
)
);

Setting Error Messages

All of the native error messages are located in the following language
file: system/language/english/form_validation_lang.php

To set your own global custom message for a rule, you can either
extend/override the language file by creating your own in
application/language/english/form_validation_lang.php (read more
about this in the Language Class documentation),
or use the following method:

$this->form_validation->set_message('rule', 'Error Message');

If you need to set a custom error message for a particular field on
some particular rule, use the set_rules() method:

$this->form_validation->set_rules('field_name', 'Field Label', 'rule1|rule2|rule3',
 array('rule2' => 'Error Message on rule2 for this field_name')
);

Where rule corresponds to the name of a particular rule, and Error
Message is the text you would like displayed.

If you’d like to include a field’s “human” name, or the optional
parameter some rules allow for (such as max_length), you can add the
{field} and {param} tags to your message, respectively:

$this->form_validation->set_message('min_length', '{field} must have at least {param} characters.');

On a field with the human name Username and a rule of min_length[5], an
error would display: “Username must have at least 5 characters.”

Note

The old sprintf() method of using %s in your error messages
will still work, however it will override the tags above. You should
use one or the other.

In the callback rule example above, the error message was set by passing
the name of the method (without the “callback_” prefix):

$this->form_validation->set_message('username_check')

Translating Field Names

If you would like to store the “human” name you passed to the
set_rules() method in a language file, and therefore make the name
able to be translated, here’s how:

First, prefix your “human” name with lang:, as in this example:

$this->form_validation->set_rules('first_name', 'lang:first_name', 'required');

Then, store the name in one of your language file arrays (without the
prefix):

$lang['first_name'] = 'First Name';

Note

If you store your array item in a language file that is not
loaded automatically by CI, you’ll need to remember to load it in your
controller using:

$this->lang->load('file_name');

See the Language Class page for more info regarding
language files.

Changing the Error Delimiters

By default, the Form Validation class adds a paragraph tag (<p>) around
each error message shown. You can either change these delimiters
globally, individually, or change the defaults in a config file.

	Changing delimiters Globally
To globally change the error delimiters, in your controller method,
just after loading the Form Validation class, add this:

$this->form_validation->set_error_delimiters('<div class="error">', '</div>');

In this example, we’ve switched to using div tags.

	Changing delimiters Individually
Each of the two error generating functions shown in this tutorial can
be supplied their own delimiters as follows:

<?php echo form_error('field name', '<div class="error">', '</div>'); ?>

Or:

<?php echo validation_errors('<div class="error">', '</div>'); ?>

	Set delimiters in a config file
You can add your error delimiters in application/config/form_validation.php as follows:

$config['error_prefix'] = '<div class="error_prefix">';
$config['error_suffix'] = '</div>';

Showing Errors Individually

If you prefer to show an error message next to each form field, rather
than as a list, you can use the form_error() function.

Try it! Change your form so that it looks like this:

<h5>Username</h5>
<?php echo form_error('username'); ?>
<input type="text" name="username" value="<?php echo set_value('username'); ?>" size="50" />

<h5>Password</h5>
<?php echo form_error('password'); ?>
<input type="text" name="password" value="<?php echo set_value('password'); ?>" size="50" />

<h5>Password Confirm</h5>
<?php echo form_error('passconf'); ?>
<input type="text" name="passconf" value="<?php echo set_value('passconf'); ?>" size="50" />

<h5>Email Address</h5>
<?php echo form_error('email'); ?>
<input type="text" name="email" value="<?php echo set_value('email'); ?>" size="50" />

If there are no errors, nothing will be shown. If there is an error, the
message will appear.

Important

If you use an array as the name of a form field, you
must supply it as an array to the function. Example:

<?php echo form_error('options[size]'); ?>
<input type="text" name="options[size]" value="<?php echo set_value("options[size]"); ?>" size="50" />

For more info please see the Using Arrays as Field Names section below.

Validating an Array (other than $_POST)

Sometimes you may want to validate an array that does not originate from $_POST data.

In this case, you can specify the array to be validated:

$data = array(
 'username' => 'johndoe',
 'password' => 'mypassword',
 'passconf' => 'mypassword'
);

$this->form_validation->set_data($data);

Creating validation rules, running the validation, and retrieving error
messages works the same whether you are validating $_POST data or
another array of your choice.

Important

You have to call the set_data() method before defining
any validation rules.

Important

If you want to validate more than one array during a single
execution, then you should call the reset_validation() method
before setting up rules and validating the new array.

For more info please see the Class Reference section below.

Saving Sets of Validation Rules to a Config File

A nice feature of the Form Validation class is that it permits you to
store all your validation rules for your entire application in a config
file. You can organize these rules into “groups”. These groups can
either be loaded automatically when a matching controller/method is
called, or you can manually call each set as needed.

How to save your rules

To store your validation rules, simply create a file named
form_validation.php in your application/config/ folder. In that file
you will place an array named $config with your rules. As shown earlier,
the validation array will have this prototype:

$config = array(
 array(
 'field' => 'username',
 'label' => 'Username',
 'rules' => 'required'
),
 array(
 'field' => 'password',
 'label' => 'Password',
 'rules' => 'required'
),
 array(
 'field' => 'passconf',
 'label' => 'Password Confirmation',
 'rules' => 'required'
),
 array(
 'field' => 'email',
 'label' => 'Email',
 'rules' => 'required'
)
);

Your validation rule file will be loaded automatically and used when you
call the run() method.

Please note that you MUST name your $config array.

Creating Sets of Rules

In order to organize your rules into “sets” requires that you place them
into “sub arrays”. Consider the following example, showing two sets of
rules. We’ve arbitrarily called these two rules “signup” and “email”.
You can name your rules anything you want:

$config = array(
 'signup' => array(
 array(
 'field' => 'username',
 'label' => 'Username',
 'rules' => 'required'
),
 array(
 'field' => 'password',
 'label' => 'Password',
 'rules' => 'required'
),
 array(
 'field' => 'passconf',
 'label' => 'Password Confirmation',
 'rules' => 'required'
),
 array(
 'field' => 'email',
 'label' => 'Email',
 'rules' => 'required'
)
),
 'email' => array(
 array(
 'field' => 'emailaddress',
 'label' => 'EmailAddress',
 'rules' => 'required|valid_email'
),
 array(
 'field' => 'name',
 'label' => 'Name',
 'rules' => 'required|alpha'
),
 array(
 'field' => 'title',
 'label' => 'Title',
 'rules' => 'required'
),
 array(
 'field' => 'message',
 'label' => 'MessageBody',
 'rules' => 'required'
)
)
);

Calling a Specific Rule Group

In order to call a specific group, you will pass its name to the run()
method. For example, to call the signup rule you will do this:

if ($this->form_validation->run('signup') == FALSE)
{
 $this->load->view('myform');
}
else
{
 $this->load->view('formsuccess');
}

Associating a Controller Method with a Rule Group

An alternate (and more automatic) method of calling a rule group is to
name it according to the controller class/method you intend to use it
with. For example, let’s say you have a controller named Member and a
method named signup. Here’s what your class might look like:

<?php

class Member extends CI_Controller {

 public function signup()
 {
 $this->load->library('form_validation');

 if ($this->form_validation->run() == FALSE)
 {
 $this->load->view('myform');
 }
 else
 {
 $this->load->view('formsuccess');
 }
 }
}

In your validation config file, you will name your rule group
member/signup:

$config = array(
 'member/signup' => array(
 array(
 'field' => 'username',
 'label' => 'Username',
 'rules' => 'required'
),
 array(
 'field' => 'password',
 'label' => 'Password',
 'rules' => 'required'
),
 array(
 'field' => 'passconf',
 'label' => 'PasswordConfirmation',
 'rules' => 'required'
),
 array(
 'field' => 'email',
 'label' => 'Email',
 'rules' => 'required'
)
)
);

When a rule group is named identically to a controller class/method it
will be used automatically when the run() method is invoked from that
class/method.

Using Arrays as Field Names

The Form Validation class supports the use of arrays as field names.
Consider this example:

<input type="text" name="options[]" value="" size="50" />

If you do use an array as a field name, you must use the EXACT array
name in the Helper Functions that require the
field name, and as your Validation Rule field name.

For example, to set a rule for the above field you would use:

$this->form_validation->set_rules('options[]', 'Options', 'required');

Or, to show an error for the above field you would use:

<?php echo form_error('options[]'); ?>

Or to re-populate the field you would use:

<input type="text" name="options[]" value="<?php echo set_value('options[]'); ?>" size="50" />

You can use multidimensional arrays as field names as well. For example:

<input type="text" name="options[size]" value="" size="50" />

Or even:

<input type="text" name="sports[nba][basketball]" value="" size="50" />

As with our first example, you must use the exact array name in the
helper functions:

<?php echo form_error('sports[nba][basketball]'); ?>

If you are using checkboxes (or other fields) that have multiple
options, don’t forget to leave an empty bracket after each option, so
that all selections will be added to the POST array:

<input type="checkbox" name="options[]" value="red" />
<input type="checkbox" name="options[]" value="blue" />
<input type="checkbox" name="options[]" value="green" />

Or if you use a multidimensional array:

<input type="checkbox" name="options[color][]" value="red" />
<input type="checkbox" name="options[color][]" value="blue" />
<input type="checkbox" name="options[color][]" value="green" />

When you use a helper function you’ll include the bracket as well:

<?php echo form_error('options[color][]'); ?>

Rule Reference

The following is a list of all the native rules that are available to
use:

	Rule
	Parameter
	Description
	Example

	required
	No
	Returns FALSE if the form element is empty.
	

	matches
	Yes
	Returns FALSE if the form element does not match the one in the parameter.
	matches[form_item]

	regex_match
	Yes
	Returns FALSE if the form element does not match the regular expression.
	regex_match[/regex/]

	differs
	Yes
	Returns FALSE if the form element does not differ from the one in the parameter.
	differs[form_item]

	is_unique
	Yes
	Returns FALSE if the form element is not unique to the table and field name in the
parameter. Note: This rule requires Query Builder to be
enabled in order to work.
	is_unique[table.field]

	min_length
	Yes
	Returns FALSE if the form element is shorter than the parameter value.
	min_length[3]

	max_length
	Yes
	Returns FALSE if the form element is longer than the parameter value.
	max_length[12]

	exact_length
	Yes
	Returns FALSE if the form element is not exactly the parameter value.
	exact_length[8]

	greater_than
	Yes
	Returns FALSE if the form element is less than or equal to the parameter value or not
numeric.
	greater_than[8]

	greater_than_equal_to
	Yes
	Returns FALSE if the form element is less than the parameter value,
or not numeric.
	greater_than_equal_to[8]

	less_than
	Yes
	Returns FALSE if the form element is greater than or equal to the parameter value or
not numeric.
	less_than[8]

	less_than_equal_to
	Yes
	Returns FALSE if the form element is greater than the parameter value,
or not numeric.
	less_than_equal_to[8]

	in_list
	Yes
	Returns FALSE if the form element is not within a predetermined list.
	in_list[red,blue,green]

	alpha
	No
	Returns FALSE if the form element contains anything other than alphabetical characters.
	

	alpha_numeric
	No
	Returns FALSE if the form element contains anything other than alpha-numeric characters.
	

	alpha_numeric_spaces
	No
	Returns FALSE if the form element contains anything other than alpha-numeric characters
or spaces. Should be used after trim to avoid spaces at the beginning or end.
	

	alpha_dash
	No
	Returns FALSE if the form element contains anything other than alpha-numeric characters,
underscores or dashes.
	

	numeric
	No
	Returns FALSE if the form element contains anything other than numeric characters.
	

	integer
	No
	Returns FALSE if the form element contains anything other than an integer.
	

	decimal
	No
	Returns FALSE if the form element contains anything other than a decimal number.
	

	is_natural
	No
	Returns FALSE if the form element contains anything other than a natural number:
0, 1, 2, 3, etc.
	

	is_natural_no_zero
	No
	Returns FALSE if the form element contains anything other than a natural
number, but not zero: 1, 2, 3, etc.
	

	valid_url
	No
	Returns FALSE if the form element does not contain a valid URL.
	

	valid_email
	No
	Returns FALSE if the form element does not contain a valid email address.
	

	valid_emails
	No
	Returns FALSE if any value provided in a comma separated list is not a valid email.
	

	valid_ip
	Yes
	Returns FALSE if the supplied IP address is not valid.
Accepts an optional parameter of ‘ipv4’ or ‘ipv6’ to specify an IP format.
	

	valid_base64
	No
	Returns FALSE if the supplied string contains anything other than valid Base64 characters.
	

Note

These rules can also be called as discrete methods. For
example:

$this->form_validation->required($string);

Note

You can also use any native PHP functions that permit up
to two parameters, where at least one is required (to pass
the field data).

Prepping Reference

The following is a list of all the prepping methods that are available
to use:

	Name
	Parameter
	Description

	prep_for_form
	No
	DEPRECATED: Converts special characters so that HTML data can be shown in a form field without breaking it.

	prep_url
	No
	Adds “http://” to URLs if missing.

	strip_image_tags
	No
	Strips the HTML from image tags leaving the raw URL.

	encode_php_tags
	No
	Converts PHP tags to entities.

Note

You can also use any native PHP functions that permits one
parameter, like trim(), htmlspecialchars(), urldecode(),
etc.

Class Reference

	
class CI_Form_validation

	
	
set_rules($field[, $label = ''[, $rules = ''[, $errors = array()]]])

	

	Parameters:	
	$field (string) – Field name

	$label (string) – Field label

	$rules (mixed) – Validation rules, as a string list separated by a pipe “|”, or as an array or rules

	$errors (array) – A list of custom error messages

	Returns:	CI_Form_validation instance (method chaining)

	Return type:	CI_Form_validation

Permits you to set validation rules, as described in the tutorial
sections above:

	Setting Validation Rules

	Saving Sets of Validation Rules to a Config File

	
run([$group = ''])

	

	Parameters:	
	$group (string) – The name of the validation group to run

	Returns:	TRUE on success, FALSE if validation failed

	Return type:	bool

Runs the validation routines. Returns boolean TRUE on success and FALSE
on failure. You can optionally pass the name of the validation group via
the method, as described in: Saving Sets of Validation Rules to a Config File

	
set_message($lang[, $val = ''])

	

	Parameters:	
	$lang (string) – The rule the message is for

	$val (string) – The message

	Returns:	CI_Form_validation instance (method chaining)

	Return type:	CI_Form_validation

Permits you to set custom error messages. See Setting Error Messages

	
set_error_delimiters([$prefix = '<p>'[, $suffix = '</p>']])

	

	Parameters:	
	$prefix (string) – Error message prefix

	$suffix (string) – Error message suffix

	Returns:	CI_Form_validation instance (method chaining)

	Return type:	CI_Form_validation

Sets the default prefix and suffix for error messages.

	
set_data($data)

	

	Parameters:	
	$data (array) – Array of data validate

	Returns:	CI_Form_validation instance (method chaining)

	Return type:	CI_Form_validation

Permits you to set an array for validation, instead of using the default
$_POST array.

	
reset_validation()

	

	Returns:	CI_Form_validation instance (method chaining)

	Return type:	CI_Form_validation

Permits you to reset the validation when you validate more than one array.
This method should be called before validating each new array.

	
error_array()

	

	Returns:	Array of error messages

	Return type:	array

Returns the error messages as an array.

	
error_string([$prefix = ''[, $suffix = '']])

	

	Parameters:	
	$prefix (string) – Error message prefix

	$suffix (string) – Error message suffix

	Returns:	Error messages as a string

	Return type:	string

Returns all error messages (as returned from error_array()) formatted as a
string and separated by a newline character.

	
error($field[, $prefix = ''[, $suffix = '']])

	

	Parameters:	
	$field (string) – Field name

	$prefix (string) – Optional prefix

	$suffix (string) – Optional suffix

	Returns:	Error message string

	Return type:	string

Returns the error message for a specific field, optionally adding a
prefix and/or suffix to it (usually HTML tags).

	
has_rule($field)

	

	Parameters:	
	$field (string) – Field name

	Returns:	TRUE if the field has rules set, FALSE if not

	Return type:	bool

Checks to see if there is a rule set for the specified field.

Helper Reference

Please refer to the Form Helper manual for
the following functions:

	form_error()

	validation_errors()

	set_value()

	set_select()

	set_checkbox()

	set_radio()

Note that these are procedural functions, so they do not require you
to prepend them with $this->form_validation.

FTP Class

CodeIgniter’s FTP Class permits files to be transferred to a remote
server. Remote files can also be moved, renamed, and deleted. The FTP
class also includes a “mirroring” function that permits an entire local
directory to be recreated remotely via FTP.

Note

SFTP and SSL FTP protocols are not supported, only standard
FTP.

	Working with the FTP Class
	Initializing the Class

	Usage Examples

	Class Reference

Working with the FTP Class

Initializing the Class

Like most other classes in CodeIgniter, the FTP class is initialized in
your controller using the $this->load->library function:

$this->load->library('ftp');

Once loaded, the FTP object will be available using: $this->ftp

Usage Examples

In this example a connection is opened to the FTP server, and a local
file is read and uploaded in ASCII mode. The file permissions are set to
755.

$this->load->library('ftp');

$config['hostname'] = 'ftp.example.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['debug'] = TRUE;

$this->ftp->connect($config);

$this->ftp->upload('/local/path/to/myfile.html', '/public_html/myfile.html', 'ascii', 0775);

$this->ftp->close();

In this example a list of files is retrieved from the server.

$this->load->library('ftp');

$config['hostname'] = 'ftp.example.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['debug'] = TRUE;

$this->ftp->connect($config);

$list = $this->ftp->list_files('/public_html/');

print_r($list);

$this->ftp->close();

In this example a local directory is mirrored on the server.

$this->load->library('ftp');

$config['hostname'] = 'ftp.example.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['debug'] = TRUE;

$this->ftp->connect($config);

$this->ftp->mirror('/path/to/myfolder/', '/public_html/myfolder/');

$this->ftp->close();

Class Reference

	
class CI_FTP

	
	
connect([$config = array()])

	

	Parameters:	
	$config (array) – Connection values

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Connects and logs into to the FTP server. Connection preferences are set
by passing an array to the function, or you can store them in a config
file.

Here is an example showing how you set preferences manually:

$this->load->library('ftp');

$config['hostname'] = 'ftp.example.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['port'] = 21;
$config['passive'] = FALSE;
$config['debug'] = TRUE;

$this->ftp->connect($config);

Setting FTP Preferences in a Config File

If you prefer you can store your FTP preferences in a config file.
Simply create a new file called the ftp.php, add the $config array in
that file. Then save the file at application/config/ftp.php and it
will be used automatically.

Available connection options

	Option name
	Default value
	Description

	hostname
	n/a
	FTP hostname (usually something like: ftp.example.com)

	username
	n/a
	FTP username

	password
	n/a
	FTP password

	port
	21
	FTP server port number

	debug
	FALSE
	TRUE/FALSE (boolean): Whether to enable debugging to display error messages

	passive
	TRUE
	TRUE/FALSE (boolean): Whether to use passive mode

	
upload($locpath, $rempath[, $mode = 'auto'[, $permissions = NULL]])

	

	Parameters:	
	$locpath (string) – Local file path

	$rempath (string) – Remote file path

	$mode (string) – FTP mode, defaults to ‘auto’ (options are: ‘auto’, ‘binary’, ‘ascii’)

	$permissions (int) – File permissions (octal)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Uploads a file to your server. You must supply the local path and the
remote path, and you can optionally set the mode and permissions.
Example:

$this->ftp->upload('/local/path/to/myfile.html', '/public_html/myfile.html', 'ascii', 0775);

If ‘auto’ mode is used it will base the mode on the file extension of the source file.

If set, permissions have to be passed as an octal value.

	
download($rempath, $locpath[, $mode = 'auto'])

	

	Parameters:	
	$rempath (string) – Remote file path

	$locpath (string) – Local file path

	$mode (string) – FTP mode, defaults to ‘auto’ (options are: ‘auto’, ‘binary’, ‘ascii’)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Downloads a file from your server. You must supply the remote path and
the local path, and you can optionally set the mode. Example:

$this->ftp->download('/public_html/myfile.html', '/local/path/to/myfile.html', 'ascii');

If ‘auto’ mode is used it will base the mode on the file extension of the source file.

Returns FALSE if the download does not execute successfully
(including if PHP does not have permission to write the local file).

	
rename($old_file, $new_file[, $move = FALSE])

	

	Parameters:	
	$old_file (string) – Old file name

	$new_file (string) – New file name

	$move (bool) – Whether a move is being performed

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Permits you to rename a file. Supply the source file name/path and the new file name/path.

// Renames green.html to blue.html
$this->ftp->rename('/public_html/foo/green.html', '/public_html/foo/blue.html');

	
move($old_file, $new_file)

	

	Parameters:	
	$old_file (string) – Old file name

	$new_file (string) – New file name

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Lets you move a file. Supply the source and destination paths:

// Moves blog.html from "joe" to "fred"
$this->ftp->move('/public_html/joe/blog.html', '/public_html/fred/blog.html');

Note

If the destination file name is different the file will be renamed.

	
delete_file($filepath)

	

	Parameters:	
	$filepath (string) – Path to file to delete

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Lets you delete a file. Supply the source path with the file name.

$this->ftp->delete_file('/public_html/joe/blog.html');

	
delete_dir($filepath)

	

	Parameters:	
	$filepath (string) – Path to directory to delete

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Lets you delete a directory and everything it contains. Supply the
source path to the directory with a trailing slash.

Important

Be VERY careful with this method!
It will recursively delete everything within the supplied path,
including sub-folders and all files. Make absolutely sure your path
is correct. Try using list_files() first to verify that your path is correct.

$this->ftp->delete_dir('/public_html/path/to/folder/');

	
list_files([$path = '.'])

	

	Parameters:	
	$path (string) – Directory path

	Returns:	An array list of files or FALSE on failure

	Return type:	array

Permits you to retrieve a list of files on your server returned as an
array. You must supply the path to the desired directory.

$list = $this->ftp->list_files('/public_html/');
print_r($list);

	
mirror($locpath, $rempath)

	

	Parameters:	
	$locpath (string) – Local path

	$rempath (string) – Remote path

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Recursively reads a local folder and everything it contains (including
sub-folders) and creates a mirror via FTP based on it. Whatever the
directory structure of the original file path will be recreated on the
server. You must supply a source path and a destination path:

$this->ftp->mirror('/path/to/myfolder/', '/public_html/myfolder/');

	
mkdir($path[, $permissions = NULL])

	

	Parameters:	
	$path (string) – Path to directory to create

	$permissions (int) – Permissions (octal)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Lets you create a directory on your server. Supply the path ending in
the folder name you wish to create, with a trailing slash.

Permissions can be set by passing an octal value in the second parameter.

// Creates a folder named "bar"
$this->ftp->mkdir('/public_html/foo/bar/', 0755);

	
chmod($path, $perm)

	

	Parameters:	
	$path (string) – Path to alter permissions for

	$perm (int) – Permissions (octal)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Permits you to set file permissions. Supply the path to the file or
directory you wish to alter permissions on:

// Chmod "bar" to 755
$this->ftp->chmod('/public_html/foo/bar/', 0755);

	
changedir($path[, $suppress_debug = FALSE])

	

	Parameters:	
	$path (string) – Directory path

	$suppress_debug (bool) – Whether to turn off debug messages for this command

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Changes the current working directory to the specified path.

The $suppress_debug parameter is useful in case you want to use this method
as an is_dir() alternative for FTP.

	
close()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Closes the connection to your server. It’s recommended that you use this
when you are finished uploading.

Image Manipulation Class

CodeIgniter’s Image Manipulation class lets you perform the following
actions:

	Image Resizing

	Thumbnail Creation

	Image Cropping

	Image Rotating

	Image Watermarking

All three major image libraries are supported: GD/GD2, NetPBM, and
ImageMagick

Note

Watermarking is only available using the GD/GD2 library. In
addition, even though other libraries are supported, GD is required in
order for the script to calculate the image properties. The image
processing, however, will be performed with the library you specify.

	Initializing the Class
	Processing an Image

	Processing Methods

	Preferences

	Setting preferences in a config file

	Image Watermarking
	Two Types of Watermarking

	Watermarking an Image

	Watermarking Preferences
	Text Preferences

	Overlay Preferences

	Class Reference

Initializing the Class

Like most other classes in CodeIgniter, the image class is initialized
in your controller using the $this->load->library function:

$this->load->library('image_lib');

Once the library is loaded it will be ready for use. The image library
object you will use to call all functions is: $this->image_lib

Processing an Image

Regardless of the type of processing you would like to perform
(resizing, cropping, rotation, or watermarking), the general process is
identical. You will set some preferences corresponding to the action you
intend to perform, then call one of four available processing functions.
For example, to create an image thumbnail you’ll do this:

$config['image_library'] = 'gd2';
$config['source_image'] = '/path/to/image/mypic.jpg';
$config['create_thumb'] = TRUE;
$config['maintain_ratio'] = TRUE;
$config['width'] = 75;
$config['height'] = 50;

$this->load->library('image_lib', $config);

$this->image_lib->resize();

The above code tells the image_resize function to look for an image
called mypic.jpg located in the source_image folder, then create a
thumbnail that is 75 X 50 pixels using the GD2 image_library. Since the
maintain_ratio option is enabled, the thumb will be as close to the
target width and height as possible while preserving the original aspect
ratio. The thumbnail will be called mypic_thumb.jpg and located at
the same level as source_image.

Note

In order for the image class to be allowed to do any
processing, the folder containing the image files must have write
permissions.

Note

Image processing can require a considerable amount of server
memory for some operations. If you are experiencing out of memory errors
while processing images you may need to limit their maximum size, and/or
adjust PHP memory limits.

Processing Methods

There are four available processing methods:

	$this->image_lib->resize()

	$this->image_lib->crop()

	$this->image_lib->rotate()

	$this->image_lib->watermark()

These methods return boolean TRUE upon success and FALSE for failure.
If they fail you can retrieve the error message using this function:

echo $this->image_lib->display_errors();

A good practice is to use the processing function conditionally, showing an
error upon failure, like this:

if (! $this->image_lib->resize())
{
 echo $this->image_lib->display_errors();
}

Note

You can optionally specify the HTML formatting to be applied to
the errors, by submitting the opening/closing tags in the function,
like this:

$this->image_lib->display_errors('<p>', '</p>');

Preferences

The preferences described below allow you to tailor the image processing
to suit your needs.

Note that not all preferences are available for every function. For
example, the x/y axis preferences are only available for image cropping.
Likewise, the width and height preferences have no effect on cropping.
The “availability” column indicates which functions support a given
preference.

Availability Legend:

	R - Image Resizing

	C - Image Cropping

	X - Image Rotation

	W - Image Watermarking

	Preference
	Default Value
	Options
	Description
	Availability

	image_library
	GD2
	GD, GD2, ImageMagick, NetPBM
	Sets the image library to be used.
	R, C, X, W

	library_path
	None
	None
	Sets the server path to your ImageMagick or NetPBM library. If you use
either of those libraries you must supply the path.
	R, C, X
R, C, S, W

	source_image
	None
	None
	Sets the source image name/path. The path must be a relative or absolute
server path, not a URL.
	

	dynamic_output
	FALSE
	TRUE/FALSE (boolean)
	Determines whether the new image file should be written to disk or
generated dynamically. Note: If you choose the dynamic setting, only one
image can be shown at a time, and it can’t be positioned on the page. It
simply outputs the raw image dynamically to your browser, along with
image headers.
	R, C, X, W

	file_permissions
	0644
	(integer)
	File system permissions to apply on the resulting image file,
writing it to the disk. WARNING: Use octal integer notation!
	R, C, X, W

	quality
	90%
	1 - 100%
	Sets the quality of the image. The higher the quality the larger the
file size.
	R, C, X, W

	new_image
	None
	None
	Sets the destination image name/path. You’ll use this preference when
creating an image copy. The path must be a relative or absolute server
path, not a URL.
	R, C, X, W

	width
	None
	None
	Sets the width you would like the image set to.
	R, C

	height
	None
	None
	Sets the height you would like the image set to.
	R, C

	create_thumb
	FALSE
	TRUE/FALSE (boolean)
	Tells the image processing function to create a thumb.
	R

	thumb_marker
	_thumb
	None
	Specifies the thumbnail indicator. It will be inserted just before the
file extension, so mypic.jpg would become mypic_thumb.jpg
	R

	maintain_ratio
	TRUE
	TRUE/FALSE (boolean)
	Specifies whether to maintain the original aspect ratio when resizing or
use hard values.
	R, C

	master_dim
	auto
	auto, width, height
	Specifies what to use as the master axis when resizing or creating
thumbs. For example, let’s say you want to resize an image to 100 X 75
pixels. If the source image size does not allow perfect resizing to
those dimensions, this setting determines which axis should be used as
the hard value. “auto” sets the axis automatically based on whether the
image is taller than wider, or vice versa.
	R

	rotation_angle
	None
	90, 180, 270, vrt, hor
	Specifies the angle of rotation when rotating images. Note that PHP
rotates counter-clockwise, so a 90 degree rotation to the right must be
specified as 270.
	X

	x_axis
	None
	None
	Sets the X coordinate in pixels for image cropping. For example, a
setting of 30 will crop an image 30 pixels from the left.
	C

	y_axis
	None
	None
	Sets the Y coordinate in pixels for image cropping. For example, a
setting of 30 will crop an image 30 pixels from the top.
	C

Setting preferences in a config file

If you prefer not to set preferences using the above method, you can
instead put them into a config file. Simply create a new file called
image_lib.php, add the $config array in that file. Then save the file
in config/image_lib.php and it will be used automatically. You will
NOT need to use the $this->image_lib->initialize() method if you save
your preferences in a config file.

Image Watermarking

The Watermarking feature requires the GD/GD2 library.

Two Types of Watermarking

There are two types of watermarking that you can use:

	Text: The watermark message will be generated using text, either
with a True Type font that you specify, or using the native text
output that the GD library supports. If you use the True Type version
your GD installation must be compiled with True Type support (most
are, but not all).

	Overlay: The watermark message will be generated by overlaying an
image (usually a transparent PNG or GIF) containing your watermark
over the source image.

Watermarking an Image

Just as with the other methods (resizing, cropping, and rotating) the
general process for watermarking involves setting the preferences
corresponding to the action you intend to perform, then calling the
watermark function. Here is an example:

$config['source_image'] = '/path/to/image/mypic.jpg';
$config['wm_text'] = 'Copyright 2006 - John Doe';
$config['wm_type'] = 'text';
$config['wm_font_path'] = './system/fonts/texb.ttf';
$config['wm_font_size'] = '16';
$config['wm_font_color'] = 'ffffff';
$config['wm_vrt_alignment'] = 'bottom';
$config['wm_hor_alignment'] = 'center';
$config['wm_padding'] = '20';

$this->image_lib->initialize($config);

$this->image_lib->watermark();

The above example will use a 16 pixel True Type font to create the text
“Copyright 2006 - John Doe”. The watermark will be positioned at the
bottom/center of the image, 20 pixels from the bottom of the image.

Note

In order for the image class to be allowed to do any
processing, the image file must have “write” file permissions
For example, 777.

Watermarking Preferences

This table shows the preferences that are available for both types of
watermarking (text or overlay)

	Preference
	Default Value
	Options
	Description

	wm_type
	text
	text, overlay
	Sets the type of watermarking that should be used.

	source_image
	None
	None
	Sets the source image name/path. The path must be a relative or absolute
server path, not a URL.

	dynamic_output
	FALSE
	TRUE/FALSE (boolean)
	Determines whether the new image file should be written to disk or
generated dynamically. Note: If you choose the dynamic setting, only one
image can be shown at a time, and it can’t be positioned on the page. It
simply outputs the raw image dynamically to your browser, along with
image headers.

	quality
	90%
	1 - 100%
	Sets the quality of the image. The higher the quality the larger the
file size.

	wm_padding
	None
	A number
	The amount of padding, set in pixels, that will be applied to the
watermark to set it away from the edge of your images.

	wm_vrt_alignment
	bottom
	top, middle, bottom
	Sets the vertical alignment for the watermark image.

	wm_hor_alignment
	center
	left, center, right
	Sets the horizontal alignment for the watermark image.

	wm_hor_offset
	None
	None
	You may specify a horizontal offset (in pixels) to apply to the
watermark position. The offset normally moves the watermark to the
right, except if you have your alignment set to “right” then your offset
value will move the watermark toward the left of the image.

	wm_vrt_offset
	None
	None
	You may specify a vertical offset (in pixels) to apply to the watermark
position. The offset normally moves the watermark down, except if you
have your alignment set to “bottom” then your offset value will move the
watermark toward the top of the image.

Text Preferences

This table shows the preferences that are available for the text type of
watermarking.

	Preference
	Default Value
	Options
	Description

	wm_text
	None
	None
	The text you would like shown as the watermark. Typically this will be a
copyright notice.

	wm_font_path
	None
	None
	The server path to the True Type Font you would like to use. If you do
not use this option, the native GD font will be used.

	wm_font_size
	16
	None
	The size of the text. Note: If you are not using the True Type option
above, the number is set using a range of 1 - 5. Otherwise, you can use
any valid pixel size for the font you’re using.

	wm_font_color
	ffffff
	None
	The font color, specified in hex. Both the full 6-length (ie, 993300) and
the short three character abbreviated version (ie, fff) are supported.

	wm_shadow_color
	None
	None
	The color of the drop shadow, specified in hex. If you leave this blank
a drop shadow will not be used. Both the full 6-length (ie, 993300) and
the short three character abbreviated version (ie, fff) are supported.

	wm_shadow_distance
	3
	None
	The distance (in pixels) from the font that the drop shadow should
appear.

Overlay Preferences

This table shows the preferences that are available for the overlay type
of watermarking.

	Preference
	Default Value
	Options
	Description

	wm_overlay_path
	None
	None
	The server path to the image you wish to use as your watermark. Required
only if you are using the overlay method.

	wm_opacity
	50
	1 - 100
	Image opacity. You may specify the opacity (i.e. transparency) of your
watermark image. This allows the watermark to be faint and not
completely obscure the details from the original image behind it. A 50%
opacity is typical.

	wm_x_transp
	4
	A number
	If your watermark image is a PNG or GIF image, you may specify a color
on the image to be “transparent”. This setting (along with the next)
will allow you to specify that color. This works by specifying the “X”
and “Y” coordinate pixel (measured from the upper left) within the image
that corresponds to a pixel representative of the color you want to be
transparent.

	wm_y_transp
	4
	A number
	Along with the previous setting, this allows you to specify the
coordinate to a pixel representative of the color you want to be
transparent.

Class Reference

	
class CI_Image_lib

	
	
initialize([$props = array()])

	

	Parameters:	
	$props (array) – Image processing preferences

	Returns:	TRUE on success, FALSE in case of invalid settings

	Return type:	bool

Initializes the class for processing an image.

	
resize()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

The image resizing method lets you resize the original image, create a
copy (with or without resizing), or create a thumbnail image.

For practical purposes there is no difference between creating a copy
and creating a thumbnail except a thumb will have the thumbnail marker
as part of the name (i.e. mypic_thumb.jpg).

All preferences listed in the Preferences table are available for this
method except these three: rotation_angle, x_axis and y_axis.

Creating a Thumbnail

The resizing method will create a thumbnail file (and preserve the
original) if you set this preference to TRUE:

$config['create_thumb'] = TRUE;

This single preference determines whether a thumbnail is created or not.

Creating a Copy

The resizing method will create a copy of the image file (and preserve
the original) if you set a path and/or a new filename using this
preference:

$config['new_image'] = '/path/to/new_image.jpg';

Notes regarding this preference:

	If only the new image name is specified it will be placed in the same
folder as the original

	If only the path is specified, the new image will be placed in the
destination with the same name as the original.

	If both the path and image name are specified it will placed in its
own destination and given the new name.

Resizing the Original Image

If neither of the two preferences listed above (create_thumb, and
new_image) are used, the resizing method will instead target the
original image for processing.

	
crop()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

The cropping method works nearly identically to the resizing function
except it requires that you set preferences for the X and Y axis (in
pixels) specifying where to crop, like this:

$config['x_axis'] = 100;
$config['y_axis'] = 40;

All preferences listed in the Preferences table are available for this
method except these: rotation_angle, create_thumb and new_image.

Here’s an example showing how you might crop an image:

$config['image_library'] = 'imagemagick';
$config['library_path'] = '/usr/X11R6/bin/';
$config['source_image'] = '/path/to/image/mypic.jpg';
$config['x_axis'] = 100;
$config['y_axis'] = 60;

$this->image_lib->initialize($config);

if (! $this->image_lib->crop())
{
 echo $this->image_lib->display_errors();
}

Note

Without a visual interface it is difficult to crop images, so this
method is not very useful unless you intend to build such an
interface. That’s exactly what we did using for the photo gallery module
in ExpressionEngine, the CMS we develop. We added a JavaScript UI that
lets the cropping area be selected.

	
rotate()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

The image rotation method requires that the angle of rotation be set
via its preference:

$config['rotation_angle'] = '90';

There are 5 rotation options:

	90 - rotates counter-clockwise by 90 degrees.

	180 - rotates counter-clockwise by 180 degrees.

	270 - rotates counter-clockwise by 270 degrees.

	hor - flips the image horizontally.

	vrt - flips the image vertically.

Here’s an example showing how you might rotate an image:

$config['image_library'] = 'netpbm';
$config['library_path'] = '/usr/bin/';
$config['source_image'] = '/path/to/image/mypic.jpg';
$config['rotation_angle'] = 'hor';

$this->image_lib->initialize($config);

if (! $this->image_lib->rotate())
{
 echo $this->image_lib->display_errors();
}

	
watermark()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Creates a watermark over an image, please refer to the Watermarking an Image
section for more info.

	
clear()

	

	Return type:	void

The clear method resets all of the values used when processing an
image. You will want to call this if you are processing images in a
loop.

$this->image_lib->clear();

	
display_errors([$open = '<p>[, $close = '</p>']])

	

	Parameters:	
	$open (string) – Error message opening tag

	$close (string) – Error message closing tag

	Returns:	Error messages

	Return type:	string

Returns all detected errors formatted as a string.

echo $this->image_lib->display_errors();

Input Class

The Input Class serves two purposes:

	It pre-processes global input data for security.

	It provides some helper methods for fetching input data and pre-processing it.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

	Input Filtering
	Security Filtering

	XSS Filtering

	Accessing form data
	Using POST, GET, COOKIE, or SERVER Data

	Using the php://input stream

	Class Reference

Input Filtering

Security Filtering

The security filtering method is called automatically when a new
controller is invoked. It does the
following:

	If $config['allow_get_array'] is FALSE (default is TRUE), destroys
the global GET array.

	Destroys all global variables in the event register_globals is
turned on.

	Filters the GET/POST/COOKIE array keys, permitting only alpha-numeric
(and a few other) characters.

	Provides XSS (Cross-site Scripting Hacks) filtering. This can be
enabled globally, or upon request.

	Standardizes newline characters to PHP_EOL (\n in UNIX-based OSes,
\r\n under Windows). This is configurable.

XSS Filtering

The Input class has the ability to filter input automatically to prevent
cross-site scripting attacks. If you want the filter to run
automatically every time it encounters POST or COOKIE data you can
enable it by opening your application/config/config.php file and setting
this:

$config['global_xss_filtering'] = TRUE;

Please refer to the Security class documentation for
information on using XSS Filtering in your application.

Important

The ‘global_xss_filtering’ setting is DEPRECATED and kept
solely for backwards-compatibility purposes. XSS escaping should
be performed on output, not input!

Accessing form data

Using POST, GET, COOKIE, or SERVER Data

CodeIgniter comes with helper methods that let you fetch POST, GET,
COOKIE or SERVER items. The main advantage of using the provided
methods rather than fetching an item directly ($_POST['something'])
is that the methods will check to see if the item is set and return
NULL if not. This lets you conveniently use data without
having to test whether an item exists first. In other words, normally
you might do something like this:

$something = isset($_POST['something']) ? $_POST['something'] : NULL;

With CodeIgniter’s built in methods you can simply do this:

$something = $this->input->post('something');

The main methods are:

	$this->input->post()

	$this->input->get()

	$this->input->cookie()

	$this->input->server()

Using the php://input stream

If you want to utilize the PUT, DELETE, PATCH or other exotic request
methods, they can only be accessed via a special input stream, that
can only be read once. This isn’t as easy as just reading from e.g.
the $_POST array, because it will always exist and you can try
and access multiple variables without caring that you might only have
one shot at all of the POST data.

CodeIgniter will take care of that for you, and you can read the data
from the php://input stream at any time, just by using the
$raw_input_stream property:

$this->input->raw_input_stream;

Additionally if the input stream is form-encoded like $_POST you can
access its values by calling the
input_stream() method:

$this->input->input_stream('key');

Similar to other methods such as get() and post(), if the
requested data is not found, it will return NULL and you can also
decide whether to run the data through xss_clean() by passing
a boolean value as the second parameter:

$this->input->input_stream('key', TRUE); // XSS Clean
$this->input->input_stream('key', FALSE); // No XSS filter

Note

You can utilize method() in order to know if you’re reading
PUT, DELETE or PATCH data.

Class Reference

	
class CI_Input

	
	
$raw_input_stream

	Read only property that will return php://input data as is.

The property can be read multiple times.

	
post([$index = NULL[, $xss_clean = NULL]])

	

	Parameters:	
	$index (mixed) – POST parameter name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	$_POST if no parameters supplied, otherwise the POST value if found or NULL if not

	Return type:	mixed

The first parameter will contain the name of the POST item you are
looking for:

$this->input->post('some_data');

The method returns NULL if the item you are attempting to retrieve
does not exist.

The second optional parameter lets you run the data through the XSS
filter. It’s enabled by setting the second parameter to boolean TRUE
or by setting your $config['global_xss_filtering'] to TRUE.

$this->input->post('some_data', TRUE);

To return an array of all POST items call without any parameters.

To return all POST items and pass them through the XSS filter set the
first parameter NULL while setting the second parameter to boolean TRUE.

$this->input->post(NULL, TRUE); // returns all POST items with XSS filter
$this->input->post(NULL, FALSE); // returns all POST items without XSS filter

To return an array of multiple POST parameters, pass all the required keys
as an array.

$this->input->post(array('field1', 'field2'));

Same rule applied here, to retrieve the parameters with XSS filtering enabled, set the
second parameter to boolean TRUE.

$this->input->post(array('field1', 'field2'), TRUE);

	
get([$index = NULL[, $xss_clean = NULL]])

	

	Parameters:	
	$index (mixed) – GET parameter name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	$_GET if no parameters supplied, otherwise the GET value if found or NULL if not

	Return type:	mixed

This method is identical to post(), only it fetches GET data.

$this->input->get('some_data', TRUE);

To return an array of all GET items call without any parameters.

To return all GET items and pass them through the XSS filter set the
first parameter NULL while setting the second parameter to boolean TRUE.

$this->input->get(NULL, TRUE); // returns all GET items with XSS filter
$this->input->get(NULL, FALSE); // returns all GET items without XSS filtering

To return an array of multiple GET parameters, pass all the required keys
as an array.

$this->input->get(array('field1', 'field2'));

Same rule applied here, to retrieve the parameters with XSS filtering enabled, set the
second parameter to boolean TRUE.

$this->input->get(array('field1', 'field2'), TRUE);

	
post_get($index[, $xss_clean = NULL])

	

	Parameters:	
	$index (string) – POST/GET parameter name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	POST/GET value if found, NULL if not

	Return type:	mixed

This method works pretty much the same way as post() and get(),
only combined. It will search through both POST and GET streams for data,
looking in POST first, and then in GET:

$this->input->post_get('some_data', TRUE);

	
get_post($index[, $xss_clean = NULL])

	

	Parameters:	
	$index (string) – GET/POST parameter name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	GET/POST value if found, NULL if not

	Return type:	mixed

This method works the same way as post_get() only it looks for GET
data first.

$this->input->get_post(‘some_data’, TRUE);

Note

This method used to act EXACTLY like post_get(), but it’s
behavior has changed in CodeIgniter 3.0.

	
cookie([$index = NULL[, $xss_clean = NULL]])

	

	Parameters:	
	$index (mixed) – COOKIE name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	$_COOKIE if no parameters supplied, otherwise the COOKIE value if found or NULL if not

	Return type:	mixed

This method is identical to post() and get(), only it fetches cookie
data:

$this->input->cookie('some_cookie');
$this->input->cookie('some_cookie', TRUE); // with XSS filter

To return an array of multiple cookie values, pass all the required keys
as an array.

$this->input->cookie(array('some_cookie', 'some_cookie2'));

Note

Unlike the Cookie Helper
function get_cookie(), this method does NOT prepend
your configured $config['cookie_prefix'] value.

	
server($index[, $xss_clean = NULL])

	

	Parameters:	
	$index (mixed) – Value name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	$_SERVER item value if found, NULL if not

	Return type:	mixed

This method is identical to the post(), get() and cookie()
methods, only it fetches server data ($_SERVER):

$this->input->server('some_data');

To return an array of multiple $_SERVER values, pass all the required keys
as an array.

$this->input->server(array('SERVER_PROTOCOL', 'REQUEST_URI'));

	
input_stream([$index = NULL[, $xss_clean = NULL]])

	

	Parameters:	
	$index (mixed) – Key name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	Input stream array if no parameters supplied, otherwise the specified value if found or NULL if not

	Return type:	mixed

This method is identical to get(), post() and cookie(),
only it fetches the php://input stream data.

	
set_cookie($name = ''[, $value = ''[, $expire = ''[, $domain = ''[, $path = '/'[, $prefix = ''[, $secure = NULL[, $httponly = NULL]]]]]]])

	

	Parameters:	
	$name (mixed) – Cookie name or an array of parameters

	$value (string) – Cookie value

	$expire (int) – Cookie expiration time in seconds

	$domain (string) – Cookie domain

	$path (string) – Cookie path

	$prefix (string) – Cookie name prefix

	$secure (bool) – Whether to only transfer the cookie through HTTPS

	$httponly (bool) – Whether to only make the cookie accessible for HTTP requests (no JavaScript)

	Return type:	void

Sets a cookie containing the values you specify. There are two ways to
pass information to this method so that a cookie can be set: Array
Method, and Discrete Parameters:

Array Method

Using this method, an associative array is passed to the first
parameter:

$cookie = array(
 'name' => 'The Cookie Name',
 'value' => 'The Value',
 'expire' => '86500',
 'domain' => '.some-domain.com',
 'path' => '/',
 'prefix' => 'myprefix_',
 'secure' => TRUE
);

$this->input->set_cookie($cookie);

Notes

Only the name and value are required. To delete a cookie set it with the
expiration blank.

The expiration is set in seconds, which will be added to the current
time. Do not include the time, but rather only the number of seconds
from now that you wish the cookie to be valid. If the expiration is
set to zero the cookie will only last as long as the browser is open.

For site-wide cookies regardless of how your site is requested, add your
URL to the domain starting with a period, like this:
.your-domain.com

The path is usually not needed since the method sets a root path.

The prefix is only needed if you need to avoid name collisions with
other identically named cookies for your server.

The httponly and secure flags, when omitted, will default to your
$config['cookie_httponly'] and $config['cookie_secure'] settings.

Discrete Parameters

If you prefer, you can set the cookie by passing data using individual
parameters:

$this->input->set_cookie($name, $value, $expire, $domain, $path, $prefix, $secure);

	
ip_address()

	

	Returns:	Visitor’s IP address or ‘0.0.0.0’ if not valid

	Return type:	string

Returns the IP address for the current user. If the IP address is not
valid, the method will return ‘0.0.0.0’:

echo $this->input->ip_address();

Important

This method takes into account the $config['proxy_ips']
setting and will return the reported HTTP_X_FORWARDED_FOR,
HTTP_CLIENT_IP, HTTP_X_CLIENT_IP or HTTP_X_CLUSTER_CLIENT_IP
address for the allowed IP addresses.

	
valid_ip($ip[, $which = ''])

	

	Parameters:	
	$ip (string) – IP address

	$which (string) – IP protocol (‘ipv4’ or ‘ipv6’)

	Returns:	TRUE if the address is valid, FALSE if not

	Return type:	bool

Takes an IP address as input and returns TRUE or FALSE (boolean) depending
on whether it is valid or not.

Note

The $this->input->ip_address() method above automatically
validates the IP address.

if (! $this->input->valid_ip($ip))
{
 echo 'Not Valid';
}
else
{
 echo 'Valid';
}

Accepts an optional second string parameter of ‘ipv4’ or ‘ipv6’ to specify
an IP format. The default checks for both formats.

	
user_agent([$xss_clean = NULL])

	

	Returns:	User agent string or NULL if not set

	Parameters:	
	$xss_clean (bool) – Whether to apply XSS filtering

	Return type:	mixed

Returns the user agent string (web browser) being used by the current user,
or NULL if it’s not available.

echo $this->input->user_agent();

See the User Agent Class for methods which extract
information from the user agent string.

	
request_headers([$xss_clean = FALSE])

	

	Parameters:	
	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	An array of HTTP request headers

	Return type:	array

Returns an array of HTTP request headers.
Useful if running in a non-Apache environment where
apache_request_headers() [http://php.net/apache_request_headers]
will not be supported.

$headers = $this->input->request_headers();

	
get_request_header($index[, $xss_clean = FALSE])

	

	Parameters:	
	$index (string) – HTTP request header name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	An HTTP request header or NULL if not found

	Return type:	string

Returns a single member of the request headers array or NULL
if the searched header is not found.

$this->input->get_request_header('some-header', TRUE);

	
is_ajax_request()

	

	Returns:	TRUE if it is an Ajax request, FALSE if not

	Return type:	bool

Checks to see if the HTTP_X_REQUESTED_WITH server header has been
set, and returns boolean TRUE if it is or FALSE if not.

	
is_cli_request()

	

	Returns:	TRUE if it is a CLI request, FALSE if not

	Return type:	bool

Checks to see if the application was run from the command-line
interface.

Note

This method checks both the PHP SAPI name currently in use
and if the STDIN constant is defined, which is usually a
failsafe way to see if PHP is being run via the command line.

$this->input->is_cli_request()

Note

This method is DEPRECATED and is now just an alias for the
is_cli() function.

	
method([$upper = FALSE])

	

	Parameters:	
	$upper (bool) – Whether to return the request method name in upper or lower case

	Returns:	HTTP request method

	Return type:	string

Returns the $_SERVER['REQUEST_METHOD'], with the option to set it
in uppercase or lowercase.

echo $this->input->method(TRUE); // Outputs: POST
echo $this->input->method(FALSE); // Outputs: post
echo $this->input->method(); // Outputs: post

Javascript Class

CodeIgniter provides a library to help you with certain common functions
that you may want to use with Javascript. Please note that CodeIgniter
does not require the jQuery library to run, and that any scripting
library will work equally well. The jQuery library is simply presented
as a convenience if you choose to use it.

Important

This library is DEPRECATED and should not be used. It has always
been with an ‘experimental’ status and is now no longer supported.
Currently only kept for backwards compatibility.

	Using the Javascript Class
	Initializing the Class

	Setup and Configuration
	Set these variables in your view

	Set the path to the librarys with config items

	The jQuery Class

	jQuery Events

	Effects
	hide() / show()

	toggle()

	animate()

	fadeIn() / fadeOut()

	toggleClass()

	fadeIn() / fadeOut()

	slideUp() / slideDown() / slideToggle()

	Plugins
	corner()

	tablesorter()

	modal()

	calendar()

Using the Javascript Class

Initializing the Class

To initialize the Javascript class manually in your controller
constructor, use the $this->load->library() method. Currently,
the only available library is jQuery, which will automatically be
loaded like this:

$this->load->library('javascript');

The Javascript class also accepts parameters:

	js_library_driver (string) default: ‘jquery’

	autoload (bool) default: TRUE

You may override the defaults by sending an associative array:

$this->load->library(
 'javascript',
 array(
 'js_library_driver' => 'scripto',
 'autoload' => FALSE
)
);

Again, presently only ‘jquery’ is available. You may wish to set
autoload to FALSE, though, if you do not want the jQuery library to
automatically include a script tag for the main jQuery script file. This
is useful if you are loading it from a location outside of CodeIgniter,
or already have the script tag in your markup.

Once loaded, the jQuery library object will be available using:

$this->javascript

Setup and Configuration

Set these variables in your view

As a Javascript library, your files must be available to your
application.

As Javascript is a client side language, the library must be able to
write content into your final output. This generally means a view.
You’ll need to include the following variables in the <head>
sections of your output.

<?php echo $library_src;?>
<?php echo $script_head;?>

$library_src, is where the actual library file will be loaded, as
well as any subsequent plugin script calls; $script_head is where
specific events, functions and other commands will be rendered.

Set the path to the librarys with config items

There are some configuration items in Javascript library. These can
either be set in application/config.php, within its own
config/javascript.php file, or within any controller usings the
set_item() function.

An image to be used as an “ajax loader”, or progress indicator. Without
one, the simple text message of “loading” will appear when Ajax calls
need to be made.

$config['javascript_location'] = 'http://localhost/codeigniter/themes/js/jquery/';
$config['javascript_ajax_img'] = 'images/ajax-loader.gif';

If you keep your files in the same directories they were downloaded
from, then you need not set this configuration items.

The jQuery Class

To initialize the jQuery class manually in your controller constructor,
use the $this->load->library() method:

$this->load->library('javascript/jquery');

You may send an optional parameter to determine whether or not a script
tag for the main jQuery file will be automatically included when loading
the library. It will be created by default. To prevent this, load the
library as follows:

$this->load->library('javascript/jquery', FALSE);

Once loaded, the jQuery library object will be available using:

$this->jquery

jQuery Events

Events are set using the following syntax.

$this->jquery->event('element_path', code_to_run());

In the above example:

	“event” is any of blur, change, click, dblclick, error, focus, hover,
keydown, keyup, load, mousedown, mouseup, mouseover, mouseup, resize,
scroll, or unload.

	“element_path” is any valid jQuery selector [http://api.jquery.com/category/selectors/]. Due to jQuery’s unique
selector syntax, this is usually an element id, or CSS selector. For
example “#notice_area” would effect <div id="notice_area">, and
“#content a.notice” would effect all anchors with a class of “notice”
in the div with id “content”.

	“code_to_run()” is script your write yourself, or an action such as
an effect from the jQuery library below.

Effects

The query library supports a powerful
Effects [http://api.jquery.com/category/effects/] repertoire. Before an effect
can be used, it must be loaded:

$this->jquery->effect([optional path] plugin name); // for example $this->jquery->effect('bounce');

hide() / show()

Each of this functions will affect the visibility of an item on your
page. hide() will set an item invisible, show() will reveal it.

$this->jquery->hide(target, optional speed, optional extra information);
$this->jquery->show(target, optional speed, optional extra information);

	“target” will be any valid jQuery selector or selectors.

	“speed” is optional, and is set to either slow, normal, fast, or
alternatively a number of milliseconds.

	“extra information” is optional, and could include a callback, or
other additional information.

toggle()

toggle() will change the visibility of an item to the opposite of its
current state, hiding visible elements, and revealing hidden ones.

$this->jquery->toggle(target);

	“target” will be any valid jQuery selector or selectors.

animate()

$this->jquery->animate(target, parameters, optional speed, optional extra information);

	“target” will be any valid jQuery selector or selectors.

	“parameters” in jQuery would generally include a series of CSS
properties that you wish to change.

	“speed” is optional, and is set to either slow, normal, fast, or
alternatively a number of milliseconds.

	“extra information” is optional, and could include a callback, or
other additional information.

For a full summary, see
http://api.jquery.com/animate/

Here is an example of an animate() called on a div with an id of “note”,
and triggered by a click using the jQuery library’s click() event.

$params = array(
'height' => 80,
'width' => '50%',
'marginLeft' => 125
);
$this->jquery->click('#trigger', $this->jquery->animate('#note', $params, 'normal'));

fadeIn() / fadeOut()

$this->jquery->fadeIn(target, optional speed, optional extra information);
$this->jquery->fadeOut(target, optional speed, optional extra information);

	“target” will be any valid jQuery selector or selectors.

	“speed” is optional, and is set to either slow, normal, fast, or
alternatively a number of milliseconds.

	“extra information” is optional, and could include a callback, or
other additional information.

toggleClass()

This function will add or remove a CSS class to its target.

$this->jquery->toggleClass(target, class)

	“target” will be any valid jQuery selector or selectors.

	“class” is any CSS classname. Note that this class must be defined
and available in a CSS that is already loaded.

fadeIn() / fadeOut()

These effects cause an element(s) to disappear or reappear over time.

$this->jquery->fadeIn(target, optional speed, optional extra information);
$this->jquery->fadeOut(target, optional speed, optional extra information);

	“target” will be any valid jQuery selector or selectors.

	“speed” is optional, and is set to either slow, normal, fast, or
alternatively a number of milliseconds.

	“extra information” is optional, and could include a callback, or
other additional information.

slideUp() / slideDown() / slideToggle()

These effects cause an element(s) to slide.

$this->jquery->slideUp(target, optional speed, optional extra information);
$this->jquery->slideDown(target, optional speed, optional extra information);
$this->jquery->slideToggle(target, optional speed, optional extra information);

	“target” will be any valid jQuery selector or selectors.

	“speed” is optional, and is set to either slow, normal, fast, or
alternatively a number of milliseconds.

	“extra information” is optional, and could include a callback, or
other additional information.

Plugins

Some select jQuery plugins are made available using this library.

corner()

Used to add distinct corners to page elements. For full details see
http://malsup.com/jquery/corner/

$this->jquery->corner(target, corner_style);

	“target” will be any valid jQuery selector or selectors.

	“corner_style” is optional, and can be set to any valid style such
as round, sharp, bevel, bite, dog, etc. Individual corners can be set
by following the style with a space and using “tl” (top left), “tr”
(top right), “bl” (bottom left), or “br” (bottom right).

$this->jquery->corner("#note", "cool tl br");

tablesorter()

description to come

modal()

description to come

calendar()

description to come

Language Class

The Language Class provides functions to retrieve language files and
lines of text for purposes of internationalization.

In your CodeIgniter system folder, you will find a language sub-directory
containing a set of language files for the english idiom.
The files in this directory (system/language/english/) define the regular messages,
error messages, and other generally output terms or expressions, for the different parts
of the CodeIgniter framework.

You can create or incorporate your own language files, as needed, in order to provide
application-specific error and other messages, or to provide translations of the core
messages into other languages. These translations or additional messages would go inside
your application/language/ directory, with separate sub-directories for each idiom
(for instance, ‘french’ or ‘german’).

The CodeIgniter framework comes with a set of language files for the “english” idiom.
Additional approved translations for different idioms may be found in the
CodeIgniter 3 Translations repositories [https://github.com/bcit-ci/codeigniter3-translations].
Each repository deals with a single idiom.

When CodeIgniter loads language files, it will load the one in system/language/
first and will then look for an override in your application/language/ directory.

Note

Each language should be stored in its own folder. For example,
the English files are located at: system/language/english

	Handling Multiple Languages
	Sample Language Files

	Example of switching languages

	Internationalization

	Using the Language Class
	Creating Language Files

	Loading A Language File

	Fetching a Line of Text
	Using language lines as form labels

	Auto-loading Languages

	Class Reference

Handling Multiple Languages

If you want to support multiple languages in your application, you would provide folders inside
your application/language/ directory for each of them, and you would specify the default
language in your application/config/config.php.

The application/language/english/ directory would contain any additional language files
needed by your application, for instance for error messages.

Each of the other idiom-specific directories would contain the core language files that you
obtained from the translations repositories, or that you translated yourself, as well as
any additional ones needed by your application.

You would store the language you are currently using, for instance in a session variable.

Sample Language Files

system/
 language/
 english/
 ...
 email_lang.php
 form_validation_lang.php
 ...

application/
 language/
 english/
 error_messages_lang.php
 french/
 ...
 email_lang.php
 error_messages_lang.php
 form_validation_lang.php
 ...

Example of switching languages

$idiom = $this->session->get_userdata('language');
$this->lang->load('error_messages', $idiom);
$oops = $this->lang->line('message_key');

Internationalization

The Language class in CodeIgniter is meant to provide an easy and lightweight
way to support multiplelanguages in your application. It is not meant to be a
full implementation of what is commonly called internationalization and localization [http://en.wikipedia.org/wiki/Internationalization_and_localization].

We use the term “idiom” to refer to a language using its common name,
rather than using any of the international standards, such as “en”, “en-US”,
or “en-CA-x-ca” for English and some of its variants.

Note

There is nothing to prevent you from using those abbreviations in your application!

Using the Language Class

Creating Language Files

Language files must be named with _lang.php as the filename extension.
For example, let’s say you want to create a file containing error messages.
You might name it: error_lang.php

Within the file you will assign each line of text to an array called
$lang with this prototype:

$lang['language_key'] = 'The actual message to be shown';

Note

It’s a good practice to use a common prefix for all messages
in a given file to avoid collisions with similarly named items in other
files. For example, if you are creating error messages you might prefix
them with error_

$lang['error_email_missing'] = 'You must submit an email address';
$lang['error_url_missing'] = 'You must submit a URL';
$lang['error_username_missing'] = 'You must submit a username';

Loading A Language File

In order to fetch a line from a particular file you must load the file
first. Loading a language file is done with the following code:

$this->lang->load('filename', 'language');

Where filename is the name of the file you wish to load (without the
file extension), and language is the language set containing it (ie,
english). If the second parameter is missing, the default language set
in your application/config/config.php file will be used.

You can also load multiple language files at the same time by passing an array of language files as first parameter.

$this->lang->load(array('filename1', 'filename2'));

Note

The language parameter can only consist of letters.

Fetching a Line of Text

Once your desired language file is loaded you can access any line of
text using this function:

$this->lang->line('language_key');

Where language_key is the array key corresponding to the line you wish
to show.

You can optionally pass FALSE as the second argument of that method to
disable error logging, in case you’re not sure if the line exists:

$this->lang->line('misc_key', FALSE);

Note

This method simply returns the line. It does not echo it.

Using language lines as form labels

This feature has been deprecated from the language library and moved to
the lang() function of the Language Helper.

Auto-loading Languages

If you find that you need a particular language globally throughout your
application, you can tell CodeIgniter to auto-load it during system initialization. This is done
by opening the application/config/autoload.php file and adding the
language(s) to the autoload array.

Class Reference

	
class CI_Lang

	
	
load($langfile[, $idiom = ''[, $return = FALSE[, $add_suffix = TRUE[, $alt_path = '']]]])

	

	Parameters:	
	$langfile (mixed) – Language file to load or array with multiple files

	$idiom (string) – Language name (i.e. ‘english’)

	$return (bool) – Whether to return the loaded array of translations

	$add_suffix (bool) – Whether to add the ‘_lang’ suffix to the language file name

	$alt_path (string) – An alternative path to look in for the language file

	Returns:	Array of language lines if $return is set to TRUE, otherwise void

	Return type:	mixed

Loads a language file.

	
line($line[, $log_errors = TRUE])

	

	Parameters:	
	$line (string) – Language line key name

	$log_errors (bool) – Whether to log an error if the line isn’t found

	Returns:	Language line string or FALSE on failure

	Return type:	string

Fetches a single translation line from the already loaded language files,
based on the line’s name.

Loader Class

Loader, as the name suggests, is used to load elements. These elements
can be libraries (classes) View files,
Drivers,
Helpers,
Models, or your own files.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

	Application “Packages”
	Package view files

	Class Reference

Application “Packages”

An application package allows for the easy distribution of complete sets
of resources in a single directory, complete with its own libraries,
models, helpers, config, and language files. It is recommended that
these packages be placed in the application/third_party directory. Below
is a sample map of an package directory.

The following is an example of a directory for an application package
named “Foo Bar”.

/application/third_party/foo_bar

config/
helpers/
language/
libraries/
models/

Whatever the purpose of the “Foo Bar” application package, it has its
own config files, helpers, language files, libraries, and models. To use
these resources in your controllers, you first need to tell the Loader
that you are going to be loading resources from a package, by adding the
package path via the add_package_path() method.

Package view files

By Default, package view files paths are set when add_package_path()
is called. View paths are looped through, and once a match is
encountered that view is loaded.

In this instance, it is possible for view naming collisions within
packages to occur, and possibly the incorrect package being loaded. To
ensure against this, set an optional second parameter of FALSE when
calling add_package_path().

$this->load->add_package_path(APPPATH.'my_app', FALSE);
$this->load->view('my_app_index'); // Loads
$this->load->view('welcome_message'); // Will not load the default welcome_message b/c the second param to add_package_path is FALSE

// Reset things
$this->load->remove_package_path(APPPATH.'my_app');

// Again without the second parameter:
$this->load->add_package_path(APPPATH.'my_app');
$this->load->view('my_app_index'); // Loads
$this->load->view('welcome_message'); // Loads

Class Reference

	
class CI_Loader

	
	
library($library[, $params = NULL[, $object_name = NULL]])

	

	Parameters:	
	$library (mixed) – Library name as a string or an array with multiple libraries

	$params (array) – Optional array of parameters to pass to the loaded library’s constructor

	$object_name (string) – Optional object name to assign the library to

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

This method is used to load core classes.

Note

We use the terms “class” and “library” interchangeably.

For example, if you would like to send email with CodeIgniter, the first
step is to load the email class within your controller:

$this->load->library('email');

Once loaded, the library will be ready for use, using $this->email.

Library files can be stored in subdirectories within the main
“libraries” directory, or within your personal application/libraries
directory. To load a file located in a subdirectory, simply include the
path, relative to the “libraries” directory. For example, if you have
file located at:

libraries/flavors/Chocolate.php

You will load it using:

$this->load->library('flavors/chocolate');

You may nest the file in as many subdirectories as you want.

Additionally, multiple libraries can be loaded at the same time by
passing an array of libraries to the load method.

$this->load->library(array('email', 'table'));

Setting options

The second (optional) parameter allows you to optionally pass
configuration setting. You will typically pass these as an array:

$config = array (
 'mailtype' => 'html',
 'charset' => 'utf-8',
 'priority' => '1'
);

$this->load->library('email', $config);

Config options can usually also be set via a config file. Each library
is explained in detail in its own page, so please read the information
regarding each one you would like to use.

Please take note, when multiple libraries are supplied in an array for
the first parameter, each will receive the same parameter information.

Assigning a Library to a different object name

If the third (optional) parameter is blank, the library will usually be
assigned to an object with the same name as the library. For example, if
the library is named Calendar, it will be assigned to a variable named
$this->calendar.

If you prefer to set your own class names you can pass its value to the
third parameter:

$this->load->library('calendar', NULL, 'my_calendar');

// Calendar class is now accessed using:
$this->my_calendar

Please take note, when multiple libraries are supplied in an array for
the first parameter, this parameter is discarded.

	
driver($library[, $params = NULL[, $object_name]])

	

	Parameters:	
	$library (mixed) – Library name as a string or an array with multiple libraries

	$params (array) – Optional array of parameters to pass to the loaded library’s constructor

	$object_name (string) – Optional object name to assign the library to

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

This method is used to load driver libraries, acts very much like the
library() method.

As an example, if you would like to use sessions with CodeIgniter, the first
step is to load the session driver within your controller:

$this->load->driver('session');

Once loaded, the library will be ready for use, using $this->session.

Driver files must be stored in a subdirectory within the main
“libraries” directory, or within your personal application/libraries
directory. The subdirectory must match the parent class name. Read the
Drivers description for details.

Additionally, multiple driver libraries can be loaded at the same time by
passing an array of drivers to the load method.

$this->load->driver(array('session', 'cache'));

Setting options

The second (optional) parameter allows you to optionally pass
configuration settings. You will typically pass these as an array:

$config = array(
 'sess_driver' => 'cookie',
 'sess_encrypt_cookie' => true,
 'encryption_key' => 'mysecretkey'
);

$this->load->driver('session', $config);

Config options can usually also be set via a config file. Each library
is explained in detail in its own page, so please read the information
regarding each one you would like to use.

Assigning a Driver to a different object name

If the third (optional) parameter is blank, the library will be assigned
to an object with the same name as the parent class. For example, if
the library is named Session, it will be assigned to a variable named
$this->session.

If you prefer to set your own class names you can pass its value to the
third parameter:

$this->load->library('session', '', 'my_session');

// Session class is now accessed using:
$this->my_session

	
view($view[, $vars = array()[, return = FALSE]])

	

	Parameters:	
	$view (string) – View name

	$vars (array) – An associative array of variables

	$return (bool) – Whether to return the loaded view

	Returns:	View content string if $return is set to TRUE, otherwise CI_Loader instance (method chaining)

	Return type:	mixed

This method is used to load your View files. If you haven’t read the
Views section of the user guide it is
recommended that you do since it shows you how this method is
typically used.

The first parameter is required. It is the name of the view file you
would like to load.

Note

The .php file extension does not need to be specified unless
you use something other than .php.

The second optional parameter can take an associative array or an
object as input, which it runs through the PHP
extract() [http://php.net/extract] function to convert to variables
that can be used in your view files. Again, read the
Views page to learn how this might be useful.

The third optional parameter lets you change the behavior of the
method so that it returns data as a string rather than sending it to
your browser. This can be useful if you want to process the data in some
way. If you set the parameter to TRUE (boolean) it will return data. The
default behavior is FALSE, which sends it to your browser. Remember to
assign it to a variable if you want the data returned:

$string = $this->load->view('myfile', '', TRUE);

	
vars($vars[, $val = ''])

	

	Parameters:	
	$vars (mixed) – An array of variables or a single variable name

	$val (mixed) – Optional variable value

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

This method takes an associative array as input and generates
variables using the PHP extract() [http://php.net/extract]
function. This method produces the same result as using the second
parameter of the $this->load->view() method above. The reason you
might want to use this method independently is if you would like to
set some global variables in the constructor of your controller and have
them become available in any view file loaded from any method. You can
have multiple calls to this method. The data get cached and merged
into one array for conversion to variables.

	
get_var($key)

	

	Parameters:	
	$key (string) – Variable name key

	Returns:	Value if key is found, NULL if not

	Return type:	mixed

This method checks the associative array of variables available to
your views. This is useful if for any reason a var is set in a library
or another controller method using $this->load->vars().

	
get_vars()

	

	Returns:	An array of all assigned view variables

	Return type:	array

This method retrieves all variables available to your views.

	
clear_vars()

	

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

Clears cached view variables.

	
model($model[, $name = ''[, $db_conn = FALSE]])

	

	Parameters:	
	$model (mixed) – Model name or an array containing multiple models

	$name (string) – Optional object name to assign the model to

	$db_conn (string) – Optional database configuration group to load

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

$this->load->model('model_name');

If your model is located in a subdirectory, include the relative path
from your models directory. For example, if you have a model located at
application/models/blog/Queries.php you’ll load it using:

$this->load->model('blog/queries');

If you would like your model assigned to a different object name you can
specify it via the second parameter of the loading method:

$this->load->model('model_name', 'fubar');
$this->fubar->method();

	
database([$params = ''[, $return = FALSE[, $query_builder = NULL]]])

	

	Parameters:	
	$params (mixed) – Database group name or configuration options

	$return (bool) – Whether to return the loaded database object

	$query_builder (bool) – Whether to load the Query Builder

	Returns:	Loaded CI_DB instance or FALSE on failure if $return is set to TRUE, otherwise CI_Loader instance (method chaining)

	Return type:	mixed

This method lets you load the database class. The two parameters are
optional. Please see the database
section for more info.

	
dbforge([$db = NULL[, $return = FALSE]])

	

	Parameters:	
	$db (object) – Database object

	$return (bool) – Whether to return the Database Forge instance

	Returns:	Loaded CI_DB_forge instance if $return is set to TRUE, otherwise CI_Loader instance (method chaining)

	Return type:	mixed

Loads the Database Forge class, please refer
to that manual for more info.

	
dbutil([$db = NULL[, $return = FALSE]])

	

	Parameters:	
	$db (object) – Database object

	$return (bool) – Whether to return the Database Utilities instance

	Returns:	Loaded CI_DB_utility instance if $return is set to TRUE, otherwise CI_Loader instance (method chaining)

	Return type:	mixed

Loads the Database Utilities class, please
refer to that manual for more info.

	
helper($helpers)

	

	Parameters:	
	$helpers (mixed) – Helper name as a string or an array containing multiple helpers

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

This method loads helper files, where file_name is the name of the
file, without the _helper.php extension.

	
file($path[, $return = FALSE])

	

	Parameters:	
	$path (string) – File path

	$return (bool) – Whether to return the loaded file

	Returns:	File contents if $return is set to TRUE, otherwise CI_Loader instance (method chaining)

	Return type:	mixed

This is a generic file loading method. Supply the filepath and name in
the first parameter and it will open and read the file. By default the
data is sent to your browser, just like a View file, but if you set the
second parameter to boolean TRUE it will instead return the data as a
string.

	
language($files[, $lang = ''])

	

	Parameters:	
	$files (mixed) – Language file name or an array of multiple language files

	$lang (string) – Language name

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

This method is an alias of the language loading
method: $this->lang->load().

	
config($file[, $use_sections = FALSE[, $fail_gracefully = FALSE]])

	

	Parameters:	
	$file (string) – Configuration file name

	$use_sections (bool) – Whether configuration values should be loaded into their own section

	$fail_gracefully (bool) – Whether to just return FALSE in case of failure

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

This method is an alias of the config file loading
method: $this->config->load()

	
is_loaded($class)

	

	Parameters:	
	$class (string) – Class name

	Returns:	Singleton property name if found, FALSE if not

	Return type:	mixed

Allows you to check if a class has already been loaded or not.

Note

The word “class” here refers to libraries and drivers.

If the requested class has been loaded, the method returns its assigned
name in the CI Super-object and FALSE if it’s not:

$this->load->library('form_validation');
$this->load->is_loaded('Form_validation'); // returns 'form_validation'

$this->load->is_loaded('Nonexistent_library'); // returns FALSE

Important

If you have more than one instance of a class (assigned to
different properties), then the first one will be returned.

$this->load->library('form_validation', $config, 'fv');
$this->load->library('form_validation');

$this->load->is_loaded('Form_validation'); // returns 'fv'

	
add_package_path($path[, $view_cascade = TRUE])

	

	Parameters:	
	$path (string) – Path to add

	$view_cascade (bool) – Whether to use cascading views

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

Adding a package path instructs the Loader class to prepend a given path
for subsequent requests for resources. As an example, the “Foo Bar”
application package above has a library named Foo_bar.php. In our
controller, we’d do the following:

$this->load->add_package_path(APPPATH.'third_party/foo_bar/')
 ->library('foo_bar');

	
remove_package_path([$path = ''])

	

	Parameters:	
	$path (string) – Path to remove

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

When your controller is finished using resources from an application
package, and particularly if you have other application packages you
want to work with, you may wish to remove the package path so the Loader
no longer looks in that directory for resources. To remove the last path
added, simply call the method with no parameters.

Or to remove a specific package path, specify the same path previously
given to add_package_path() for a package.:

$this->load->remove_package_path(APPPATH.'third_party/foo_bar/');

	
get_package_paths([$include_base = TRUE])

	

	Parameters:	
	$include_base (bool) – Whether to include BASEPATH

	Returns:	An array of package paths

	Return type:	array

Returns all currently available package paths.

Migrations Class

Migrations are a convenient way for you to alter your database in a
structured and organized manner. You could edit fragments of SQL by hand
but you would then be responsible for telling other developers that they
need to go and run them. You would also have to keep track of which changes
need to be run against the production machines next time you deploy.

The database table migration tracks which migrations have already been
run so all you have to do is update your application files and
call $this->migration->current() to work out which migrations should be run.
The current version is found in application/config/migration.php.

	Migration file names

	Create a Migration

	Usage Example

	Migration Preferences

	Class Reference

Migration file names

Each Migration is run in numeric order forward or backwards depending on the
method taken. Two numbering styles are available:

	Sequential: each migration is numbered in sequence, starting with 001.
Each number must be three digits, and there must not be any gaps in the
sequence. (This was the numbering scheme prior to CodeIgniter 3.0.)

	Timestamp: each migration is numbered using the timestamp when the migration
was created, in YYYYMMDDHHIISS format (e.g. 20121031100537). This
helps prevent numbering conflicts when working in a team environment, and is
the preferred scheme in CodeIgniter 3.0 and later.

The desired style may be selected using the $config['migration_type']
setting in your application/config/migration.php file.

Regardless of which numbering style you choose to use, prefix your migration
files with the migration number followed by an underscore and a descriptive
name for the migration. For example:

	001_add_blog.php (sequential numbering)

	20121031100537_add_blog.php (timestamp numbering)

Create a Migration

This will be the first migration for a new site which has a blog. All
migrations go in the application/migrations/ directory and have names such
as 20121031100537_add_blog.php.

<?php

defined('BASEPATH') OR exit('No direct script access allowed');

class Migration_Add_blog extends CI_Migration {

 public function up()
 {
 $this->dbforge->add_field(array(
 'blog_id' => array(
 'type' => 'INT',
 'constraint' => 5,
 'unsigned' => TRUE,
 'auto_increment' => TRUE
),
 'blog_title' => array(
 'type' => 'VARCHAR',
 'constraint' => '100',
),
 'blog_description' => array(
 'type' => 'TEXT',
 'null' => TRUE,
),
));
 $this->dbforge->add_key('blog_id', TRUE);
 $this->dbforge->create_table('blog');
 }

 public function down()
 {
 $this->dbforge->drop_table('blog');
 }
}

Then in application/config/migration.php set $config['migration_version'] = 20121031100537;.

Usage Example

In this example some simple code is placed in application/controllers/Migrate.php
to update the schema.:

<?php

class Migrate extends CI_Controller
{

 public function index()
 {
 $this->load->library('migration');

 if ($this->migration->current() === FALSE)
 {
 show_error($this->migration->error_string());
 }
 }

}

Migration Preferences

The following is a table of all the config options for migrations.

	Preference
	Default
	Options
	Description

	migration_enabled
	FALSE
	TRUE / FALSE
	Enable or disable migrations.

	migration_path
	APPPATH.’migrations/’
	None
	The path to your migrations folder.

	migration_version
	0
	None
	The current version your database should use.

	migration_table
	migrations
	None
	The table name for storing the schema
version number.

	migration_auto_latest
	FALSE
	TRUE / FALSE
	Enable or disable automatically
running migrations.

	migration_type
	‘timestamp’
	‘timestamp’ / ‘sequential’
	The type of numeric identifier used to name
migration files.

Class Reference

	
class CI_Migration

	
	
current()

	

	Returns:	TRUE if no migrations are found, current version string on success, FALSE on failure

	Return type:	mixed

Migrates up to the current version (whatever is set for
$config['migration_version'] in application/config/migration.php).

	
error_string()

	

	Returns:	Error messages

	Return type:	string

This returns a string of errors that were detected while performing a migration.

	
find_migrations()

	

	Returns:	An array of migration files

	Return type:	array

An array of migration filenames are returned that are found in the migration_path property.

	
latest()

	

	Returns:	Current version string on success, FALSE on failure

	Return type:	mixed

This works much the same way as current() but instead of looking for
the $config['migration_version'] the Migration class will use the very
newest migration found in the filesystem.

	
version($target_version)

	

	Parameters:	
	$target_version (mixed) – Migration version to process

	Returns:	TRUE if no migrations are found, current version string on success, FALSE on failure

	Return type:	mixed

Version can be used to roll back changes or step forwards programmatically to
specific versions. It works just like current() but ignores $config['migration_version'].

$this->migration->version(5);

Output Class

The Output class is a core class with one main function: To send the
finalized web page to the requesting browser. It is also responsible for
caching your web pages, if you use that
feature.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

Under normal circumstances you won’t even notice the Output class since
it works transparently without your intervention. For example, when you
use the Loader class to load a view file,
it’s automatically passed to the Output class, which will be called
automatically by CodeIgniter at the end of system execution. It is
possible, however, for you to manually intervene with the output if you
need to.

	Class Reference

Class Reference

	
class CI_Output

	
	
$parse_exec_vars = TRUE;

	Enables/disables parsing of the {elapsed_time} and {memory_usage} pseudo-variables.

CodeIgniter will parse those tokens in your output by default. To disable this, set
this property to FALSE in your controller.

$this->output->parse_exec_vars = FALSE;

	
set_output($output)

	

	Parameters:	
	$output (string) – String to set the output to

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to manually set the final output string. Usage example:

$this->output->set_output($data);

Important

If you do set your output manually, it must be the last thing done
in the function you call it from. For example, if you build a page in one
of your controller methods, don’t set the output until the end.

	
set_content_type($mime_type[, $charset = NULL])

	

	Parameters:	
	$mime_type (string) – MIME Type idenitifer string

	$charset (string) – Character set

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to set the mime-type of your page so you can serve JSON data, JPEG’s, XML, etc easily.

$this->output
 ->set_content_type('application/json')
 ->set_output(json_encode(array('foo' => 'bar')));

$this->output
 ->set_content_type('jpeg') // You could also use ".jpeg" which will have the full stop removed before looking in config/mimes.php
 ->set_output(file_get_contents('files/something.jpg'));

Important

Make sure any non-mime string you pass to this method
exists in application/config/mimes.php or it will have no effect.

You can also set the character set of the document, by passing a second argument:

$this->output->set_content_type('css', 'utf-8');

	
get_content_type()

	

	Returns:	Content-Type string

	Return type:	string

Returns the Content-Type HTTP header that’s currently in use, excluding the character set value.

$mime = $this->output->get_content_type();

Note

If not set, the default return value is ‘text/html’.

	
get_header($header)

	

	Parameters:	
	$header (string) – HTTP header name

	Returns:	HTTP response header or NULL if not found

	Return type:	mixed

Returns the requested HTTP header value, or NULL if the requested header is not set.
Example:

$this->output->set_content_type('text/plain', 'UTF-8');
echo $this->output->get_header('content-type');
// Outputs: text/plain; charset=utf-8

Note

The header name is compared in a case-insensitive manner.

Note

Raw headers sent via PHP’s native header() function are also detected.

	
get_output()

	

	Returns:	Output string

	Return type:	string

Permits you to manually retrieve any output that has been sent for
storage in the output class. Usage example:

$string = $this->output->get_output();

Note that data will only be retrievable from this function if it has
been previously sent to the output class by one of the CodeIgniter
functions like $this->load->view().

	
append_output($output)

	

	Parameters:	
	$output (string) – Additional output data to append

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Appends data onto the output string.

$this->output->append_output($data);

	
set_header($header[, $replace = TRUE])

	

	Parameters:	
	$header (string) – HTTP response header

	$replace (bool) – Whether to replace the old header value, if it is already set

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to manually set server headers, which the output class will
send for you when outputting the final rendered display. Example:

$this->output->set_header('HTTP/1.0 200 OK');
$this->output->set_header('HTTP/1.1 200 OK');
$this->output->set_header('Last-Modified: '.gmdate('D, d M Y H:i:s', $last_update).' GMT');
$this->output->set_header('Cache-Control: no-store, no-cache, must-revalidate');
$this->output->set_header('Cache-Control: post-check=0, pre-check=0');
$this->output->set_header('Pragma: no-cache');

	
set_status_header([$code = 200[, $text = '']])

	

	Parameters:	
	$code (int) – HTTP status code

	$text (string) – Optional message

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to manually set a server status header. Example:

$this->output->set_status_header(401);
// Sets the header as: Unauthorized

See here [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html] for a full list of headers.

Note

This method is an alias for Common function
set_status_header().

	
enable_profiler([$val = TRUE])

	

	Parameters:	
	$val (bool) – Whether to enable or disable the Profiler

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to enable/disable the Profiler, which will display benchmark
and other data at the bottom of your pages for debugging and optimization purposes.

To enable the profiler place the following line anywhere within your
Controller methods:

$this->output->enable_profiler(TRUE);

When enabled a report will be generated and inserted at the bottom of your pages.

To disable the profiler you would use:

$this->output->enable_profiler(FALSE);

	
set_profiler_sections($sections)

	

	Parameters:	
	$sections (array) – Profiler sections

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to enable/disable specific sections of the Profiler when it is enabled.
Please refer to the Profiler documentation for further information.

	
cache($time)

	

	Parameters:	
	$time (int) – Cache expiration time in minutes

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Caches the current page for the specified amount of minutes.

For more information, please see the caching documentation.

	
_display([$output = ''])

	

	Parameters:	
	$output (string) – Output data override

	Returns:	void

	Return type:	void

Sends finalized output data to the browser along with any server headers. It also stops benchmark
timers.

Note

This method is called automatically at the end of script execution, you won’t need to
call it manually unless you are aborting script execution using exit() or die() in your code.

Example:

$response = array('status' => 'OK');

$this->output
 ->set_status_header(200)
 ->set_content_type('application/json', 'utf-8')
 ->set_output(json_encode($response, JSON_PRETTY_PRINT | JSON_UNESCAPED_UNICODE | JSON_UNESCAPED_SLASHES))
 ->_display();
exit;

Note

Calling this method manually without aborting script execution will result in duplicated output.

Pagination Class

CodeIgniter’s Pagination class is very easy to use, and it is 100%
customizable, either dynamically or via stored preferences.

	Example
	Notes

	Setting preferences in a config file

	Customizing the Pagination

	Adding Enclosing Markup

	Customizing the First Link

	Customizing the Last Link

	Customizing the “Next” Link

	Customizing the “Previous” Link

	Customizing the “Current Page” Link

	Customizing the “Digit” Link

	Hiding the Pages

	Adding attributes to anchors

	Disabling the “rel” attribute

	Class Reference

If you are not familiar with the term “pagination”, it refers to links
that allows you to navigate from page to page, like this:

« First < 1 2 3 4 5 > Last »

Example

Here is a simple example showing how to create pagination in one of your
controller methods:

$this->load->library('pagination');

$config['base_url'] = 'http://example.com/index.php/test/page/';
$config['total_rows'] = 200;
$config['per_page'] = 20;

$this->pagination->initialize($config);

echo $this->pagination->create_links();

Notes

The $config array contains your configuration variables. It is passed to
the $this->pagination->initialize() method as shown above. Although
there are some twenty items you can configure, at minimum you need the
three shown. Here is a description of what those items represent:

	base_url This is the full URL to the controller class/function
containing your pagination. In the example above, it is pointing to a
controller called “Test” and a function called “page”. Keep in mind
that you can re-route your URI if you
need a different structure.

	total_rows This number represents the total rows in the result
set you are creating pagination for. Typically this number will be
the total rows that your database query returned.

	per_page The number of items you intend to show per page. In the
above example, you would be showing 20 items per page.

The create_links() method returns an empty string when there is no
pagination to show.

Setting preferences in a config file

If you prefer not to set preferences using the above method, you can
instead put them into a config file. Simply create a new file called
pagination.php, add the $config array in that file. Then save the file
in application/config/pagination.php and it will be used automatically.
You will NOT need to use $this->pagination->initialize() if you save
your preferences in a config file.

Customizing the Pagination

The following is a list of all the preferences you can pass to the
initialization function to tailor the display.

$config[‘uri_segment’] = 3;

The pagination function automatically determines which segment of your
URI contains the page number. If you need something different you can
specify it.

$config[‘num_links’] = 2;

The number of “digit” links you would like before and after the selected
page number. For example, the number 2 will place two digits on either
side, as in the example links at the very top of this page.

$config[‘use_page_numbers’] = TRUE;

By default, the URI segment will use the starting index for the items
you are paginating. If you prefer to show the the actual page number,
set this to TRUE.

$config[‘page_query_string’] = TRUE;

By default, the pagination library assume you are using URI
Segments, and constructs your links something
like:

http://example.com/index.php/test/page/20

If you have $config['enable_query_strings'] set to TRUE your links
will automatically be re-written using Query Strings. This option can
also be explicitly set. Using $config['page_query_string'] set to TRUE,
the pagination link will become:

http://example.com/index.php?c=test&m=page&per_page=20

Note that “per_page” is the default query string passed, however can be
configured using $config['query_string_segment'] = 'your_string'

$config[‘reuse_query_string’] = FALSE;

By default your Query String arguments (nothing to do with other
query string options) will be ignored. Setting this config to
TRUE will add existing query string arguments back into the
URL after the URI segment and before the suffix.:

http://example.com/index.php/test/page/20?query=search%term

This helps you mix together normal URI Segments
as well as query string arguments, which until 3.0 was not possible.

$config[‘prefix’] = ‘’;

A custom prefix added to the path. The prefix value will be right before
the offset segment.

$config[‘suffix’] = ‘’;

A custom suffix added to the path. The suffix value will be right after
the offset segment.

$config[‘use_global_url_suffix’] = FALSE;

When set to TRUE, it will override the $config['suffix'] value and
instead set it to the one that you have in $config['url_suffix'] in
your application/config/config.php file.

Adding Enclosing Markup

If you would like to surround the entire pagination with some markup you
can do it with these two preferences:

$config[‘full_tag_open’] = ‘<p>’;

The opening tag placed on the left side of the entire result.

$config[‘full_tag_close’] = ‘</p>’;

The closing tag placed on the right side of the entire result.

Customizing the First Link

$config[‘first_link’] = ‘First’;

The text you would like shown in the “first” link on the left. If you do
not want this link rendered, you can set its value to FALSE.

Note

This value can also be translated via a language file.

$config[‘first_tag_open’] = ‘<div>’;

The opening tag for the “first” link.

$config[‘first_tag_close’] = ‘</div>’;

The closing tag for the “first” link.

$config[‘first_url’] = ‘’;

An alternative URL to use for the “first page” link.

Customizing the Last Link

$config[‘last_link’] = ‘Last’;

The text you would like shown in the “last” link on the right. If you do
not want this link rendered, you can set its value to FALSE.

Note

This value can also be translated via a language file.

$config[‘last_tag_open’] = ‘<div>’;

The opening tag for the “last” link.

$config[‘last_tag_close’] = ‘</div>’;

The closing tag for the “last” link.

Customizing the “Next” Link

$config[‘next_link’] = ‘>’;

The text you would like shown in the “next” page link. If you do not
want this link rendered, you can set its value to FALSE.

Note

This value can also be translated via a language file.

$config[‘next_tag_open’] = ‘<div>’;

The opening tag for the “next” link.

$config[‘next_tag_close’] = ‘</div>’;

The closing tag for the “next” link.

Customizing the “Previous” Link

$config[‘prev_link’] = ‘<’;

The text you would like shown in the “previous” page link. If you do not
want this link rendered, you can set its value to FALSE.

Note

This value can also be translated via a language file.

$config[‘prev_tag_open’] = ‘<div>’;

The opening tag for the “previous” link.

$config[‘prev_tag_close’] = ‘</div>’;

The closing tag for the “previous” link.

Customizing the “Current Page” Link

$config[‘cur_tag_open’] = ‘’;

The opening tag for the “current” link.

$config[‘cur_tag_close’] = ‘’;

The closing tag for the “current” link.

Customizing the “Digit” Link

$config[‘num_tag_open’] = ‘<div>’;

The opening tag for the “digit” link.

$config[‘num_tag_close’] = ‘</div>’;

The closing tag for the “digit” link.

Hiding the Pages

If you wanted to not list the specific pages (for example, you only want
“next” and “previous” links), you can suppress their rendering by
adding:

$config['display_pages'] = FALSE;

Adding attributes to anchors

If you want to add an extra attribute to be added to every link rendered
by the pagination class, you can set them as key/value pairs in the
“attributes” config:

// Produces: class="myclass"
$config['attributes'] = array('class' => 'myclass');

Note

Usage of the old method of setting classes via “anchor_class”
is deprecated.

Disabling the “rel” attribute

By default the rel attribute is dynamically generated and appended to
the appropriate anchors. If for some reason you want to turn it off,
you can pass boolean FALSE as a regular attribute

$config['attributes']['rel'] = FALSE;

Class Reference

	
class CI_Pagination

	
	
initialize([$params = array()])

	

	Parameters:	
	$params (array) – Configuration parameters

	Returns:	CI_Pagination instance (method chaining)

	Return type:	CI_Pagination

Initializes the Pagination class with your preferred options.

	
create_links()

	

	Returns:	HTML-formatted pagination

	Return type:	string

Returns a “pagination” bar, containing the generated links or an empty string if there’s just a single page.

Template Parser Class

The Template Parser Class can perform simple text substitution for
pseudo-variables contained within your view files.
It can parse simple variables or variable tag pairs.

If you’ve never used a template engine,
pseudo-variable names are enclosed in braces, like this:

<html>
 <head>
 <title>{blog_title}</title>
 </head>
 <body>
 <h3>{blog_heading}</h3>

 {blog_entries}
 <h5>{title}</h5>
 <p>{body}</p>
 {/blog_entries}

 </body>
</html>

These variables are not actual PHP variables, but rather plain text
representations that allow you to eliminate PHP from your templates
(view files).

Note

CodeIgniter does not require you to use this class since
using pure PHP in your view pages lets them run a little faster.
However, some developers prefer to use a template engine if
they work with designers who they feel would find some
confusion working with PHP.

Important

The Template Parser Class is not a full-blown
template parsing solution. We’ve kept it very lean on purpose in order
to maintain maximum performance.

	Using the Template Parser Class
	Initializing the Class

	Parsing templates

	Variable Pairs

	Usage Notes

	View Fragments

	Class Reference

Using the Template Parser Class

Initializing the Class

Like most other classes in CodeIgniter, the Parser class is initialized
in your controller using the $this->load->library() method:

$this->load->library('parser');

Once loaded, the Parser library object will be available using:
$this->parser

Parsing templates

You can use the parse() method to parse (or render) simple templates,
like this:

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading'
);

$this->parser->parse('blog_template', $data);

The first parameter contains the name of the view
file (in this example the file would be called
blog_template.php), and the second parameter contains an associative
array of data to be replaced in the template. In the above example, the
template would contain two variables: {blog_title} and {blog_heading}

There is no need to “echo” or do something with the data returned by
$this->parser->parse(). It is automatically passed to the output class
to be sent to the browser. However, if you do want the data returned
instead of sent to the output class you can pass TRUE (boolean) as the
third parameter:

$string = $this->parser->parse('blog_template', $data, TRUE);

Variable Pairs

The above example code allows simple variables to be replaced. What if
you would like an entire block of variables to be repeated, with each
iteration containing new values? Consider the template example we showed
at the top of the page:

<html>
 <head>
 <title>{blog_title}</title>
 </head>
 <body>
 <h3>{blog_heading}</h3>

 {blog_entries}
 <h5>{title}</h5>
 <p>{body}</p>
 {/blog_entries}

 </body>
</html>

In the above code you’ll notice a pair of variables: {blog_entries}
data… {/blog_entries}. In a case like this, the entire chunk of data
between these pairs would be repeated multiple times, corresponding to
the number of rows in the “blog_entries” element of the parameters array.

Parsing variable pairs is done using the identical code shown above to
parse single variables, except, you will add a multi-dimensional array
corresponding to your variable pair data. Consider this example:

$this->load->library('parser');

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entries' => array(
 array('title' => 'Title 1', 'body' => 'Body 1'),
 array('title' => 'Title 2', 'body' => 'Body 2'),
 array('title' => 'Title 3', 'body' => 'Body 3'),
 array('title' => 'Title 4', 'body' => 'Body 4'),
 array('title' => 'Title 5', 'body' => 'Body 5')
)
);

$this->parser->parse('blog_template', $data);

If your “pair” data is coming from a database result, which is already a
multi-dimensional array, you can simply use the database result_array()
method:

$query = $this->db->query("SELECT * FROM blog");

$this->load->library('parser');

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entries' => $query->result_array()
);

$this->parser->parse('blog_template', $data);

Usage Notes

If you include substitution parameters that are not referenced in your
template, they are ignored:

$template = 'Hello, {firstname} {lastname}';
$data = array(
 'title' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe'
);
$this->parser->parse_string($template, $data);

// Result: Hello, John Doe

If you do not include a substitution parameter that is referenced in your
template, the original pseudo-variable is shown in the result:

$template = 'Hello, {firstname} {initials} {lastname}';
$data = array(
 'title' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe'
);
$this->parser->parse_string($template, $data);

// Result: Hello, John {initials} Doe

If you provide a string substitution parameter when an array is expected,
i.e. for a variable pair, the substitution is done for the opening variable
pair tag, but the closing variable pair tag is not rendered properly:

$template = 'Hello, {firstname} {lastname} ({degrees}{degree} {/degrees})';
$data = array(
 'degrees' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe',
 'titles' => array(
 array('degree' => 'BSc'),
 array('degree' => 'PhD')
)
);
$this->parser->parse_string($template, $data);

// Result: Hello, John Doe (Mr{degree} {/degrees})

If you name one of your individual substitution parameters the same as one
used inside a variable pair, the results may not be as expected:

$template = 'Hello, {firstname} {lastname} ({degrees}{degree} {/degrees})';
$data = array(
 'degree' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe',
 'degrees' => array(
 array('degree' => 'BSc'),
 array('degree' => 'PhD')
)
);
$this->parser->parse_string($template, $data);

// Result: Hello, John Doe (Mr Mr)

View Fragments

You do not have to use variable pairs to get the effect of iteration in
your views. It is possible to use a view fragment for what would be inside
a variable pair, and to control the iteration in your controller instead
of in the view.

An example with the iteration controlled in the view:

$template = '{menuitems}
 {title}
{/menuitems}';

$data = array(
 'menuitems' => array(
 array('title' => 'First Link', 'link' => '/first'),
 array('title' => 'Second Link', 'link' => '/second'),
)
);
$this->parser->parse_string($template, $data);

Result:

 First Link
 Second Link

An example with the iteration controlled in the controller,
using a view fragment:

$temp = '';
$template1 = '{title}';
$data1 = array(
 array('title' => 'First Link', 'link' => '/first'),
 array('title' => 'Second Link', 'link' => '/second'),
);

foreach ($data1 as $menuitem)
{
 $temp .= $this->parser->parse_string($template1, $menuitem, TRUE);
}

$template = '{menuitems}';
$data = array(
 'menuitems' => $temp
);
$this->parser->parse_string($template, $data);

Result:

 First Link
 Second Link

Class Reference

	
class CI_Parser

	
	
parse($template, $data[, $return = FALSE])

	

	Parameters:	
	$template (string) – Path to view file

	$data (array) – Variable data

	$return (bool) – Whether to only return the parsed template

	Returns:	Parsed template string

	Return type:	string

Parses a template from the provided path and variables.

	
parse_string($template, $data[, $return = FALSE])

	

	Parameters:	
	$template (string) – Path to view file

	$data (array) – Variable data

	$return (bool) – Whether to only return the parsed template

	Returns:	Parsed template string

	Return type:	string

This method works exactly like parse(), only it accepts
the template as a string instead of loading a view file.

	
set_delimiters([$l = '{'[, $r = '}']])

	

	Parameters:	
	$l (string) – Left delimiter

	$r (string) – Right delimiter

	Return type:	void

Sets the delimiters (opening and closing) for a
pseudo-variable “tag” in a template.

Security Class

The Security Class contains methods that help you create a secure
application, processing input data for security.

	XSS Filtering

	Cross-site request forgery (CSRF)

	Class Reference

XSS Filtering

CodeIgniter comes with a Cross Site Scripting prevention filter, which
looks for commonly used techniques to trigger JavaScript or other types
of code that attempt to hijack cookies or do other malicious things.
If anything disallowed is encountered it is rendered safe by converting
the data to character entities.

To filter data through the XSS filter use the xss_clean() method:

$data = $this->security->xss_clean($data);

An optional second parameter, is_image, allows this function to be used
to test images for potential XSS attacks, useful for file upload
security. When this second parameter is set to TRUE, instead of
returning an altered string, the function returns TRUE if the image is
safe, and FALSE if it contained potentially malicious information that a
browser may attempt to execute.

if ($this->security->xss_clean($file, TRUE) === FALSE)
{
 // file failed the XSS test
}

Important

If you want to filter HTML attribute values, use
html_escape() instead!

Cross-site request forgery (CSRF)

You can enable CSRF protection by altering your application/config/config.php
file in the following way:

$config['csrf_protection'] = TRUE;

If you use the form helper, then
form_open() will automatically insert a hidden csrf field in
your forms. If not, then you can use get_csrf_token_name()
and get_csrf_hash()

$csrf = array(
 'name' => $this->security->get_csrf_token_name(),
 'hash' => $this->security->get_csrf_hash()
);

...

<input type="hidden" name="<?=$csrf['name'];?>" value="<?=$csrf['hash'];?>" />

Tokens may be either regenerated on every submission (default) or
kept the same throughout the life of the CSRF cookie. The default
regeneration of tokens provides stricter security, but may result
in usability concerns as other tokens become invalid (back/forward
navigation, multiple tabs/windows, asynchronous actions, etc). You
may alter this behavior by editing the following config parameter

$config['csrf_regenerate'] = TRUE;

Select URIs can be whitelisted from csrf protection (for example API
endpoints expecting externally POSTed content). You can add these URIs
by editing the ‘csrf_exclude_uris’ config parameter:

$config['csrf_exclude_uris'] = array('api/person/add');

Regular expressions are also supported (case-insensitive):

$config['csrf_exclude_uris'] = array(
 'api/record/[0-9]+',
 'api/title/[a-z]+'
);

Class Reference

	
class CI_Security

	
	
xss_clean($str[, $is_image = FALSE])

	

	Parameters:	
	$str (mixed) – Input string or an array of strings

	Returns:	XSS-clean data

	Return type:	mixed

Tries to remove XSS exploits from the input data and returns the cleaned string.
If the optional second parameter is set to true, it will return boolean TRUE if
the image is safe to use and FALSE if malicious data was detected in it.

Important

This method is not suitable for filtering HTML attribute values!
Use html_escape() for that instead.

	
sanitize_filename($str[, $relative_path = FALSE])

	

	Parameters:	
	$str (string) – File name/path

	$relative_path (bool) – Whether to preserve any directories in the file path

	Returns:	Sanitized file name/path

	Return type:	string

Tries to sanitize filenames in order to prevent directory traversal attempts
and other security threats, which is particularly useful for files that were supplied via user input.

$filename = $this->security->sanitize_filename($this->input->post('filename'));

If it is acceptable for the user input to include relative paths, e.g.
file/in/some/approved/folder.txt, you can set the second optional parameter, $relative_path to TRUE.

$filename = $this->security->sanitize_filename($this->input->post('filename'), TRUE);

	
get_csrf_token_name()

	

	Returns:	CSRF token name

	Return type:	string

Returns the CSRF token name (the $config['csrf_token_name'] value).

	
get_csrf_hash()

	

	Returns:	CSRF hash

	Return type:	string

Returns the CSRF hash value. Useful in combination with get_csrf_token_name()
for manually building forms or sending valid AJAX POST requests.

	
entity_decode($str[, $charset = NULL])

	

	Parameters:	
	$str (string) – Input string

	$charset (string) – Character set of the input string

	Returns:	Entity-decoded string

	Return type:	string

This method acts a lot like PHP’s own native html_entity_decode() function in ENT_COMPAT mode, only
it tries to detect HTML entities that don’t end in a semicolon because some browsers allow that.

If the $charset parameter is left empty, then your configured $config['charset'] value will be used.

	
get_random_bytes($length)

	

	Parameters:	
	$length (int) – Output length

	Returns:	A binary stream of random bytes or FALSE on failure

	Return type:	string

A convenience method for getting proper random bytes via mcrypt_create_iv(),
/dev/urandom or openssl_random_pseudo_bytes() (in that order), if one
of them is available.

Used for generating CSRF and XSS tokens.

Note

The output is NOT guaranteed to be cryptographically secure,
just the best attempt at that.

Session Library

The Session class permits you maintain a user’s “state” and track their
activity while they browse your site.

CodeIgniter comes with a few session storage drivers:

	files (default; file-system based)

	database

	redis

	memcached

In addition, you may create your own, custom session drivers based on other
kinds of storage, while still taking advantage of the features of the
Session class.

	Using the Session Class
	Initializing a Session

	How do Sessions work?
	A note about concurrency

	What is Session Data?

	Retrieving Session Data

	Adding Session Data

	Removing Session Data

	Flashdata

	Tempdata

	Destroying a Session

	Accessing session metadata

	Session Preferences

	Session Drivers
	Files Driver
	Bonus Tip

	Database Driver

	Redis Driver

	Memcached Driver
	Bonus Tip

	Custom Drivers

	Class Reference

Using the Session Class

Initializing a Session

Sessions will typically run globally with each page load, so the Session
class should either be initialized in your controller constructors, or it can be auto-loaded by the system.
For the most part the session class will run unattended in the background,
so simply initializing the class will cause it to read, create, and update
sessions when necessary.

To initialize the Session class manually in your controller constructor,
use the $this->load->library() method:

$this->load->library('session');

Once loaded, the Sessions library object will be available using:

$this->session

Important

Because the Loader Class is instantiated
by CodeIgniter’s base controller, make sure to call
parent::__construct() before trying to load a library from
inside a controller constructor.

How do Sessions work?

When a page is loaded, the session class will check to see if valid
session cookie is sent by the user’s browser. If a sessions cookie does
not exist (or if it doesn’t match one stored on the server or has
expired) a new session will be created and saved.

If a valid session does exist, its information will be updated. With each
update, the session ID may be regenerated if configured to do so.

It’s important for you to understand that once initialized, the Session
class runs automatically. There is nothing you need to do to cause the
above behavior to happen. You can, as you’ll see below, work with session
data, but the process of reading, writing, and updating a session is
automatic.

Note

Under CLI, the Session library will automatically halt itself,
as this is a concept based entirely on the HTTP protocol.

A note about concurrency

Unless you’re developing a website with heavy AJAX usage, you can skip this
section. If you are, however, and if you’re experiencing performance
issues, then this note is exactly what you’re looking for.

Sessions in previous versions of CodeIgniter didn’t implement locking,
which meant that two HTTP requests using the same session could run exactly
at the same time. To use a more appropriate technical term - requests were
non-blocking.

However, non-blocking requests in the context of sessions also means
unsafe, because modifications to session data (or session ID regeneration)
in one request can interfere with the execution of a second, concurrent
request. This detail was at the root of many issues and the main reason why
CodeIgniter 3.0 has a completely re-written Session library.

Why are we telling you this? Because it is likely that after trying to
find the reason for your performance issues, you may conclude that locking
is the issue and therefore look into how to remove the locks …

DO NOT DO THAT! Removing locks would be wrong and it will cause you
more problems!

Locking is not the issue, it is a solution. Your issue is that you still
have the session open, while you’ve already processed it and therefore no
longer need it. So, what you need is to close the session for the
current request after you no longer need it.

Long story short - call session_write_close() once you no longer need
anything to do with session variables.

What is Session Data?

Session data is simply an array associated with a particular session ID
(cookie).

If you’ve used sessions in PHP before, you should be familiar with PHP’s
$_SESSION superglobal [http://php.net/manual/en/reserved.variables.session.php]
(if not, please read the content on that link).

CodeIgniter gives access to its session data through the same means, as it
uses the session handlers’ mechanism provided by PHP. Using session data is
as simple as manipulating (read, set and unset values) the $_SESSION
array.

In addition, CodeIgniter also provides 2 special types of session data
that are further explained below: flashdata and tempdata.

Note

In previous versions, regular session data in CodeIgniter was
referred to as ‘userdata’. Have this in mind if that term is used
elsewhere in the manual. Most of it is written to explain how
the custom ‘userdata’ methods work.

Retrieving Session Data

Any piece of information from the session array is available through the
$_SESSION superglobal:

$_SESSION['item']

Or through the magic getter:

$this->session->item

And for backwards compatibility, through the userdata() method:

$this->session->userdata('item');

Where item is the array key corresponding to the item you wish to fetch.
For example, to assign a previously stored ‘name’ item to the $name
variable, you will do this:

$name = $_SESSION['name'];

// or:

$name = $this->session->name

// or:

$name = $this->session->userdata('name');

Note

The userdata() method returns NULL if the item you are trying
to access does not exist.

If you want to retrieve all of the existing userdata, you can simply
omit the item key (magic getter only works for properties):

$_SESSION

// or:

$this->session->userdata();

Adding Session Data

Let’s say a particular user logs into your site. Once authenticated, you
could add their username and e-mail address to the session, making that
data globally available to you without having to run a database query when
you need it.

You can simply assign data to the $_SESSION array, as with any other
variable. Or as a property of $this->session.

Alternatively, the old method of assigning it as “userdata” is also
available. That however passing an array containing your new data to the
set_userdata() method:

$this->session->set_userdata($array);

Where $array is an associative array containing your new data. Here’s
an example:

$newdata = array(
 'username' => 'johndoe',
 'email' => 'johndoe@some-site.com',
 'logged_in' => TRUE
);

$this->session->set_userdata($newdata);

If you want to add userdata one value at a time, set_userdata() also
supports this syntax:

$this->session->set_userdata('some_name', 'some_value');

If you want to verify that a session value exists, simply check with
isset():

// returns FALSE if the 'some_name' item doesn't exist or is NULL,
// TRUE otherwise:
isset($_SESSION['some_name'])

Or you can call has_userdata():

$this->session->has_userdata('some_name');

Removing Session Data

Just as with any other variable, unsetting a value in $_SESSION can be
done through unset():

unset($_SESSION['some_name']);

// or multiple values:

unset(
 $_SESSION['some_name'],
 $_SESSION['another_name']
);

Also, just as set_userdata() can be used to add information to a
session, unset_userdata() can be used to remove it, by passing the
session key. For example, if you wanted to remove ‘some_name’ from your
session data array:

$this->session->unset_userdata('some_name');

This method also accepts an array of item keys to unset:

$array_items = array('username', 'email');

$this->session->unset_userdata($array_items);

Note

In previous versions, the unset_userdata() method used
to accept an associative array of key => 'dummy value'
pairs. This is no longer supported.

Flashdata

CodeIgniter supports “flashdata”, or session data that will only be
available for the next request, and is then automatically cleared.

This can be very useful, especially for one-time informational, error or
status messages (for example: “Record 2 deleted”).

It should be noted that flashdata variables are regular session vars,
only marked in a specific way under the ‘__ci_vars’ key (please don’t touch
that one, you’ve been warned).

To mark an existing item as “flashdata”:

$this->session->mark_as_flash('item');

If you want to mark multiple items as flashdata, simply pass the keys as an
array:

$this->session->mark_as_flash(array('item', 'item2'));

To add flashdata:

$_SESSION['item'] = 'value';
$this->session->mark_as_flash('item');

Or alternatively, using the set_flashdata() method:

$this->session->set_flashdata('item', 'value');

You can also pass an array to set_flashdata(), in the same manner as
set_userdata().

Reading flashdata variables is the same as reading regular session data
through $_SESSION:

$_SESSION['item']

Important

The userdata() method will NOT return flashdata items.

However, if you want to be sure that you’re reading “flashdata” (and not
any other kind), you can also use the flashdata() method:

$this->session->flashdata('item');

Or to get an array with all flashdata, simply omit the key parameter:

$this->session->flashdata();

Note

The flashdata() method returns NULL if the item cannot be
found.

If you find that you need to preserve a flashdata variable through an
additional request, you can do so using the keep_flashdata() method.
You can either pass a single item or an array of flashdata items to keep.

$this->session->keep_flashdata('item');
$this->session->keep_flashdata(array('item1', 'item2', 'item3'));

Tempdata

CodeIgniter also supports “tempdata”, or session data with a specific
expiration time. After the value expires, or the session expires or is
deleted, the value is automatically removed.

Similarly to flashdata, tempdata variables are regular session vars that
are marked in a specific way under the ‘__ci_vars’ key (again, don’t touch
that one).

To mark an existing item as “tempdata”, simply pass its key and expiry time
(in seconds!) to the mark_as_temp() method:

// 'item' will be erased after 300 seconds
$this->session->mark_as_temp('item', 300);

You can mark multiple items as tempdata in two ways, depending on whether
you want them all to have the same expiry time or not:

// Both 'item' and 'item2' will expire after 300 seconds
$this->session->mark_as_temp(array('item', 'item2'), 300);

// 'item' will be erased after 300 seconds, while 'item2'
// will do so after only 240 seconds
$this->session->mark_as_temp(array(
 'item' => 300,
 'item2' => 240
));

To add tempdata:

$_SESSION['item'] = 'value';
$this->session->mark_as_temp('item', 300); // Expire in 5 minutes

Or alternatively, using the set_tempdata() method:

$this->session->set_tempdata('item', 'value', 300);

You can also pass an array to set_tempdata():

$tempdata = array('newuser' => TRUE, 'message' => 'Thanks for joining!');

$this->session->set_tempdata($tempdata, NULL, $expire);

Note

If the expiration is omitted or set to 0, the default
time-to-live value of 300 seconds (or 5 minutes) will be used.

To read a tempdata variable, again you can just access it through the
$_SESSION superglobal array:

$_SESSION['item']

Important

The userdata() method will NOT return tempdata items.

Or if you want to be sure that you’re reading “tempdata” (and not any
other kind), you can also use the tempdata() method:

$this->session->tempdata('item');

And of course, if you want to retrieve all existing tempdata:

$this->session->tempdata();

Note

The tempdata() method returns NULL if the item cannot be
found.

If you need to remove a tempdata value before it expires, you can directly
unset it from the $_SESSION array:

unset($_SESSION['item']);

However, this won’t remove the marker that makes this specific item to be
tempdata (it will be invalidated on the next HTTP request), so if you
intend to reuse that same key in the same request, you’d want to use
unset_tempdata():

$this->session->unset_tempdata('item');

Destroying a Session

To clear the current session (for example, during a logout), you may
simply use either PHP’s session_destroy() [http://php.net/session_destroy]
function, or the sess_destroy() method. Both will work in exactly the
same way:

session_destroy();

// or

$this->session->sess_destroy();

Note

This must be the last session-related operation that you do
during the same request. All session data (including flashdata and
tempdata) will be destroyed permanently and functions will be
unusable during the same request after you destroy the session.

Accessing session metadata

In previous CodeIgniter versions, the session data array included 4 items
by default: ‘session_id’, ‘ip_address’, ‘user_agent’, ‘last_activity’.

This was due to the specifics of how sessions worked, but is now no longer
necessary with our new implementation. However, it may happen that your
application relied on these values, so here are alternative methods of
accessing them:

	session_id: session_id()

	ip_address: $_SERVER['REMOTE_ADDR']

	user_agent: $this->input->user_agent() (unused by sessions)

	last_activity: Depends on the storage, no straightforward way. Sorry!

Session Preferences

CodeIgniter will usually make everything work out of the box. However,
Sessions are a very sensitive component of any application, so some
careful configuration must be done. Please take your time to consider
all of the options and their effects.

You’ll find the following Session related preferences in your
application/config/config.php file:

	Preference
	Default
	Options
	Description

	sess_driver
	files
	files/database/redis/memcached/custom
	The session storage driver to use.

	sess_cookie_name
	ci_session
	[A-Za-z_-] characters only
	The name used for the session cookie.

	sess_expiration
	7200 (2 hours)
	Time in seconds (integer)
	The number of seconds you would like the session to last.
If you would like a non-expiring session (until browser is closed) set the value to zero: 0

	sess_save_path
	NULL
	None
	Specifies the storage location, depends on the driver being used.

	sess_match_ip
	FALSE
	TRUE/FALSE (boolean)
	Whether to validate the user’s IP address when reading the session cookie.
Note that some ISPs dynamically changes the IP, so if you want a non-expiring session you
will likely set this to FALSE.

	sess_time_to_update
	300
	Time in seconds (integer)
	This option controls how often the session class will regenerate itself and create a new
session ID. Setting it to 0 will disable session ID regeneration.

	sess_regenerate_destroy
	FALSE
	TRUE/FALSE (boolean)
	Whether to destroy session data associated with the old session ID when auto-regenerating
the session ID. When set to FALSE, the data will be later deleted by the garbage collector.

Note

As a last resort, the Session library will try to fetch PHP’s
session related INI settings, as well as legacy CI settings such as
‘sess_expire_on_close’ when any of the above is not configured.
However, you should never rely on this behavior as it can cause
unexpected results or be changed in the future. Please configure
everything properly.

In addition to the values above, the cookie and native drivers apply the
following configuration values shared by the Input and
Security classes:

	Preference
	Default
	Description

	cookie_domain
	‘’
	The domain for which the session is applicable

	cookie_path
	/
	The path to which the session is applicable

	cookie_secure
	FALSE
	Whether to create the session cookie only on encrypted (HTTPS) connections

Note

The ‘cookie_httponly’ setting doesn’t have an effect on sessions.
Instead the HttpOnly parameter is always enabled, for security
reasons. Additionally, the ‘cookie_prefix’ setting is completely
ignored.

Session Drivers

As already mentioned, the Session library comes with 4 drivers, or storage
engines, that you can use:

	files

	database

	redis

	memcached

By default, the Files Driver will be used when a session is initialized,
because it is the most safe choice and is expected to work everywhere
(virtually every environment has a file system).

However, any other driver may be selected via the $config['sess_driver']
line in your application/config/config.php file, if you chose to do so.
Have it in mind though, every driver has different caveats, so be sure to
get yourself familiar with them (below) before you make that choice.

In addition, you may also create and use Custom Drivers, if the ones
provided by default don’t satisfy your use case.

Note

In previous CodeIgniter versions, a different, “cookie driver”
was the only option and we have received negative feedback on not
providing that option. While we do listen to feedback from the
community, we want to warn you that it was dropped because it is
unsafe and we advise you NOT to try to replicate it via a
custom driver.

Files Driver

The ‘files’ driver uses your file system for storing session data.

It can safely be said that it works exactly like PHP’s own default session
implementation, but in case this is an important detail for you, have it
mind that it is in fact not the same code and it has some limitations
(and advantages).

To be more specific, it doesn’t support PHP’s directory level and mode
formats used in session.save_path [http://php.net/manual/en/session.configuration.php#ini.session.save-path],
and it has most of the options hard-coded for safety. Instead, only
absolute paths are supported for $config['sess_save_path'].

Another important thing that you should know, is to make sure that you
don’t use a publicly-readable or shared directory for storing your session
files. Make sure that only you have access to see the contents of your
chosen sess_save_path directory. Otherwise, anybody who can do that, can
also steal any of the current sessions (also known as “session fixation”
attack).

On UNIX-like operating systems, this is usually achieved by setting the
0700 mode permissions on that directory via the chmod command, which
allows only the directory’s owner to perform read and write operations on
it. But be careful because the system user running the script is usually
not your own, but something like ‘www-data’ instead, so only setting those
permissions will probable break your application.

Instead, you should do something like this, depending on your environment

mkdir /<path to your application directory>/sessions/
chmod 0700 /<path to your application directory>/sessions/
chown www-data /<path to your application directory>/sessions/

Bonus Tip

Some of you will probably opt to choose another session driver because
file storage is usually slower. This is only half true.

A very basic test will probably trick you into believing that an SQL
database is faster, but in 99% of the cases, this is only true while you
only have a few current sessions. As the sessions count and server loads
increase - which is the time when it matters - the file system will
consistently outperform almost all relational database setups.

In addition, if performance is your only concern, you may want to look
into using tmpfs [http://eddmann.com/posts/storing-php-sessions-file-caches-in-memory-using-tmpfs/],
(warning: external resource), which can make your sessions blazing fast.

Database Driver

The ‘database’ driver uses a relational database such as MySQL or
PostgreSQL to store sessions. This is a popular choice among many users,
because it allows the developer easy access to the session data within
an application - it is just another table in your database.

However, there are some conditions that must be met:

	Only your default database connection (or the one that you access
as $this->db from your controllers) can be used.

	You must have the Query Builder
enabled.

	You can NOT use a persistent connection.

	You can NOT use a connection with the cache_on setting enabled.

In order to use the ‘database’ session driver, you must also create this
table that we already mentioned and then set it as your
$config['sess_save_path'] value.
For example, if you would like to use ‘ci_sessions’ as your table name,
you would do this:

$config['sess_driver'] = 'database';
$config['sess_save_path'] = 'ci_sessions';

Note

If you’ve upgraded from a previous version of CodeIgniter and
you don’t have ‘sess_save_path’ configured, then the Session
library will look for the old ‘sess_table_name’ setting and use
it instead. Please don’t rely on this behavior as it will get
removed in the future.

And then of course, create the database table …

For MySQL:

CREATE TABLE IF NOT EXISTS `ci_sessions` (
 `id` varchar(128) NOT NULL,
 `ip_address` varchar(45) NOT NULL,
 `timestamp` int(10) unsigned DEFAULT 0 NOT NULL,
 `data` blob NOT NULL,
 KEY `ci_sessions_timestamp` (`timestamp`)
);

For PostgreSQL:

CREATE TABLE "ci_sessions" (
 "id" varchar(128) NOT NULL,
 "ip_address" varchar(45) NOT NULL,
 "timestamp" bigint DEFAULT 0 NOT NULL,
 "data" text DEFAULT '' NOT NULL
);

CREATE INDEX "ci_sessions_timestamp" ON "ci_sessions" ("timestamp");

You will also need to add a PRIMARY KEY depending on your ‘sess_match_ip’
setting. The examples below work both on MySQL and PostgreSQL:

// When sess_match_ip = TRUE
ALTER TABLE ci_sessions ADD PRIMARY KEY (id, ip_address);

// When sess_match_ip = FALSE
ALTER TABLE ci_sessions ADD PRIMARY KEY (id);

// To drop a previously created primary key (use when changing the setting)
ALTER TABLE ci_sessions DROP PRIMARY KEY;

Important

Only MySQL and PostgreSQL databases are officially
supported, due to lack of advisory locking mechanisms on other
platforms. Using sessions without locks can cause all sorts of
problems, especially with heavy usage of AJAX, and we will not
support such cases. Use session_write_close() after you’ve
done processing session data if you’re having performance
issues.

Redis Driver

Note

Since Redis doesn’t have a locking mechanism exposed, locks for
this driver are emulated by a separate value that is kept for up
to 300 seconds.

Redis is a storage engine typically used for caching and popular because
of its high performance, which is also probably your reason to use the
‘redis’ session driver.

The downside is that it is not as ubiquitous as relational databases and
requires the phpredis [https://github.com/phpredis/phpredis] PHP
extension to be installed on your system, and that one doesn’t come
bundled with PHP.
Chances are, you’re only be using the ‘redis’ driver only if you’re already
both familiar with Redis and using it for other purposes.

Just as with the ‘files’ and ‘database’ drivers, you must also configure
the storage location for your sessions via the
$config['sess_save_path'] setting.
The format here is a bit different and complicated at the same time. It is
best explained by the phpredis extension’s README file, so we’ll simply
link you to it:

https://github.com/phpredis/phpredis#php-session-handler

Warning

CodeIgniter’s Session library does NOT use the actual ‘redis’
session.save_handler. Take note only of the path format in
the link above.

For the most common case however, a simple host:port pair should be
sufficient:

$config['sess_driver'] = 'redis';
$config['sess_save_path'] = 'tcp://localhost:6379';

Memcached Driver

Note

Since Memcache doesn’t have a locking mechanism exposed, locks
for this driver are emulated by a separate value that is kept for
up to 300 seconds.

The ‘memcached’ driver is very similar to the ‘redis’ one in all of its
properties, except perhaps for availability, because PHP’s Memcached [http://php.net/memcached] extension is distributed via PECL and some
Linux distrubutions make it available as an easy to install package.

Other than that, and without any intentional bias towards Redis, there’s
not much different to be said about Memcached - it is also a popular
product that is usually used for caching and famed for its speed.

However, it is worth noting that the only guarantee given by Memcached
is that setting value X to expire after Y seconds will result in it being
deleted after Y seconds have passed (but not necessarily that it won’t
expire earlier than that time). This happens very rarely, but should be
considered as it may result in loss of sessions.

The $config['sess_save_path'] format is fairly straightforward here,
being just a host:port pair:

$config['sess_driver'] = 'memcached';
$config['sess_save_path'] = 'localhost:11211';

Bonus Tip

Multi-server configuration with an optional weight parameter as the
third colon-separated (:weight) value is also supported, but we have
to note that we haven’t tested if that is reliable.

If you want to experiment with this feature (on your own risk), simply
separate the multiple server paths with commas:

// localhost will be given higher priority (5) here,
// compared to 192.0.2.1 with a weight of 1.
$config['sess_save_path'] = 'localhost:11211:5,192.0.2.1:11211:1';

Custom Drivers

You may also create your own, custom session drivers. However, have it in
mind that this is typically not an easy task, as it takes a lot of
knowledge to do it properly.

You need to know not only how sessions work in general, but also how they
work specifically in PHP, how the underlying storage mechanism works, how
to handle concurrency, avoid deadlocks (but NOT through lack of locks) and
last but not least - how to handle the potential security issues, which
is far from trivial.

Long story short - if you don’t know how to do that already in raw PHP,
you shouldn’t be trying to do it within CodeIgniter either. You’ve been
warned.

If you only want to add some extra functionality to your sessions, just
extend the base Session class, which is a lot more easier. Read the
Creating Libraries article to
learn how to do that.

Now, to the point - there are three general rules that you must follow
when creating a session driver for CodeIgniter:

	Put your driver’s file under application/libraries/Session/drivers/
and follow the naming conventions used by the Session class.

For example, if you were to create a ‘dummy’ driver, you would have
a Session_dummy_driver class name, that is declared in
application/libraries/Session/drivers/Session_dummy_driver.php.

	Extend the CI_Session_driver class.

This is just a basic class with a few internal helper methods. It is
also extendable like any other library, if you really need to do that,
but we are not going to explain how … if you’re familiar with how
class extensions/overrides work in CI, then you already know how to do
it. If not, well, you shouldn’t be doing it in the first place.

	Implement the SessionHandlerInterface [http://php.net/sessionhandlerinterface] interface.

Note

You may notice that SessionHandlerInterface is provided
by PHP since version 5.4.0. CodeIgniter will automatically declare
the same interface if you’re running an older PHP version.

The link will explain why and how.

So, based on our ‘dummy’ driver example above, you’d end up with something
like this:

// application/libraries/Session/drivers/Session_dummy_driver.php:

class CI_Session_dummy_driver extends CI_Session_driver implements SessionHandlerInterface
{

 public function __construct(&$params)
 {
 // DO NOT forget this
 parent::__construct($params);

 // Configuration & other initializations
 }

 public function open($save_path, $name)
 {
 // Initialize storage mechanism (connection)
 }

 public function read($session_id)
 {
 // Read session data (if exists), acquire locks
 }

 public function write($session_id, $session_data)
 {
 // Create / update session data (it might not exist!)
 }

 public function close()
 {
 // Free locks, close connections / streams / etc.
 }

 public function destroy($session_id)
 {
 // Call close() method & destroy data for current session (order may differ)
 }

 public function gc($maxlifetime)
 {
 // Erase data for expired sessions
 }

}

If you’ve done everything properly, you can now set your sess_driver
configuration value to ‘dummy’ and use your own driver. Congratulations!

Class Reference

	
class CI_Session

	
	
userdata([$key = NULL])

	

	Parameters:	
	$key (mixed) – Session item key or NULL

	Returns:	Value of the specified item key, or an array of all userdata

	Return type:	mixed

Gets the value for a specific $_SESSION item, or an
array of all “userdata” items if not key was specified.

Note

This is a legacy method kept only for backwards
compatibility with older applications. You should
directly access $_SESSION instead.

	
all_userdata()

	

	Returns:	An array of all userdata

	Return type:	array

Returns an array containing all “userdata” items.

Note

This method is DEPRECATED. Use userdata()
with no parameters instead.

	
&get_userdata()

	

	Returns:	A reference to $_SESSION

	Return type:	array

Returns a reference to the $_SESSION array.

Note

This is a legacy method kept only for backwards
compatibility with older applications.

	
has_userdata($key)

	

	Parameters:	
	$key (string) – Session item key

	Returns:	TRUE if the specified key exists, FALSE if not

	Return type:	bool

Checks if an item exists in $_SESSION.

Note

This is a legacy method kept only for backwards
compatibility with older applications. It is just
an alias for isset($_SESSION[$key]) - please
use that instead.

	
set_userdata($data[, $value = NULL])

	

	Parameters:	
	$data (mixed) – An array of key/value pairs to set as session data, or the key for a single item

	$value (mixed) – The value to set for a specific session item, if $data is a key

	Return type:	void

Assigns data to the $_SESSION superglobal.

Note

This is a legacy method kept only for backwards
compatibility with older applications.

	
unset_userdata($key)

	

	Parameters:	
	$key (mixed) – Key for the session data item to unset, or an array of multiple keys

	Return type:	void

Unsets the specified key(s) from the $_SESSION
superglobal.

Note

This is a legacy method kept only for backwards
compatibility with older applications. It is just
an alias for unset($_SESSION[$key]) - please
use that instead.

	
mark_as_flash($key)

	

	Parameters:	
	$key (mixed) – Key to mark as flashdata, or an array of multiple keys

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Marks a $_SESSION item key (or multiple ones) as
“flashdata”.

	
get_flash_keys()

	

	Returns:	Array containing the keys of all “flashdata” items.

	Return type:	array

Gets a list of all $_SESSION that have been marked as
“flashdata”.

	
unmark_flash($key)

	

	Parameters:	
	$key (mixed) – Key to be un-marked as flashdata, or an array of multiple keys

	Return type:	void

Unmarks a $_SESSION item key (or multiple ones) as
“flashdata”.

	
flashdata([$key = NULL])

	

	Parameters:	
	$key (mixed) – Flashdata item key or NULL

	Returns:	Value of the specified item key, or an array of all flashdata

	Return type:	mixed

Gets the value for a specific $_SESSION item that has
been marked as “flashdata”, or an array of all “flashdata”
items if no key was specified.

Note

This is a legacy method kept only for backwards
compatibility with older applications. You should
directly access $_SESSION instead.

	
keep_flashdata($key)

	

	Parameters:	
	$key (mixed) – Flashdata key to keep, or an array of multiple keys

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Retains the specified session data key(s) as “flashdata”
through the next request.

Note

This is a legacy method kept only for backwards
compatibility with older applications. It is just
an alias for the mark_as_flash() method.

	
set_flashdata($data[, $value = NULL])

	

	Parameters:	
	$data (mixed) – An array of key/value pairs to set as flashdata, or the key for a single item

	$value (mixed) – The value to set for a specific session item, if $data is a key

	Return type:	void

Assigns data to the $_SESSION superglobal and marks it
as “flashdata”.

Note

This is a legacy method kept only for backwards
compatibility with older applications.

	
mark_as_temp($key[, $ttl = 300])

	

	Parameters:	
	$key (mixed) – Key to mark as tempdata, or an array of multiple keys

	$ttl (int) – Time-to-live value for the tempdata, in seconds

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Marks a $_SESSION item key (or multiple ones) as
“tempdata”.

	
get_temp_keys()

	

	Returns:	Array containing the keys of all “tempdata” items.

	Return type:	array

Gets a list of all $_SESSION that have been marked as
“tempdata”.

	
unmark_temp($key)

	

	Parameters:	
	$key (mixed) – Key to be un-marked as tempdata, or an array of multiple keys

	Return type:	void

Unmarks a $_SESSION item key (or multiple ones) as
“tempdata”.

	
tempdata([$key = NULL])

	

	Parameters:	
	$key (mixed) – Tempdata item key or NULL

	Returns:	Value of the specified item key, or an array of all tempdata

	Return type:	mixed

Gets the value for a specific $_SESSION item that has
been marked as “tempdata”, or an array of all “tempdata”
items if no key was specified.

Note

This is a legacy method kept only for backwards
compatibility with older applications. You should
directly access $_SESSION instead.

	
set_tempdata($data[, $value = NULL])

	

	Parameters:	
	$data (mixed) – An array of key/value pairs to set as tempdata, or the key for a single item

	$value (mixed) – The value to set for a specific session item, if $data is a key

	$ttl (int) – Time-to-live value for the tempdata item(s), in seconds

	Return type:	void

Assigns data to the $_SESSION superglobal and marks it
as “tempdata”.

Note

This is a legacy method kept only for backwards
compatibility with older applications.

	
sess_regenerate([$destroy = FALSE])

	

	Parameters:	
	$destroy (bool) – Whether to destroy session data

	Return type:	void

Regenerate session ID, optionally destroying the current
session’s data.

Note

This method is just an alias for PHP’s native
session_regenerate_id() [http://php.net/session_regenerate_id] function.

	
sess_destroy()

	

	Return type:	void

Destroys the current session.

Note

This must be the last session-related function
that you call. All session data will be lost after
you do that.

Note

This method is just an alias for PHP’s native
session_destroy() [http://php.net/session_destroy] function.

	
__get($key)

	

	Parameters:	
	$key (string) – Session item key

	Returns:	The requested session data item, or NULL if it doesn’t exist

	Return type:	mixed

A magic method that allows you to use
$this->session->item instead of $_SESSION['item'],
if that’s what you prefer.

It will also return the session ID by calling
session_id() if you try to access
$this->session->session_id.

	
__set($key, $value)

	

	Parameters:	
	$key (string) – Session item key

	$value (mixed) – Value to assign to the session item key

	Returns:	void

A magic method that allows you to assign items to
$_SESSION by accessing them as $this->session
properties:

$this->session->foo = 'bar';

// Results in:
// $_SESSION['foo'] = 'bar';

HTML Table Class

The Table Class provides functions that enable you to auto-generate HTML
tables from arrays or database result sets.

	Using the Table Class
	Initializing the Class

	Examples

	Changing the Look of Your Table

	Class Reference

Using the Table Class

Initializing the Class

Like most other classes in CodeIgniter, the Table class is initialized
in your controller using the $this->load->library() method:

$this->load->library('table');

Once loaded, the Table library object will be available using:

$this->table

Examples

Here is an example showing how you can create a table from a
multi-dimensional array. Note that the first array index will become the
table heading (or you can set your own headings using the set_heading()
method described in the function reference below).

$this->load->library('table');

$data = array(
 array('Name', 'Color', 'Size'),
 array('Fred', 'Blue', 'Small'),
 array('Mary', 'Red', 'Large'),
 array('John', 'Green', 'Medium')
);

echo $this->table->generate($data);

Here is an example of a table created from a database query result. The
table class will automatically generate the headings based on the table
names (or you can set your own headings using the set_heading()
method described in the class reference below).

$this->load->library('table');

$query = $this->db->query('SELECT * FROM my_table');

echo $this->table->generate($query);

Here is an example showing how you might create a table using discrete
parameters:

$this->load->library('table');

$this->table->set_heading('Name', 'Color', 'Size');

$this->table->add_row('Fred', 'Blue', 'Small');
$this->table->add_row('Mary', 'Red', 'Large');
$this->table->add_row('John', 'Green', 'Medium');

echo $this->table->generate();

Here is the same example, except instead of individual parameters,
arrays are used:

$this->load->library('table');

$this->table->set_heading(array('Name', 'Color', 'Size'));

$this->table->add_row(array('Fred', 'Blue', 'Small'));
$this->table->add_row(array('Mary', 'Red', 'Large'));
$this->table->add_row(array('John', 'Green', 'Medium'));

echo $this->table->generate();

Changing the Look of Your Table

The Table Class permits you to set a table template with which you can
specify the design of your layout. Here is the template prototype:

$template = array(
 'table_open' => '<table border="0" cellpadding="4" cellspacing="0">',

 'thead_open' => '<thead>',
 'thead_close' => '</thead>',

 'heading_row_start' => '<tr>',
 'heading_row_end' => '</tr>',
 'heading_cell_start' => '<th>',
 'heading_cell_end' => '</th>',

 'tbody_open' => '<tbody>',
 'tbody_close' => '</tbody>',

 'row_start' => '<tr>',
 'row_end' => '</tr>',
 'cell_start' => '<td>',
 'cell_end' => '</td>',

 'row_alt_start' => '<tr>',
 'row_alt_end' => '</tr>',
 'cell_alt_start' => '<td>',
 'cell_alt_end' => '</td>',

 'table_close' => '</table>'
);

$this->table->set_template($template);

Note

You’ll notice there are two sets of “row” blocks in the
template. These permit you to create alternating row colors or design
elements that alternate with each iteration of the row data.

You are NOT required to submit a complete template. If you only need to
change parts of the layout you can simply submit those elements. In this
example, only the table opening tag is being changed:

$template = array(
 'table_open' => '<table border="1" cellpadding="2" cellspacing="1" class="mytable">'
);

$this->table->set_template($template);

You can also set defaults for these in a config file.

Class Reference

	
class CI_Table

	
	
$function = NULL

	Allows you to specify a native PHP function or a valid function array object to be applied to all cell data.

$this->load->library('table');

$this->table->set_heading('Name', 'Color', 'Size');
$this->table->add_row('Fred', 'Blue', 'Small');

$this->table->function = 'htmlspecialchars';
echo $this->table->generate();

In the above example, all cell data would be ran through PHP’s htmlspecialchars() function, resulting in:

<td>Fred</td><td>Blue</td><td>Small</td>

	
generate([$table_data = NULL])

	

	Parameters:	
	$table_data (mixed) – Data to populate the table rows with

	Returns:	HTML table

	Return type:	string

Returns a string containing the generated table. Accepts an optional parameter which can be an array or a database result object.

	
set_caption($caption)

	

	Parameters:	
	$caption (string) – Table caption

	Returns:	CI_Table instance (method chaining)

	Return type:	CI_Table

Permits you to add a caption to the table.

$this->table->set_caption('Colors');

	
set_heading([$args = array()[, ...]])

	

	Parameters:	
	$args (mixed) – An array or multiple strings containing the table column titles

	Returns:	CI_Table instance (method chaining)

	Return type:	CI_Table

Permits you to set the table heading. You can submit an array or discrete params:

$this->table->set_heading('Name', 'Color', 'Size');

$this->table->set_heading(array('Name', 'Color', 'Size'));

	
add_row([$args = array()[, ...]])

	

	Parameters:	
	$args (mixed) – An array or multiple strings containing the row values

	Returns:	CI_Table instance (method chaining)

	Return type:	CI_Table

Permits you to add a row to your table. You can submit an array or discrete params:

$this->table->add_row('Blue', 'Red', 'Green');

$this->table->add_row(array('Blue', 'Red', 'Green'));

If you would like to set an individual cell’s tag attributes, you can use an associative array for that cell.
The associative key data defines the cell’s data. Any other key => val pairs are added as key=’val’ attributes to the tag:

$cell = array('data' => 'Blue', 'class' => 'highlight', 'colspan' => 2);
$this->table->add_row($cell, 'Red', 'Green');

// generates
// <td class='highlight' colspan='2'>Blue</td><td>Red</td><td>Green</td>

	
make_columns([$array = array()[, $col_limit = 0]])

	

	Parameters:	
	$array (array) – An array containing multiple rows’ data

	$col_limit (int) – Count of columns in the table

	Returns:	An array of HTML table columns

	Return type:	array

This method takes a one-dimensional array as input and creates a multi-dimensional array with a depth equal to the number of columns desired.
This allows a single array with many elements to be displayed in a table that has a fixed column count. Consider this example:

$list = array('one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'eleven', 'twelve');

$new_list = $this->table->make_columns($list, 3);

$this->table->generate($new_list);

// Generates a table with this prototype

<table border="0" cellpadding="4" cellspacing="0">
<tr>
<td>one</td><td>two</td><td>three</td>
</tr><tr>
<td>four</td><td>five</td><td>six</td>
</tr><tr>
<td>seven</td><td>eight</td><td>nine</td>
</tr><tr>
<td>ten</td><td>eleven</td><td>twelve</td></tr>
</table>

	
set_template($template)

	

	Parameters:	
	$template (array) – An associative array containing template values

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Permits you to set your template. You can submit a full or partial template.

$template = array(
 'table_open' => '<table border="1" cellpadding="2" cellspacing="1" class="mytable">'
);

$this->table->set_template($template);

	
set_empty($value)

	

	Parameters:	
	$value (mixed) – Value to put in empty cells

	Returns:	CI_Table instance (method chaining)

	Return type:	CI_Table

Lets you set a default value for use in any table cells that are empty.
You might, for example, set a non-breaking space:

$this->table->set_empty(" ");

	
clear()

	

	Returns:	CI_Table instance (method chaining)

	Return type:	CI_Table

Lets you clear the table heading and row data. If you need to show multiple tables with different data you should to call this method
after each table has been generated to clear the previous table information. Example:

$this->load->library('table');

$this->table->set_heading('Name', 'Color', 'Size');
$this->table->add_row('Fred', 'Blue', 'Small');
$this->table->add_row('Mary', 'Red', 'Large');
$this->table->add_row('John', 'Green', 'Medium');

echo $this->table->generate();

$this->table->clear();

$this->table->set_heading('Name', 'Day', 'Delivery');
$this->table->add_row('Fred', 'Wednesday', 'Express');
$this->table->add_row('Mary', 'Monday', 'Air');
$this->table->add_row('John', 'Saturday', 'Overnight');

echo $this->table->generate();

Trackback Class

The Trackback Class provides functions that enable you to send and
receive Trackback data.

If you are not familiar with Trackbacks you’ll find more information
here [http://en.wikipedia.org/wiki/Trackback].

	Using the Trackback Class
	Initializing the Class

	Sending Trackbacks

	Receiving Trackbacks

	Your Ping URL

	Creating a Trackback Table

	Processing a Trackback
	Notes:

	Class Reference

Using the Trackback Class

Initializing the Class

Like most other classes in CodeIgniter, the Trackback class is
initialized in your controller using the $this->load->library() method:

$this->load->library('trackback');

Once loaded, the Trackback library object will be available using:

$this->trackback

Sending Trackbacks

A Trackback can be sent from any of your controller functions using code
similar to this example:

$this->load->library('trackback');

$tb_data = array(
 'ping_url' => 'http://example.com/trackback/456',
 'url' => 'http://www.my-example.com/blog/entry/123',
 'title' => 'The Title of My Entry',
 'excerpt' => 'The entry content.',
 'blog_name' => 'My Blog Name',
 'charset' => 'utf-8'
);

if (! $this->trackback->send($tb_data))
{
 echo $this->trackback->display_errors();
}
else
{
 echo 'Trackback was sent!';
}

Description of array data:

	ping_url - The URL of the site you are sending the Trackback to.
You can send Trackbacks to multiple URLs by separating each URL with a comma.

	url - The URL to YOUR site where the weblog entry can be seen.

	title - The title of your weblog entry.

	excerpt - The content of your weblog entry.

	blog_name - The name of your weblog.

	charset - The character encoding your weblog is written in. If omitted, UTF-8 will be used.

Note

The Trackback class will automatically send only the first 500 characters of your
entry. It will also strip all HTML.

The Trackback sending method returns TRUE/FALSE (boolean) on success
or failure. If it fails, you can retrieve the error message using:

$this->trackback->display_errors();

Receiving Trackbacks

Before you can receive Trackbacks you must create a weblog. If you don’t
have a blog yet there’s no point in continuing.

Receiving Trackbacks is a little more complex than sending them, only
because you will need a database table in which to store them, and you
will need to validate the incoming trackback data. You are encouraged to
implement a thorough validation process to guard against spam and
duplicate data. You may also want to limit the number of Trackbacks you
allow from a particular IP within a given span of time to further
curtail spam. The process of receiving a Trackback is quite simple; the
validation is what takes most of the effort.

Your Ping URL

In order to accept Trackbacks you must display a Trackback URL next to
each one of your weblog entries. This will be the URL that people will
use to send you Trackbacks (we will refer to this as your “Ping URL”).

Your Ping URL must point to a controller function where your Trackback
receiving code is located, and the URL must contain the ID number for
each particular entry, so that when the Trackback is received you’ll be
able to associate it with a particular entry.

For example, if your controller class is called Trackback, and the
receiving function is called receive, your Ping URLs will look something
like this:

http://example.com/index.php/trackback/receive/entry_id

Where entry_id represents the individual ID number for each of your
entries.

Creating a Trackback Table

Before you can receive Trackbacks you must create a table in which to
store them. Here is a basic prototype for such a table:

CREATE TABLE trackbacks (
 tb_id int(10) unsigned NOT NULL auto_increment,
 entry_id int(10) unsigned NOT NULL default 0,
 url varchar(200) NOT NULL,
 title varchar(100) NOT NULL,
 excerpt text NOT NULL,
 blog_name varchar(100) NOT NULL,
 tb_date int(10) NOT NULL,
 ip_address varchar(45) NOT NULL,
 PRIMARY KEY `tb_id` (`tb_id`),
 KEY `entry_id` (`entry_id`)
);

The Trackback specification only requires four pieces of information to
be sent in a Trackback (url, title, excerpt, blog_name), but to make
the data more useful we’ve added a few more fields in the above table
schema (date, IP address, etc.).

Processing a Trackback

Here is an example showing how you will receive and process a Trackback.
The following code is intended for use within the controller function
where you expect to receive Trackbacks.:

$this->load->library('trackback');
$this->load->database();

if ($this->uri->segment(3) == FALSE)
{
 $this->trackback->send_error('Unable to determine the entry ID');
}

if (! $this->trackback->receive())
{
 $this->trackback->send_error('The Trackback did not contain valid data');
}

$data = array(
 'tb_id' => '',
 'entry_id' => $this->uri->segment(3),
 'url' => $this->trackback->data('url'),
 'title' => $this->trackback->data('title'),
 'excerpt' => $this->trackback->data('excerpt'),
 'blog_name' => $this->trackback->data('blog_name'),
 'tb_date' => time(),
 'ip_address' => $this->input->ip_address()
);

$sql = $this->db->insert_string('trackbacks', $data);
$this->db->query($sql);

$this->trackback->send_success();

Notes:

The entry ID number is expected in the third segment of your URL. This
is based on the URI example we gave earlier:

http://example.com/index.php/trackback/receive/entry_id

Notice the entry_id is in the third URI segment, which you can retrieve
using:

$this->uri->segment(3);

In our Trackback receiving code above, if the third segment is missing,
we will issue an error. Without a valid entry ID, there’s no reason to
continue.

The $this->trackback->receive() function is simply a validation function
that looks at the incoming data and makes sure it contains the four
pieces of data that are required (url, title, excerpt, blog_name). It
returns TRUE on success and FALSE on failure. If it fails you will issue
an error message.

The incoming Trackback data can be retrieved using this function:

$this->trackback->data('item')

Where item represents one of these four pieces of info: url, title,
excerpt, or blog_name

If the Trackback data is successfully received, you will issue a success
message using:

$this->trackback->send_success();

Note

The above code contains no data validation, which you are
encouraged to add.

Class Reference

	
class CI_Trackback

	
	
$data = array('url' => '', 'title' => '', 'excerpt' => '', 'blog_name' => '', 'charset' => '')

	Trackback data array.

	
$convert_ascii = TRUE

	Whether to convert high ASCII and MS Word characters to HTML entities.

	
send($tb_data)

	

	Parameters:	
	$tb_data (array) – Trackback data

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Send trackback.

	
receive()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

This method simply validates the incoming TB data, returning TRUE on success and FALSE on failure.
If the data is valid it is set to the $this->data array so that it can be inserted into a database.

	
send_error([$message = 'Incomplete information'])

	

	Parameters:	
	$message (string) – Error message

	Return type:	void

Responses to a trackback request with an error message.

Note

This method will terminate script execution.

	
send_success()

	

	Return type:	void

Responses to a trackback request with a success message.

Note

This method will terminate script execution.

	
data($item)

	

	Parameters:	
	$item (string) – Data key

	Returns:	Data value or empty string if not found

	Return type:	string

Returns a single item from the response data array.

	
process($url, $data)

	

	Parameters:	
	$url (string) – Target url

	$data (string) – Raw POST data

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Opens a socket connection and passes the data to the server, returning TRUE on success and FALSE on failure.

	
extract_urls($urls)

	

	Parameters:	
	$urls (string) – Comma-separated URL list

	Returns:	Array of URLs

	Return type:	array

This method lets multiple trackbacks to be sent. It takes a string of URLs (separated by comma or space) and puts each URL into an array.

	
validate_url(&$url)

	

	Parameters:	
	$url (string) – Trackback URL

	Return type:	void

Simply adds the http:// prefix it it’s not already present in the URL.

	
get_id($url)

	

	Parameters:	
	$url (string) – Trackback URL

	Returns:	URL ID or FALSE on failure

	Return type:	string

Find and return a trackback URL’s ID or FALSE on failure.

	
convert_xml($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Converted string

	Return type:	string

Converts reserved XML characters to entities.

	
limit_characters($str[, $n = 500[, $end_char = '…']])

	

	Parameters:	
	$str (string) – Input string

	$n (int) – Max characters number

	$end_char (string) – Character to put at end of string

	Returns:	Shortened string

	Return type:	string

Limits the string based on the character count. Will preserve complete words.

	
convert_ascii($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Converted string

	Return type:	string

Converts high ASCII text and MS Word special characterss to HTML entities.

	
set_error($msg)

	

	Parameters:	
	$msg (string) – Error message

	Return type:	void

Set an log an error message.

	
display_errors([$open = '<p>'[, $close = '</p>']])

	

	Parameters:	
	$open (string) – Open tag

	$close (string) – Close tag

	Returns:	HTML formatted error messages

	Return type:	string

Returns error messages formatted in HTML or an empty string if there are no errors.

Typography Class

The Typography Class provides methods that help you format text.

	Using the Typography Class
	Initializing the Class

	Class Reference

Using the Typography Class

Initializing the Class

Like most other classes in CodeIgniter, the Typography class is
initialized in your controller using the $this->load->library() method:

$this->load->library('typography');

Once loaded, the Typography library object will be available using:

$this->typography

Class Reference

	
class CI_Typography

	
	
$protect_braced_quotes = FALSE

	When using the Typography library in conjunction with the Template Parser library
it can often be desirable to protect single and double quotes within curly braces.
To enable this, set the protect_braced_quotes class property to TRUE.

Usage example:

$this->load->library('typography');
$this->typography->protect_braced_quotes = TRUE;

	
auto_typography($str[, $reduce_linebreaks = FALSE])

	

	Parameters:	
	$str (string) – Input string

	$reduce_linebreaks (bool) – Whether to reduce consecutive linebreaks

	Returns:	HTML typography-safe string

	Return type:	string

Formats text so that it is semantically and typographically correct HTML.
Takes a string as input and returns it with the following formatting:

	Surrounds paragraphs within <p></p> (looks for double line breaks to identify paragraphs).

	Single line breaks are converted to
, except those that appear within <pre> tags.

	Block level elements, like <div> tags, are not wrapped within paragraphs, but their contained text is if it contains paragraphs.

	Quotes are converted to correctly facing curly quote entities, except those that appear within tags.

	Apostrophes are converted to curly apostrophe entities.

	Double dashes (either like – this or like–this) are converted to em—dashes.

	Three consecutive periods either preceding or following a word are converted to ellipsis (…).

	Double spaces following sentences are converted to non-breaking spaces to mimic double spacing.

Usage example:

$string = $this->typography->auto_typography($string);

There is one optional parameter that determines whether the parser should reduce more than two consecutive line breaks down to two.
Pass boolean TRUE to enable reducing line breaks:

$string = $this->typography->auto_typography($string, TRUE);

Note

Typographic formatting can be processor intensive, particularly if you have a lot of content being formatted.
If you choose to use this method you may want to consider caching your pages.

	
format_characters($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Formatted string

	Return type:	string

This method is similar to auto_typography() above, except that it only does character conversion:

	Quotes are converted to correctly facing curly quote entities, except those that appear within tags.

	Apostrophes are converted to curly apostrophe entities.

	Double dashes (either like – this or like–this) are converted to em—dashes.

	Three consecutive periods either preceding or following a word are converted to ellipsis (…).

	Double spaces following sentences are converted to non-breaking spaces to mimic double spacing.

Usage example:

$string = $this->typography->format_characters($string);

	
nl2br_except_pre($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Formatted string

	Return type:	string

Converts newlines to
 tags unless they appear within <pre> tags.
This method is identical to the native PHP nl2br() function, except that it ignores <pre> tags.

Usage example:

$string = $this->typography->nl2br_except_pre($string);

Unit Testing Class

Unit testing is an approach to software development in which tests are
written for each function in your application. If you are not familiar
with the concept you might do a little googling on the subject.

CodeIgniter’s Unit Test class is quite simple, consisting of an
evaluation function and two result functions. It’s not intended to be a
full-blown test suite but rather a simple mechanism to evaluate your
code to determine if it is producing the correct data type and result.

	Using the Unit Testing Library
	Initializing the Class

	Running Tests

	Generating Reports

	Strict Mode

	Enabling/Disabling Unit Testing

	Unit Test Display
	Customizing displayed tests

	Creating a Template

	Class Reference

Using the Unit Testing Library

Initializing the Class

Like most other classes in CodeIgniter, the Unit Test class is
initialized in your controller using the $this->load->library function:

$this->load->library('unit_test');

Once loaded, the Unit Test object will be available using $this->unit

Running Tests

Running a test involves supplying a test and an expected result in the
following way:

$this->unit->run(‘test’, ‘expected result’, ‘test name’, ‘notes’);

Where test is the result of the code you wish to test, expected result
is the data type you expect, test name is an optional name you can give
your test, and notes are optional notes. Example:

$test = 1 + 1;

$expected_result = 2;

$test_name = 'Adds one plus one';

$this->unit->run($test, $expected_result, $test_name);

The expected result you supply can either be a literal match, or a data
type match. Here’s an example of a literal:

$this->unit->run('Foo', 'Foo');

Here is an example of a data type match:

$this->unit->run('Foo', 'is_string');

Notice the use of “is_string” in the second parameter? This tells the
function to evaluate whether your test is producing a string as the
result. Here is a list of allowed comparison types:

	is_object

	is_string

	is_bool

	is_true

	is_false

	is_int

	is_numeric

	is_float

	is_double

	is_array

	is_null

	is_resource

Generating Reports

You can either display results after each test, or your can run several
tests and generate a report at the end. To show a report directly simply
echo or return the run function:

echo $this->unit->run($test, $expected_result);

To run a full report of all tests, use this:

echo $this->unit->report();

The report will be formatted in an HTML table for viewing. If you prefer
the raw data you can retrieve an array using:

echo $this->unit->result();

Strict Mode

By default the unit test class evaluates literal matches loosely.
Consider this example:

$this->unit->run(1, TRUE);

The test is evaluating an integer, but the expected result is a boolean.
PHP, however, due to it’s loose data-typing will evaluate the above code
as TRUE using a normal equality test:

if (1 == TRUE) echo 'This evaluates as true';

If you prefer, you can put the unit test class in to strict mode, which
will compare the data type as well as the value:

if (1 === TRUE) echo 'This evaluates as FALSE';

To enable strict mode use this:

$this->unit->use_strict(TRUE);

Enabling/Disabling Unit Testing

If you would like to leave some testing in place in your scripts, but
not have it run unless you need it, you can disable unit testing using:

$this->unit->active(FALSE);

Unit Test Display

When your unit test results display, the following items show by
default:

	Test Name (test_name)

	Test Datatype (test_datatype)

	Expected Datatype (res_datatype)

	Result (result)

	File Name (file)

	Line Number (line)

	Any notes you entered for the test (notes)

You can customize which of these items get displayed by using
$this->unit->set_test_items(). For example, if you only wanted the test name
and the result displayed:

Customizing displayed tests

$this->unit->set_test_items(array('test_name', 'result'));

Creating a Template

If you would like your test results formatted differently then the
default you can set your own template. Here is an example of a simple
template. Note the required pseudo-variables:

$str = '
<table border="0" cellpadding="4" cellspacing="1">
{rows}
 <tr>
 <td>{item}</td>
 <td>{result}</td>
 </tr>
{/rows}
</table>';

$this->unit->set_template($str);

Note

Your template must be declared before running the unit
test process.

Class Reference

	
class CI_Unit_test

	
	
set_test_items($items)

	

	Parameters:	
	$items (array) – List of visible test items

	Returns:	void

Sets a list of items that should be visible in tests.
Valid options are:

	test_name

	test_datatype

	res_datatype

	result

	file

	line

	notes

	
run($test[, $expected = TRUE[, $test_name = 'undefined'[, $notes = '']]])

	

	Parameters:	
	$test (mixed) – Test data

	$expected (mixed) – Expected result

	$test_name (string) – Test name

	$notes (string) – Any notes to be attached to the test

	Returns:	Test report

	Return type:	string

Runs unit tests.

	
report([$result = array()])

	

	Parameters:	
	$result (array) – Array containing tests results

	Returns:	Test report

	Return type:	string

Generates a report about already complete tests.

	
use_strict([$state = TRUE])

	

	Parameters:	
	$state (bool) – Strict state flag

	Return type:	void

Enables/disables strict type comparison in tests.

	
active([$state = TRUE])

	

	Parameters:	
	$state (bool) – Whether to enable testing

	Return type:	void

Enables/disables unit testing.

	
result([$results = array()])

	

	Parameters:	
	$results (array) – Tests results list

	Returns:	Array of raw result data

	Return type:	array

Returns raw tests results data.

	
set_template($template)

	

	Parameters:	
	$template (string) – Test result template

	Return type:	void

Sets the template for displaying tests results.

URI Class

The URI Class provides methods that help you retrieve information from
your URI strings. If you use URI routing, you can also retrieve
information about the re-routed segments.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

	Class Reference

Class Reference

	
class CI_URI

	
	
segment($n[, $no_result = NULL])

	

	Parameters:	
	$n (int) – Segment index number

	$no_result (mixed) – What to return if the searched segment is not found

	Returns:	Segment value or $no_result value if not found

	Return type:	mixed

Permits you to retrieve a specific segment. Where n is the segment
number you wish to retrieve. Segments are numbered from left to right.
For example, if your full URL is this:

http://example.com/index.php/news/local/metro/crime_is_up

The segment numbers would be this:

	news

	local

	metro

	crime_is_up

The optional second parameter defaults to NULL and allows you to set the return value
of this method when the requested URI segment is missing.
For example, this would tell the method to return the number zero in the event of failure:

$product_id = $this->uri->segment(3, 0);

It helps avoid having to write code like this:

if ($this->uri->segment(3) === FALSE)
{
 $product_id = 0;
}
else
{
 $product_id = $this->uri->segment(3);
}

	
rsegment($n[, $no_result = NULL])

	

	Parameters:	
	$n (int) – Segment index number

	$no_result (mixed) – What to return if the searched segment is not found

	Returns:	Routed segment value or $no_result value if not found

	Return type:	mixed

This method is identical to segment(), except that it lets you retrieve
a specific segment from your re-routed URI in the event you are
using CodeIgniter’s URI Routing feature.

	
slash_segment($n[, $where = 'trailing'])

	

	Parameters:	
	$n (int) – Segment index number

	$where (string) – Where to add the slash (‘trailing’ or ‘leading’)

	Returns:	Segment value, prepended/suffixed with a forward slash, or a slash if not found

	Return type:	string

This method is almost identical to segment(), except it
adds a trailing and/or leading slash based on the second parameter.
If the parameter is not used, a trailing slash added. Examples:

$this->uri->slash_segment(3);
$this->uri->slash_segment(3, 'leading');
$this->uri->slash_segment(3, 'both');

Returns:

	segment/

	/segment

	/segment/

	
slash_rsegment($n[, $where = 'trailing'])

	

	Parameters:	
	$n (int) – Segment index number

	$where (string) – Where to add the slash (‘trailing’ or ‘leading’)

	Returns:	Routed segment value, prepended/suffixed with a forward slash, or a slash if not found

	Return type:	string

This method is identical to slash_segment(), except that it lets you
add slashes a specific segment from your re-routed URI in the event you
are using CodeIgniter’s URI Routing
feature.

	
uri_to_assoc([$n = 3[, $default = array()]])

	

	Parameters:	
	$n (int) – Segment index number

	$default (array) – Default values

	Returns:	Associative URI segments array

	Return type:	array

This method lets you turn URI segments into an associative array of
key/value pairs. Consider this URI:

index.php/user/search/name/joe/location/UK/gender/male

Using this method you can turn the URI into an associative array with
this prototype:

[array]
(
 'name' => 'joe'
 'location' => 'UK'
 'gender' => 'male'
)

The first parameter lets you set an offset, which defaults to 3 since your
URI will normally contain a controller/method pair in the first and second segments.
Example:

$array = $this->uri->uri_to_assoc(3);
echo $array['name'];

The second parameter lets you set default key names, so that the array
returned will always contain expected indexes, even if missing from the URI.
Example:

$default = array('name', 'gender', 'location', 'type', 'sort');
$array = $this->uri->uri_to_assoc(3, $default);

If the URI does not contain a value in your default, an array index will
be set to that name, with a value of NULL.

Lastly, if a corresponding value is not found for a given key (if there
is an odd number of URI segments) the value will be set to NULL.

	
ruri_to_assoc([$n = 3[, $default = array()]])

	

	Parameters:	
	$n (int) – Segment index number

	$default (array) – Default values

	Returns:	Associative routed URI segments array

	Return type:	array

This method is identical to uri_to_assoc(), except that it creates
an associative array using the re-routed URI in the event you are using
CodeIgniter’s URI Routing feature.

	
assoc_to_uri($array)

	

	Parameters:	
	$array (array) – Input array of key/value pairs

	Returns:	URI string

	Return type:	string

Takes an associative array as input and generates a URI string from it.
The array keys will be included in the string. Example:

$array = array('product' => 'shoes', 'size' => 'large', 'color' => 'red');
$str = $this->uri->assoc_to_uri($array);

// Produces: product/shoes/size/large/color/red

	
uri_string()

	

	Returns:	URI string

	Return type:	string

Returns a string with the complete URI. For example, if this is your full URL:

http://example.com/index.php/news/local/345

The method would return this:

news/local/345

	
ruri_string()

	

	Returns:	Routed URI string

	Return type:	string

This method is identical to uri_string(), except that it returns
the re-routed URI in the event you are using CodeIgniter’s URI
Routing feature.

	
total_segments()

	

	Returns:	Count of URI segments

	Return type:	int

Returns the total number of segments.

	
total_rsegments()

	

	Returns:	Count of routed URI segments

	Return type:	int

This method is identical to total_segments(), except that it returns
the total number of segments in your re-routed URI in the event you are
using CodeIgniter’s URI Routing feature.

	
segment_array()

	

	Returns:	URI segments array

	Return type:	array

Returns an array containing the URI segments. For example:

$segs = $this->uri->segment_array();

foreach ($segs as $segment)
{
 echo $segment;
 echo '
';
}

	
rsegment_array()

	

	Returns:	Routed URI segments array

	Return type:	array

This method is identical to segment_array(), except that it returns
the array of segments in your re-routed URI in the event you are using
CodeIgniter’s URI Routing feature.

User Agent Class

The User Agent Class provides functions that help identify information
about the browser, mobile device, or robot visiting your site. In
addition you can get referrer information as well as language and
supported character-set information.

	Using the User Agent Class
	Initializing the Class

	User Agent Definitions

	Example

	Class Reference

Using the User Agent Class

Initializing the Class

Like most other classes in CodeIgniter, the User Agent class is
initialized in your controller using the $this->load->library function:

$this->load->library('user_agent');

Once loaded, the object will be available using: $this->agent

User Agent Definitions

The user agent name definitions are located in a config file located at:
application/config/user_agents.php. You may add items to the various
user agent arrays if needed.

Example

When the User Agent class is initialized it will attempt to determine
whether the user agent browsing your site is a web browser, a mobile
device, or a robot. It will also gather the platform information if it
is available.

$this->load->library('user_agent');

if ($this->agent->is_browser())
{
 $agent = $this->agent->browser().' '.$this->agent->version();
}
elseif ($this->agent->is_robot())
{
 $agent = $this->agent->robot();
}
elseif ($this->agent->is_mobile())
{
 $agent = $this->agent->mobile();
}
else
{
 $agent = 'Unidentified User Agent';
}

echo $agent;

echo $this->agent->platform(); // Platform info (Windows, Linux, Mac, etc.)

Class Reference

	
class CI_User_agent

	
	
is_browser([$key = NULL])

	

	Parameters:	
	$key (string) – Optional browser name

	Returns:	TRUE if the user agent is a (specified) browser, FALSE if not

	Return type:	bool

Returns TRUE/FALSE (boolean) if the user agent is a known web browser.

if ($this->agent->is_browser('Safari'))
{
 echo 'You are using Safari.';
}
elseif ($this->agent->is_browser())
{
 echo 'You are using a browser.';
}

Note

The string “Safari” in this example is an array key in the list of browser definitions.
You can find this list in application/config/user_agents.php if you want to add new
browsers or change the stings.

	
is_mobile([$key = NULL])

	

	Parameters:	
	$key (string) – Optional mobile device name

	Returns:	TRUE if the user agent is a (specified) mobile device, FALSE if not

	Return type:	bool

Returns TRUE/FALSE (boolean) if the user agent is a known mobile device.

if ($this->agent->is_mobile('iphone'))
{
 $this->load->view('iphone/home');
}
elseif ($this->agent->is_mobile())
{
 $this->load->view('mobile/home');
}
else
{
 $this->load->view('web/home');
}

	
is_robot([$key = NULL])

	

	Parameters:	
	$key (string) – Optional robot name

	Returns:	TRUE if the user agent is a (specified) robot, FALSE if not

	Return type:	bool

Returns TRUE/FALSE (boolean) if the user agent is a known robot.

Note

The user agent library only contains the most common robot definitions. It is not a complete list of bots.
There are hundreds of them so searching for each one would not be very efficient. If you find that some bots
that commonly visit your site are missing from the list you can add them to your
application/config/user_agents.php file.

	
is_referral()

	

	Returns:	TRUE if the user agent is a referral, FALSE if not

	Return type:	bool

Returns TRUE/FALSE (boolean) if the user agent was referred from another site.

	
browser()

	

	Returns:	Detected browser or an empty string

	Return type:	string

Returns a string containing the name of the web browser viewing your site.

	
version()

	

	Returns:	Detected browser version or an empty string

	Return type:	string

Returns a string containing the version number of the web browser viewing your site.

	
mobile()

	

	Returns:	Detected mobile device brand or an empty string

	Return type:	string

Returns a string containing the name of the mobile device viewing your site.

	
robot()

	

	Returns:	Detected robot name or an empty string

	Return type:	string

Returns a string containing the name of the robot viewing your site.

	
platform()

	

	Returns:	Detected operating system or an empty string

	Return type:	string

Returns a string containing the platform viewing your site (Linux, Windows, OS X, etc.).

	
referrer()

	

	Returns:	Detected referrer or an empty string

	Return type:	string

The referrer, if the user agent was referred from another site. Typically you’ll test for this as follows:

if ($this->agent->is_referral())
{
 echo $this->agent->referrer();
}

	
agent_string()

	

	Returns:	Full user agent string or an empty string

	Return type:	string

Returns a string containing the full user agent string. Typically it will be something like this:

Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.0.4) Gecko/20060613 Camino/1.0.2

	
accept_lang([$lang = 'en'])

	

	Parameters:	
	$lang (string) – Language key

	Returns:	TRUE if provided language is accepted, FALSE if not

	Return type:	bool

Lets you determine if the user agent accepts a particular language. Example:

if ($this->agent->accept_lang('en'))
{
 echo 'You accept English!';
}

Note

This method is not typically very reliable since some browsers do not provide language info,
and even among those that do, it is not always accurate.

	
languages()

	

	Returns:	An array list of accepted languages

	Return type:	array

Returns an array of languages supported by the user agent.

	
accept_charset([$charset = 'utf-8'])

	

	Parameters:	
	$charset (string) – Character set

	Returns:	TRUE if the character set is accepted, FALSE if not

	Return type:	bool

Lets you determine if the user agent accepts a particular character set. Example:

if ($this->agent->accept_charset('utf-8'))
{
 echo 'You browser supports UTF-8!';
}

Note

This method is not typically very reliable since some browsers do not provide character-set info,
and even among those that do, it is not always accurate.

	
charsets()

	

	Returns:	An array list of accepted character sets

	Return type:	array

Returns an array of character sets accepted by the user agent.

	
parse($string)

	

	Parameters:	
	$string (string) – A custom user-agent string

	Return type:	void

Parses a custom user-agent string, different from the one reported by the current visitor.

XML-RPC and XML-RPC Server Classes

CodeIgniter’s XML-RPC classes permit you to send requests to another
server, or set up your own XML-RPC server to receive requests.

	What is XML-RPC?

	Using the XML-RPC Class
	Initializing the Class

	Sending XML-RPC Requests
	Explanation

	Anatomy of a Request

	Creating an XML-RPC Server

	Processing Server Requests
	Notes:

	Formatting a Response

	Sending an Error Response

	Creating Your Own Client and Server
	The Client

	The Server

	Try it!

	Using Associative Arrays In a Request Parameter

	Data Types

	Class Reference

What is XML-RPC?

Quite simply it is a way for two computers to communicate over the
internet using XML. One computer, which we will call the client, sends
an XML-RPC request to another computer, which we will call the
server. Once the server receives and processes the request it will send
back a response to the client.

For example, using the MetaWeblog API, an XML-RPC Client (usually a
desktop publishing tool) will send a request to an XML-RPC Server
running on your site. This request might be a new weblog entry being
sent for publication, or it could be a request for an existing entry for
editing. When the XML-RPC Server receives this request it will examine
it to determine which class/method should be called to process the
request. Once processed, the server will then send back a response
message.

For detailed specifications, you can visit the XML-RPC [http://www.xmlrpc.com/] site.

Using the XML-RPC Class

Initializing the Class

Like most other classes in CodeIgniter, the XML-RPC and XML-RPCS classes
are initialized in your controller using the $this->load->library
function:

To load the XML-RPC class you will use:

$this->load->library('xmlrpc');

Once loaded, the xml-rpc library object will be available using:
$this->xmlrpc

To load the XML-RPC Server class you will use:

$this->load->library('xmlrpc');
$this->load->library('xmlrpcs');

Once loaded, the xml-rpcs library object will be available using:
$this->xmlrpcs

Note

When using the XML-RPC Server class you must load BOTH the
XML-RPC class and the XML-RPC Server class.

Sending XML-RPC Requests

To send a request to an XML-RPC server you must specify the following
information:

	The URL of the server

	The method on the server you wish to call

	The request data (explained below).

Here is a basic example that sends a simple Weblogs.com ping to the
Ping-o-Matic [http://pingomatic.com/]

$this->load->library('xmlrpc');

$this->xmlrpc->server('http://rpc.pingomatic.com/', 80);
$this->xmlrpc->method('weblogUpdates.ping');

$request = array('My Photoblog', 'http://www.my-site.com/photoblog/');
$this->xmlrpc->request($request);

if (! $this->xmlrpc->send_request())
{
 echo $this->xmlrpc->display_error();
}

Explanation

The above code initializes the XML-RPC class, sets the server URL and
method to be called (weblogUpdates.ping). The request (in this case, the
title and URL of your site) is placed into an array for transportation,
and compiled using the request() function. Lastly, the full request is
sent. If the send_request() method returns false we will display the
error message sent back from the XML-RPC Server.

Anatomy of a Request

An XML-RPC request is simply the data you are sending to the XML-RPC
server. Each piece of data in a request is referred to as a request
parameter. The above example has two parameters: The URL and title of
your site. When the XML-RPC server receives your request, it will look
for parameters it requires.

Request parameters must be placed into an array for transportation, and
each parameter can be one of seven data types (strings, numbers, dates,
etc.). If your parameters are something other than strings you will have
to include the data type in the request array.

Here is an example of a simple array with three parameters:

$request = array('John', 'Doe', 'www.some-site.com');
$this->xmlrpc->request($request);

If you use data types other than strings, or if you have several
different data types, you will place each parameter into its own array,
with the data type in the second position:

$request = array(
 array('John', 'string'),
 array('Doe', 'string'),
 array(FALSE, 'boolean'),
 array(12345, 'int')
);
$this->xmlrpc->request($request);

The Data Types section below has a full list of data
types.

Creating an XML-RPC Server

An XML-RPC Server acts as a traffic cop of sorts, waiting for incoming
requests and redirecting them to the appropriate functions for
processing.

To create your own XML-RPC server involves initializing the XML-RPC
Server class in your controller where you expect the incoming request to
appear, then setting up an array with mapping instructions so that
incoming requests can be sent to the appropriate class and method for
processing.

Here is an example to illustrate:

$this->load->library('xmlrpc');
$this->load->library('xmlrpcs');

$config['functions']['new_post'] = array('function' => 'My_blog.new_entry');
$config['functions']['update_post'] = array('function' => 'My_blog.update_entry');
$config['object'] = $this;

$this->xmlrpcs->initialize($config);
$this->xmlrpcs->serve();

The above example contains an array specifying two method requests that
the Server allows. The allowed methods are on the left side of the
array. When either of those are received, they will be mapped to the
class and method on the right.

The ‘object’ key is a special key that you pass an instantiated class
object with, which is necessary when the method you are mapping to is
not part of the CodeIgniter super object.

In other words, if an XML-RPC Client sends a request for the new_post
method, your server will load the My_blog class and call the new_entry
function. If the request is for the update_post method, your server
will load the My_blog class and call the update_entry() method.

The function names in the above example are arbitrary. You’ll decide
what they should be called on your server, or if you are using
standardized APIs, like the Blogger or MetaWeblog API, you’ll use their
function names.

There are two additional configuration keys you may make use of when
initializing the server class: debug can be set to TRUE in order to
enable debugging, and xss_clean may be set to FALSE to prevent sending
data through the Security library’s xss_clean() method.

Processing Server Requests

When the XML-RPC Server receives a request and loads the class/method
for processing, it will pass an object to that method containing the
data sent by the client.

Using the above example, if the new_post method is requested, the
server will expect a class to exist with this prototype:

class My_blog extends CI_Controller {

 public function new_post($request)
 {

 }
}

The $request variable is an object compiled by the Server, which
contains the data sent by the XML-RPC Client. Using this object you will
have access to the request parameters enabling you to process the
request. When you are done you will send a Response back to the Client.

Below is a real-world example, using the Blogger API. One of the methods
in the Blogger API is getUserInfo(). Using this method, an XML-RPC
Client can send the Server a username and password, in return the Server
sends back information about that particular user (nickname, user ID,
email address, etc.). Here is how the processing function might look:

class My_blog extends CI_Controller {

 public function getUserInfo($request)
 {
 $username = 'smitty';
 $password = 'secretsmittypass';

 $this->load->library('xmlrpc');

 $parameters = $request->output_parameters();

 if ($parameters[1] != $username && $parameters[2] != $password)
 {
 return $this->xmlrpc->send_error_message('100', 'Invalid Access');
 }

 $response = array(
 array(
 'nickname' => array('Smitty', 'string'),
 'userid' => array('99', 'string'),
 'url' => array('http://yoursite.com', 'string'),
 'email' => array('jsmith@yoursite.com', 'string'),
 'lastname' => array('Smith', 'string'),
 'firstname' => array('John', 'string')
),
 'struct'
);

 return $this->xmlrpc->send_response($response);
 }
}

Notes:

The output_parameters() method retrieves an indexed array
corresponding to the request parameters sent by the client. In the above
example, the output parameters will be the username and password.

If the username and password sent by the client were not valid, and
error message is returned using send_error_message().

If the operation was successful, the client will be sent back a response
array containing the user’s info.

Formatting a Response

Similar to Requests, Responses must be formatted as an array.
However, unlike requests, a response is an array that contains a
single item. This item can be an array with several additional arrays,
but there can be only one primary array index. In other words, the basic
prototype is this:

$response = array('Response data', 'array');

Responses, however, usually contain multiple pieces of information. In
order to accomplish this we must put the response into its own array so
that the primary array continues to contain a single piece of data.
Here’s an example showing how this might be accomplished:

$response = array(
 array(
 'first_name' => array('John', 'string'),
 'last_name' => array('Doe', 'string'),
 'member_id' => array(123435, 'int'),
 'todo_list' => array(array('clean house', 'call mom', 'water plants'), 'array'),
),
 'struct'
);

Notice that the above array is formatted as a struct. This is the most
common data type for responses.

As with Requests, a response can be one of the seven data types listed
in the Data Types section.

Sending an Error Response

If you need to send the client an error response you will use the
following:

return $this->xmlrpc->send_error_message('123', 'Requested data not available');

The first parameter is the error number while the second parameter is
the error message.

Creating Your Own Client and Server

To help you understand everything we’ve covered thus far, let’s create a
couple controllers that act as XML-RPC Client and Server. You’ll use the
Client to send a request to the Server and receive a response.

The Client

Using a text editor, create a controller called Xmlrpc_client.php. In
it, place this code and save it to your application/controllers/
folder:

<?php

class Xmlrpc_client extends CI_Controller {

 public function index()
 {
 $this->load->helper('url');
 $server_url = site_url('xmlrpc_server');

 $this->load->library('xmlrpc');

 $this->xmlrpc->server($server_url, 80);
 $this->xmlrpc->method('Greetings');

 $request = array('How is it going?');
 $this->xmlrpc->request($request);

 if (! $this->xmlrpc->send_request())
 {
 echo $this->xmlrpc->display_error();
 }
 else
 {
 echo '<pre>';
 print_r($this->xmlrpc->display_response());
 echo '</pre>';
 }
 }
}
?>

Note

In the above code we are using a “url helper”. You can find more
information in the Helpers Functions page.

The Server

Using a text editor, create a controller called Xmlrpc_server.php. In
it, place this code and save it to your application/controllers/
folder:

<?php

class Xmlrpc_server extends CI_Controller {

 public function index()
 {
 $this->load->library('xmlrpc');
 $this->load->library('xmlrpcs');

 $config['functions']['Greetings'] = array('function' => 'Xmlrpc_server.process');

 $this->xmlrpcs->initialize($config);
 $this->xmlrpcs->serve();
 }

 public function process($request)
 {
 $parameters = $request->output_parameters();

 $response = array(
 array(
 'you_said' => $parameters[0],
 'i_respond' => 'Not bad at all.'
),
 'struct'
);

 return $this->xmlrpc->send_response($response);
 }
}

Try it!

Now visit the your site using a URL similar to this:

example.com/index.php/xmlrpc_client/

You should now see the message you sent to the server, and its response
back to you.

The client you created sends a message (“How’s is going?”) to the
server, along with a request for the “Greetings” method. The Server
receives the request and maps it to the process() method, where a
response is sent back.

Using Associative Arrays In a Request Parameter

If you wish to use an associative array in your method parameters you
will need to use a struct datatype:

$request = array(
 array(
 // Param 0
 array('name' => 'John'),
 'struct'
),
 array(
 // Param 1
 array(
 'size' => 'large',
 'shape'=>'round'
),
 'struct'
)
);

$this->xmlrpc->request($request);

You can retrieve the associative array when processing the request in
the Server.

$parameters = $request->output_parameters();
$name = $parameters[0]['name'];
$size = $parameters[1]['size'];
$shape = $parameters[1]['shape'];

Data Types

According to the XML-RPC spec [http://www.xmlrpc.com/spec] there are
seven types of values that you can send via XML-RPC:

	int or i4

	boolean

	string

	double

	dateTime.iso8601

	base64

	struct (contains array of values)

	array (contains array of values)

Class Reference

	
class CI_Xmlrpc

	
	
initialize([$config = array()])

	

	Parameters:	
	$config (array) – Configuration data

	Return type:	void

Initializes the XML-RPC library. Accepts an associative array containing your settings.

	
server($url[, $port = 80[, $proxy = FALSE[, $proxy_port = 8080]]])

	

	Parameters:	
	$url (string) – XML-RPC server URL

	$port (int) – Server port

	$proxy (string) – Optional proxy

	$proxy_port (int) – Proxy listening port

	Return type:	void

Sets the URL and port number of the server to which a request is to be sent:

$this->xmlrpc->server('http://www.sometimes.com/pings.php', 80);

Basic HTTP authentication is also supported, simply add it to the server URL:

$this->xmlrpc->server('http://user:pass@localhost/', 80);

	
timeout($seconds = 5)

	

	Parameters:	
	$seconds (int) – Timeout in seconds

	Return type:	void

Set a time out period (in seconds) after which the request will be canceled:

$this->xmlrpc->timeout(6);

This timeout period will be used both for an initial connection to
the remote server, as well as for getting a response from it.
Make sure you set the timeout before calling send_request().

	
method($function)

	

	Parameters:	
	$function (string) – Method name

	Return type:	void

Sets the method that will be requested from the XML-RPC server:

$this->xmlrpc->method('method');

Where method is the name of the method.

	
request($incoming)

	

	Parameters:	
	$incoming (array) – Request data

	Return type:	void

Takes an array of data and builds request to be sent to XML-RPC server:

$request = array(array('My Photoblog', 'string'), 'http://www.yoursite.com/photoblog/');
$this->xmlrpc->request($request);

	
send_request()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

The request sending method. Returns boolean TRUE or FALSE based on success for failure, enabling it to be used conditionally.

	
display_error()

	

	Returns:	Error message string

	Return type:	string

Returns an error message as a string if your request failed for some reason.

echo $this->xmlrpc->display_error();

	
display_response()

	

	Returns:	Response

	Return type:	mixed

Returns the response from the remote server once request is received. The response will typically be an associative array.

$this->xmlrpc->display_response();

	
send_error_message($number, $message)

	

	Parameters:	
	$number (int) – Error number

	$message (string) – Error message

	Returns:	XML_RPC_Response instance

	Return type:	XML_RPC_Response

This method lets you send an error message from your server to the client.
First parameter is the error number while the second parameter is the error message.

return $this->xmlrpc->send_error_message(123, 'Requested data not available');

Zip Encoding Class

CodeIgniter’s Zip Encoding Class permits you to create Zip archives.
Archives can be downloaded to your desktop or saved to a directory.

	Using the Zip Encoding Class
	Initializing the Class

	Usage Example

	Class Reference

Using the Zip Encoding Class

Initializing the Class

Like most other classes in CodeIgniter, the Zip class is initialized in
your controller using the $this->load->library function:

$this->load->library('zip');

Once loaded, the Zip library object will be available using:

$this->zip

Usage Example

This example demonstrates how to compress a file, save it to a folder on
your server, and download it to your desktop.

$name = 'mydata1.txt';
$data = 'A Data String!';

$this->zip->add_data($name, $data);

// Write the zip file to a folder on your server. Name it "my_backup.zip"
$this->zip->archive('/path/to/directory/my_backup.zip');

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

Class Reference

	
class CI_Zip

	
	
$compression_level = 2

	The compression level to use.

It can range from 0 to 9, with 9 being the highest and 0 effectively disabling compression:

$this->zip->compression_level = 0;

	
add_data($filepath[, $data = NULL])

	

	Parameters:	
	$filepath (mixed) – A single file path or an array of file => data pairs

	$data (array) – File contents (ignored if $filepath is an array)

	Return type:	void

Adds data to the Zip archive. Can work both in single and multiple files mode.

When adding a single file, the first parameter must contain the name you would
like given to the file and the second must contain the file contents:

$name = 'mydata1.txt';
$data = 'A Data String!';
$this->zip->add_data($name, $data);

$name = 'mydata2.txt';
$data = 'Another Data String!';
$this->zip->add_data($name, $data);

When adding multiple files, the first parameter must contain file => contents pairs
and the second parameter is ignored:

$data = array(
 'mydata1.txt' => 'A Data String!',
 'mydata2.txt' => 'Another Data String!'
);

$this->zip->add_data($data);

If you would like your compressed data organized into sub-directories, simply include
the path as part of the filename(s):

$name = 'personal/my_bio.txt';
$data = 'I was born in an elevator...';

$this->zip->add_data($name, $data);

The above example will place my_bio.txt inside a folder called personal.

	
add_dir($directory)

	

	Parameters:	
	$directory (mixed) – Directory name string or an array of multiple directories

	Return type:	void

Permits you to add a directory. Usually this method is unnecessary since you can place
your data into directories when using $this->zip->add_data(), but if you would like
to create an empty directory you can do so:

$this->zip->add_dir('myfolder'); // Creates a directory called "myfolder"

	
read_file($path[, $archive_filepath = FALSE])

	

	Parameters:	
	$path (string) – Path to file

	$archive_filepath (mixed) – New file name/path (string) or (boolean) whether to maintain the original filepath

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Permits you to compress a file that already exists somewhere on your server.
Supply a file path and the zip class will read it and add it to the archive:

$path = '/path/to/photo.jpg';

$this->zip->read_file($path);

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

If you would like the Zip archive to maintain the directory structure of
the file in it, pass TRUE (boolean) in the second parameter. Example:

$path = '/path/to/photo.jpg';

$this->zip->read_file($path, TRUE);

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

In the above example, photo.jpg will be placed into the path/to/ directory.

You can also specify a new name (path included) for the added file on the fly:

$path = '/path/to/photo.jpg';
$new_path = '/new/path/some_photo.jpg';

$this->zip->read_file($path, $new_path);

// Download ZIP archive containing /new/path/some_photo.jpg
$this->zip->download('my_archive.zip');

	
read_dir($path[, $preserve_filepath = TRUE[, $root_path = NULL]])

	

	Parameters:	
	$path (string) – Path to directory

	$preserve_filepath (bool) – Whether to maintain the original path

	$root_path (string) – Part of the path to exclude from the archive directory

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Permits you to compress a directory (and its contents) that already exists somewhere on your server.
Supply a path to the directory and the zip class will recursively read and recreate it as a Zip archive.
All files contained within the supplied path will be encoded, as will any sub-directories contained within it. Example:

$path = '/path/to/your/directory/';

$this->zip->read_dir($path);

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

By default the Zip archive will place all directories listed in the first parameter
inside the zip. If you want the tree preceding the target directory to be ignored,
you can pass FALSE (boolean) in the second parameter. Example:

$path = '/path/to/your/directory/';

$this->zip->read_dir($path, FALSE);

This will create a ZIP with a directory named “directory” inside, then all sub-directories
stored correctly inside that, but will not include the /path/to/your part of the path.

	
archive($filepath)

	

	Parameters:	
	$filepath (string) – Path to target zip archive

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Writes the Zip-encoded file to a directory on your server. Submit a valid server path
ending in the file name. Make sure the directory is writable (755 is usually OK).
Example:

$this->zip->archive('/path/to/folder/myarchive.zip'); // Creates a file named myarchive.zip

	
download($filename = 'backup.zip')

	

	Parameters:	
	$filename (string) – Archive file name

	Return type:	void

Causes the Zip file to be downloaded from your server.
You must pass the name you would like the zip file called. Example:

$this->zip->download('latest_stuff.zip'); // File will be named "latest_stuff.zip"

Note

Do not display any data in the controller in which you call
this method since it sends various server headers that cause the
download to happen and the file to be treated as binary.

	
get_zip()

	

	Returns:	Zip file content

	Return type:	string

Returns the Zip-compressed file data. Generally you will not need this method unless you
want to do something unique with the data. Example:

$name = 'my_bio.txt';
$data = 'I was born in an elevator...';

$this->zip->add_data($name, $data);

$zip_file = $this->zip->get_zip();

	
clear_data()

	

	Return type:	void

The Zip class caches your zip data so that it doesn’t need to recompile the Zip archive
for each method you use above. If, however, you need to create multiple Zip archives,
each with different data, you can clear the cache between calls. Example:

$name = 'my_bio.txt';
$data = 'I was born in an elevator...';

$this->zip->add_data($name, $data);
$zip_file = $this->zip->get_zip();

$this->zip->clear_data();

$name = 'photo.jpg';
$this->zip->read_file("/path/to/photo.jpg"); // Read the file's contents

$this->zip->download('myphotos.zip');

Database Reference

CodeIgniter comes with a full-featured and very fast abstracted database
class that supports both traditional structures and Query Builder
patterns. The database functions offer clear, simple syntax.

	Quick Start: Usage Examples

	Database Configuration

	Connecting to a Database

	Running Queries

	Generating Query Results

	Query Helper Functions

	Query Builder Class

	Transactions

	Getting MetaData

	Custom Function Calls

	Query Caching

	Database Manipulation with Database Forge

	Database Utilities Class

	Database Driver Reference

Database Quick Start: Example Code

The following page contains example code showing how the database class
is used. For complete details please read the individual pages
describing each function.

Initializing the Database Class

The following code loads and initializes the database class based on
your configuration settings:

$this->load->database();

Once loaded the class is ready to be used as described below.

Note: If all your pages require database access you can connect
automatically. See the connecting page for details.

Standard Query With Multiple Results (Object Version)

$query = $this->db->query('SELECT name, title, email FROM my_table');

foreach ($query->result() as $row)
{
 echo $row->title;
 echo $row->name;
 echo $row->email;
}

echo 'Total Results: ' . $query->num_rows();

The above result() function returns an array of objects. Example:
$row->title

Standard Query With Multiple Results (Array Version)

$query = $this->db->query('SELECT name, title, email FROM my_table');

foreach ($query->result_array() as $row)
{
 echo $row['title'];
 echo $row['name'];
 echo $row['email'];
}

The above result_array() function returns an array of standard array
indexes. Example: $row[‘title’]

Standard Query With Single Result

$query = $this->db->query('SELECT name FROM my_table LIMIT 1');
$row = $query->row();
echo $row->name;

The above row() function returns an object. Example: $row->name

Standard Query With Single Result (Array version)

$query = $this->db->query('SELECT name FROM my_table LIMIT 1');
$row = $query->row_array();
echo $row['name'];

The above row_array() function returns an array. Example:
$row[‘name’]

Standard Insert

$sql = "INSERT INTO mytable (title, name) VALUES (".$this->db->escape($title).", ".$this->db->escape($name).")";
$this->db->query($sql);
echo $this->db->affected_rows();

Query Builder Query

The Query Builder Pattern gives you a simplified
means of retrieving data:

$query = $this->db->get('table_name');

foreach ($query->result() as $row)
{
 echo $row->title;
}

The above get() function retrieves all the results from the supplied
table. The Query Builder class contains a full
compliment of functions for working with data.

Query Builder Insert

$data = array(
 'title' => $title,
 'name' => $name,
 'date' => $date
);

$this->db->insert('mytable', $data); // Produces: INSERT INTO mytable (title, name, date) VALUES ('{$title}', '{$name}', '{$date}')

Database Configuration

CodeIgniter has a config file that lets you store your database
connection values (username, password, database name, etc.). The config
file is located at application/config/database.php. You can also set
database connection values for specific
environments by placing database.php
in the respective environment config folder.

The config settings are stored in a multi-dimensional array with this
prototype:

$db['default'] = array(
 'dsn' => '',
 'hostname' => 'localhost',
 'username' => 'root',
 'password' => '',
 'database' => 'database_name',
 'dbdriver' => 'mysqli',
 'dbprefix' => '',
 'pconnect' => TRUE,
 'db_debug' => TRUE,
 'cache_on' => FALSE,
 'cachedir' => '',
 'char_set' => 'utf8',
 'dbcollat' => 'utf8_general_ci',
 'swap_pre' => '',
 'encrypt' => FALSE,
 'compress' => FALSE,
 'stricton' => FALSE,
 'failover' => array()
);

Some database drivers (such as PDO, PostgreSQL, Oracle, ODBC) might
require a full DSN string to be provided. If that is the case, you
should use the ‘dsn’ configuration setting, as if you’re using the
driver’s underlying native PHP extension, like this:

// PDO
$db['default']['dsn'] = 'pgsql:host=localhost;port=5432;dbname=database_name';

// Oracle
$db['default']['dsn'] = '//localhost/XE';

Note

If you do not specify a DSN string for a driver that requires it, CodeIgniter
will try to build it with the rest of the provided settings.

Note

If you provide a DSN string and it is missing some valid settings (e.g. the
database character set), which are present in the rest of the configuration
fields, CodeIgniter will append them.

You can also specify failovers for the situation when the main connection cannot connect for some reason.
These failovers can be specified by setting the failover for a connection like this:

$db['default']['failover'] = array(
 array(
 'hostname' => 'localhost1',
 'username' => '',
 'password' => '',
 'database' => '',
 'dbdriver' => 'mysqli',
 'dbprefix' => '',
 'pconnect' => TRUE,
 'db_debug' => TRUE,
 'cache_on' => FALSE,
 'cachedir' => '',
 'char_set' => 'utf8',
 'dbcollat' => 'utf8_general_ci',
 'swap_pre' => '',
 'encrypt' => FALSE,
 'compress' => FALSE,
 'stricton' => FALSE
),
 array(
 'hostname' => 'localhost2',
 'username' => '',
 'password' => '',
 'database' => '',
 'dbdriver' => 'mysqli',
 'dbprefix' => '',
 'pconnect' => TRUE,
 'db_debug' => TRUE,
 'cache_on' => FALSE,
 'cachedir' => '',
 'char_set' => 'utf8',
 'dbcollat' => 'utf8_general_ci',
 'swap_pre' => '',
 'encrypt' => FALSE,
 'compress' => FALSE,
 'stricton' => FALSE
)
);

You can specify as many failovers as you like.

The reason we use a multi-dimensional array rather than a more simple
one is to permit you to optionally store multiple sets of connection
values. If, for example, you run multiple environments (development,
production, test, etc.) under a single installation, you can set up a
connection group for each, then switch between groups as needed. For
example, to set up a “test” environment you would do this:

$db['test'] = array(
 'dsn' => '',
 'hostname' => 'localhost',
 'username' => 'root',
 'password' => '',
 'database' => 'database_name',
 'dbdriver' => 'mysqli',
 'dbprefix' => '',
 'pconnect' => TRUE,
 'db_debug' => TRUE,
 'cache_on' => FALSE,
 'cachedir' => '',
 'char_set' => 'utf8',
 'dbcollat' => 'utf8_general_ci',
 'swap_pre' => '',
 'compress' => FALSE,
 'encrypt' => FALSE,
 'stricton' => FALSE,
 'failover' => array()
);

Then, to globally tell the system to use that group you would set this
variable located in the config file:

$active_group = 'test';

Note

The name ‘test’ is arbitrary. It can be anything you want. By
default we’ve used the word “default” for the primary connection,
but it too can be renamed to something more relevant to your project.

Query Builder

The Query Builder Class is globally enabled or
disabled by setting the $query_builder variable in the database
configuration file to TRUE/FALSE (boolean). The default setting is TRUE.
If you are not using the
query builder class, setting it to FALSE will utilize fewer resources
when the database classes are initialized.

$query_builder = TRUE;

Note

that some CodeIgniter classes such as Sessions require Query
Builder to be enabled to access certain functionality.

Explanation of Values:

	Name Config
	Description

	dsn
	The DSN connect string (an all-in-one configuration sequence).

	hostname
	The hostname of your database server. Often this is ‘localhost’.

	username
	The username used to connect to the database.

	password
	The password used to connect to the database.

	database
	The name of the database you want to connect to.

	dbdriver
	The database type. ie: mysqli, postgre, odbc, etc. Must be specified in lower case.

	dbprefix
	An optional table prefix which will added to the table name when running
Query Builder queries. This permits multiple CodeIgniter
installations to share one database.

	pconnect
	TRUE/FALSE (boolean) - Whether to use a persistent connection.

	db_debug
	TRUE/FALSE (boolean) - Whether database errors should be displayed.

	cache_on
	TRUE/FALSE (boolean) - Whether database query caching is enabled,
see also Database Caching Class.

	cachedir
	The absolute server path to your database query cache directory.

	char_set
	The character set used in communicating with the database.

	dbcollat
	The character collation used in communicating with the database

Note

Only used in the ‘mysql’ and ‘mysqli’ drivers.

	swap_pre
	A default table prefix that should be swapped with dbprefix. This is useful for distributed
applications where you might run manually written queries, and need the prefix to still be
customizable by the end user.

	schema
	The database schema, defaults to ‘public’. Used by PostgreSQL and ODBC drivers.

	encrypt
	Whether or not to use an encrypted connection.

	‘mysql’ (deprecated), ‘sqlsrv’ and ‘pdo/sqlsrv’ drivers accept TRUE/FALSE

	‘mysqli’ and ‘pdo/mysql’ drivers accept an array with the following options:
	‘ssl_key’ - Path to the private key file

	‘ssl_cert’ - Path to the public key certificate file

	‘ssl_ca’ - Path to the certificate authority file

	‘ssl_capath’ - Path to a directory containing trusted CA certificates in PEM format

	‘ssl_cipher’ - List of allowed ciphers to be used for the encryption, separated by colons (‘:’)

	‘ssl_verify’ - TRUE/FALSE; Whether to verify the server certificate or not (‘mysqli’ only)

	compress
	Whether or not to use client compression (MySQL only).

	stricton
	TRUE/FALSE (boolean) - Whether to force “Strict Mode” connections, good for ensuring strict SQL
while developing an application.

	port
	The database port number. To use this value you have to add a line to the database config array.

$db['default']['port'] = 5432;

Note

Depending on what database platform you are using (MySQL, PostgreSQL,
etc.) not all values will be needed. For example, when using SQLite you
will not need to supply a username or password, and the database name
will be the path to your database file. The information above assumes
you are using MySQL.

Connecting to your Database

There are two ways to connect to a database:

Automatically Connecting

The “auto connect” feature will load and instantiate the database class
with every page load. To enable “auto connecting”, add the word database
to the library array, as indicated in the following file:

application/config/autoload.php

Manually Connecting

If only some of your pages require database connectivity you can
manually connect to your database by adding this line of code in any
function where it is needed, or in your class constructor to make the
database available globally in that class.

$this->load->database();

If the above function does not contain any information in the first
parameter it will connect to the group specified in your database config
file. For most people, this is the preferred method of use.

Available Parameters

	The database connection values, passed either as an array or a DSN
string.

	TRUE/FALSE (boolean). Whether to return the connection ID (see
Connecting to Multiple Databases below).

	TRUE/FALSE (boolean). Whether to enable the Query Builder class. Set
to TRUE by default.

Manually Connecting to a Database

The first parameter of this function can optionally be used to
specify a particular database group from your config file, or you can
even submit connection values for a database that is not specified in
your config file. Examples:

To choose a specific group from your config file you can do this:

$this->load->database('group_name');

Where group_name is the name of the connection group from your config
file.

To connect manually to a desired database you can pass an array of
values:

$config['hostname'] = 'localhost';
$config['username'] = 'myusername';
$config['password'] = 'mypassword';
$config['database'] = 'mydatabase';
$config['dbdriver'] = 'mysqli';
$config['dbprefix'] = '';
$config['pconnect'] = FALSE;
$config['db_debug'] = TRUE;
$config['cache_on'] = FALSE;
$config['cachedir'] = '';
$config['char_set'] = 'utf8';
$config['dbcollat'] = 'utf8_general_ci';
$this->load->database($config);

For information on each of these values please see the configuration
page.

Note

For the PDO driver, you should use the $config[‘dsn’] setting
instead of ‘hostname’ and ‘database’:

$config[‘dsn’] = ‘mysql:host=localhost;dbname=mydatabase’;

Or you can submit your database values as a Data Source Name. DSNs must
have this prototype:

$dsn = 'dbdriver://username:password@hostname/database';
$this->load->database($dsn);

To override default config values when connecting with a DSN string, add
the config variables as a query string.

$dsn = 'dbdriver://username:password@hostname/database?char_set=utf8&dbcollat=utf8_general_ci&cache_on=true&cachedir=/path/to/cache';
$this->load->database($dsn);

Connecting to Multiple Databases

If you need to connect to more than one database simultaneously you can
do so as follows:

$DB1 = $this->load->database('group_one', TRUE);
$DB2 = $this->load->database('group_two', TRUE);

Note: Change the words “group_one” and “group_two” to the specific
group names you are connecting to (or you can pass the connection values
as indicated above).

By setting the second parameter to TRUE (boolean) the function will
return the database object.

Note

When you connect this way, you will use your object name to issue
commands rather than the syntax used throughout this guide. In other
words, rather than issuing commands with:

$this->db->query();

$this->db->result();

etc…

You will instead use:

$DB1->query();

$DB1->result();

etc…

Note

You don’t need to create separate database configurations if you
only need to use a different database on the same connection. You
can switch to a different database when you need to, like this:

$this->db->db_select($database2_name);

Reconnecting / Keeping the Connection Alive

If the database server’s idle timeout is exceeded while you’re doing
some heavy PHP lifting (processing an image, for instance), you should
consider pinging the server by using the reconnect() method before
sending further queries, which can gracefully keep the connection alive
or re-establish it.

$this->db->reconnect();

Manually closing the Connection

While CodeIgniter intelligently takes care of closing your database
connections, you can explicitly close the connection.

$this->db->close();

Queries

Query Basics

Regular Queries

To submit a query, use the query function:

$this->db->query('YOUR QUERY HERE');

The query() function returns a database result object when “read”
type queries are run, which you can use to show your
results. When “write” type queries are run it simply
returns TRUE or FALSE depending on success or failure. When retrieving
data you will typically assign the query to your own variable, like
this:

$query = $this->db->query('YOUR QUERY HERE');

Simplified Queries

The simple_query method is a simplified version of the
$this->db->query() method. It DOES
NOT return a database result set, nor does it set the query timer, or
compile bind data, or store your query for debugging. It simply lets you
submit a query. Most users will rarely use this function.

It returns whatever the database drivers’ “execute” function returns.
That typically is TRUE/FALSE on success or failure for write type queries
such as INSERT, DELETE or UPDATE statements (which is what it really
should be used for) and a resource/object on success for queries with
fetchable results.

if ($this->db->simple_query('YOUR QUERY'))
{
 echo "Success!";
}
else
{
 echo "Query failed!";
}

Note

PostgreSQL’s pg_exec() function (for example) always
returns a resource on success, even for write type queries.
So take that in mind if you’re looking for a boolean value.

Working with Database prefixes manually

If you have configured a database prefix and would like to prepend it to
a table name for use in a native SQL query for example, then you can use
the following:

$this->db->dbprefix('tablename'); // outputs prefix_tablename

If for any reason you would like to change the prefix programatically
without needing to create a new connection, you can use this method:

$this->db->set_dbprefix('newprefix_');
$this->db->dbprefix('tablename'); // outputs newprefix_tablename

Protecting identifiers

In many databases it is advisable to protect table and field names - for
example with backticks in MySQL. Query Builder queries are
automatically protected, however if you need to manually protect an
identifier you can use:

$this->db->protect_identifiers('table_name');

Important

Although the Query Builder will try its best to properly
quote any field and table names that you feed it, note that it
is NOT designed to work with arbitrary user input. DO NOT feed it
with unsanitized user data.

This function will also add a table prefix to your table, assuming you
have a prefix specified in your database config file. To enable the
prefixing set TRUE (boolean) via the second parameter:

$this->db->protect_identifiers('table_name', TRUE);

Escaping Queries

It’s a very good security practice to escape your data before submitting
it into your database. CodeIgniter has three methods that help you do
this:

	$this->db->escape() This function determines the data type so
that it can escape only string data. It also automatically adds
single quotes around the data so you don’t have to:

$sql = "INSERT INTO table (title) VALUES(".$this->db->escape($title).")";

	$this->db->escape_str() This function escapes the data passed to
it, regardless of type. Most of the time you’ll use the above
function rather than this one. Use the function like this:

$sql = "INSERT INTO table (title) VALUES('".$this->db->escape_str($title)."')";

	$this->db->escape_like_str() This method should be used when
strings are to be used in LIKE conditions so that LIKE wildcards
(‘%’, ‘_’) in the string are also properly escaped.

$search = '20% raise';
$sql = "SELECT id FROM table WHERE column LIKE '%" .
 $this->db->escape_like_str($search)."%' ESCAPE '!'";

Important

The escape_like_str() method uses ‘!’ (exclamation mark)
to escape special characters for LIKE conditions. Because this
method escapes partial strings that you would wrap in quotes
yourself, it cannot automatically add the ESCAPE '!'
condition for you, and so you’ll have to manually do that.

Query Bindings

Bindings enable you to simplify your query syntax by letting the system
put the queries together for you. Consider the following example:

$sql = "SELECT * FROM some_table WHERE id = ? AND status = ? AND author = ?";
$this->db->query($sql, array(3, 'live', 'Rick'));

The question marks in the query are automatically replaced with the
values in the array in the second parameter of the query function.

Binding also work with arrays, which will be transformed to IN sets:

$sql = "SELECT * FROM some_table WHERE id IN ? AND status = ? AND author = ?";
$this->db->query($sql, array(array(3, 6), 'live', 'Rick'));

The resulting query will be:

SELECT * FROM some_table WHERE id IN (3,6) AND status = 'live' AND author = 'Rick'

The secondary benefit of using binds is that the values are
automatically escaped, producing safer queries. You don’t have to
remember to manually escape data; the engine does it automatically for
you.

Handling Errors

$this->db->error();

If you need to get the last error that has occurred, the error() method
will return an array containing its code and message. Here’s a quick
example:

if (! $this->db->simple_query('SELECT `example_field` FROM `example_table`'))
{
 $error = $this->db->error(); // Has keys 'code' and 'message'
}

Generating Query Results

There are several ways to generate query results:

	Result Arrays

	Result Rows

	Custom Result Objects

	Result Helper Methods

	Class Reference

Result Arrays

result()

This method returns the query result as an array of objects, or
an empty array on failure. Typically you’ll use this in a foreach
loop, like this:

$query = $this->db->query("YOUR QUERY");

foreach ($query->result() as $row)
{
 echo $row->title;
 echo $row->name;
 echo $row->body;
}

The above method is an alias of result_object().

You can also pass a string to result() which represents a class to
instantiate for each result object (note: this class must be loaded)

$query = $this->db->query("SELECT * FROM users;");

foreach ($query->result('User') as $user)
{
 echo $user->name; // access attributes
 echo $user->reverse_name(); // or methods defined on the 'User' class
}

result_array()

This method returns the query result as a pure array, or an empty
array when no result is produced. Typically you’ll use this in a foreach
loop, like this:

$query = $this->db->query("YOUR QUERY");

foreach ($query->result_array() as $row)
{
 echo $row['title'];
 echo $row['name'];
 echo $row['body'];
}

Result Rows

row()

This method returns a single result row. If your query has more than
one row, it returns only the first row. The result is returned as an
object. Here’s a usage example:

$query = $this->db->query("YOUR QUERY");

$row = $query->row();

if (isset($row))
{
 echo $row->title;
 echo $row->name;
 echo $row->body;
}

If you want a specific row returned you can submit the row number as a
digit in the first parameter:

$row = $query->row(5);

You can also add a second String parameter, which is the name of a class
to instantiate the row with:

$query = $this->db->query("SELECT * FROM users LIMIT 1;");
$row = $query->row(0, 'User');

echo $row->name; // access attributes
echo $row->reverse_name(); // or methods defined on the 'User' class

row_array()

Identical to the above row() method, except it returns an array.
Example:

$query = $this->db->query("YOUR QUERY");

$row = $query->row_array();

if (isset($row))
{
 echo $row['title'];
 echo $row['name'];
 echo $row['body'];
}

If you want a specific row returned you can submit the row number as a
digit in the first parameter:

$row = $query->row_array(5);

In addition, you can walk forward/backwards/first/last through your
results using these variations:

$row = $query->first_row()

$row = $query->last_row()

$row = $query->next_row()

$row = $query->previous_row()

By default they return an object unless you put the word “array” in the
parameter:

$row = $query->first_row(‘array’)

$row = $query->last_row(‘array’)

$row = $query->next_row(‘array’)

$row = $query->previous_row(‘array’)

Note

All the methods above will load the whole result into memory
(prefetching). Use unbuffered_row() for processing large
result sets.

unbuffered_row()

This method returns a single result row without prefetching the whole
result in memory as row() does. If your query has more than one row,
it returns the current row and moves the internal data pointer ahead.

$query = $this->db->query("YOUR QUERY");

while ($row = $query->unbuffered_row())
{
 echo $row->title;
 echo $row->name;
 echo $row->body;
}

You can optionally pass ‘object’ (default) or ‘array’ in order to specify
the returned value’s type:

$query->unbuffered_row(); // object
$query->unbuffered_row('object'); // object
$query->unbuffered_row('array'); // associative array

Custom Result Objects

You can have the results returned as an instance of a custom class instead
of a stdClass or array, as the result() and result_array()
methods allow. This requires that the class is already loaded into memory.
The object will have all values returned from the database set as properties.
If these have been declared and are non-public then you should provide a
__set() method to allow them to be set.

Example:

class User {

 public $id;
 public $email;
 public $username;

 protected $last_login;

 public function last_login($format)
 {
 return $this->last_login->format($format);
 }

 public function __set($name, $value)
 {
 if ($name === 'last_login')
 {
 $this->last_login = DateTime::createFromFormat('U', $value);
 }
 }

 public function __get($name)
 {
 if (isset($this->$name))
 {
 return $this->$name;
 }
 }
}

In addition to the two methods listed below, the following methods also can
take a class name to return the results as: first_row(), last_row(),
next_row(), and previous_row().

custom_result_object()

Returns the entire result set as an array of instances of the class requested.
The only parameter is the name of the class to instantiate.

Example:

$query = $this->db->query("YOUR QUERY");

$rows = $query->custom_result_object('User');

foreach ($rows as $row)
{
 echo $row->id;
 echo $row->email;
 echo $row->last_login('Y-m-d');
}

custom_row_object()

Returns a single row from your query results. The first parameter is the row
number of the results. The second parameter is the class name to instantiate.

Example:

$query = $this->db->query("YOUR QUERY");

$row = $query->custom_row_object(0, 'User');

if (isset($row))
{
 echo $row->email; // access attributes
 echo $row->last_login('Y-m-d'); // access class methods
}

You can also use the row() method in exactly the same way.

Example:

$row = $query->custom_row_object(0, 'User');

Result Helper Methods

num_rows()

The number of rows returned by the query. Note: In this example, $query
is the variable that the query result object is assigned to:

$query = $this->db->query('SELECT * FROM my_table');

echo $query->num_rows();

Note

Not all database drivers have a native way of getting the total
number of rows for a result set. When this is the case, all of
the data is prefetched and count() is manually called on the
resulting array in order to achieve the same result.

num_fields()

The number of FIELDS (columns) returned by the query. Make sure to call
the method using your query result object:

$query = $this->db->query('SELECT * FROM my_table');

echo $query->num_fields();

free_result()

It frees the memory associated with the result and deletes the result
resource ID. Normally PHP frees its memory automatically at the end of
script execution. However, if you are running a lot of queries in a
particular script you might want to free the result after each query
result has been generated in order to cut down on memory consumption.

Example:

$query = $this->db->query('SELECT title FROM my_table');

foreach ($query->result() as $row)
{
 echo $row->title;
}

$query->free_result(); // The $query result object will no longer be available

$query2 = $this->db->query('SELECT name FROM some_table');

$row = $query2->row();
echo $row->name;
$query2->free_result(); // The $query2 result object will no longer be available

data_seek()

This method sets the internal pointer for the next result row to be
fetched. It is only useful in combination with unbuffered_row().

It accepts a positive integer value, which defaults to 0 and returns
TRUE on success or FALSE on failure.

$query = $this->db->query('SELECT `field_name` FROM `table_name`');
$query->data_seek(5); // Skip the first 5 rows
$row = $query->unbuffered_row();

Note

Not all database drivers support this feature and will return FALSE.
Most notably - you won’t be able to use it with PDO.

Class Reference

	
class CI_DB_result

	
	
result([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of requested results - array, object, or class name

	Returns:	Array containing the fetched rows

	Return type:	array

A wrapper for the result_array(), result_object()
and custom_result_object() methods.

Usage: see Result Arrays.

	
result_array()

	

	Returns:	Array containing the fetched rows

	Return type:	array

Returns the query results as an array of rows, where each
row is itself an associative array.

Usage: see Result Arrays.

	
result_object()

	

	Returns:	Array containing the fetched rows

	Return type:	array

Returns the query results as an array of rows, where each
row is an object of type stdClass.

Usage: see Result Arrays.

	
custom_result_object($class_name)

	

	Parameters:	
	$class_name (string) – Class name for the resulting rows

	Returns:	Array containing the fetched rows

	Return type:	array

Returns the query results as an array of rows, where each
row is an instance of the specified class.

	
row([$n = 0[, $type = 'object']])

	

	Parameters:	
	$n (int) – Index of the query results row to be returned

	$type (string) – Type of the requested result - array, object, or class name

	Returns:	The requested row or NULL if it doesn’t exist

	Return type:	mixed

A wrapper for the row_array(), row_object() and
``custom_row_object() methods.

Usage: see Result Rows.

	
unbuffered_row([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of the requested result - array, object, or class name

	Returns:	Next row from the result set or NULL if it doesn’t exist

	Return type:	mixed

Fetches the next result row and returns it in the
requested form.

Usage: see Result Rows.

	
row_array([$n = 0])

	

	Parameters:	
	$n (int) – Index of the query results row to be returned

	Returns:	The requested row or NULL if it doesn’t exist

	Return type:	array

Returns the requested result row as an associative array.

Usage: see Result Rows.

	
row_object([$n = 0])

	

	Parameters:	
	$n (int) – Index of the query results row to be returned

	Returns:	The requested row or NULL if it doesn’t exist

	Return type:	stdClass

Returns the requested result row as an object of type
stdClass.

Usage: see Result Rows.

	
custom_row_object($n, $type)

	

	Parameters:	
	$n (int) – Index of the results row to return

	$class_name (string) – Class name for the resulting row

	Returns:	The requested row or NULL if it doesn’t exist

	Return type:	$type

Returns the requested result row as an instance of the
requested class.

	
data_seek([$n = 0])

	

	Parameters:	
	$n (int) – Index of the results row to be returned next

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Moves the internal results row pointer to the desired offset.

Usage: see Result Helper Methods.

	
set_row($key[, $value = NULL])

	

	Parameters:	
	$key (mixed) – Column name or array of key/value pairs

	$value (mixed) – Value to assign to the column, $key is a single field name

	Return type:	void

Assigns a value to a particular column.

	
next_row([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of the requested result - array, object, or class name

	Returns:	Next row of result set, or NULL if it doesn’t exist

	Return type:	mixed

Returns the next row from the result set.

	
previous_row([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of the requested result - array, object, or class name

	Returns:	Previous row of result set, or NULL if it doesn’t exist

	Return type:	mixed

Returns the previous row from the result set.

	
first_row([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of the requested result - array, object, or class name

	Returns:	First row of result set, or NULL if it doesn’t exist

	Return type:	mixed

Returns the first row from the result set.

	
last_row([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of the requested result - array, object, or class name

	Returns:	Last row of result set, or NULL if it doesn’t exist

	Return type:	mixed

Returns the last row from the result set.

	
num_rows()

	

	Returns:	Number of rows in the result set

	Return type:	int

Returns the number of rows in the result set.

Usage: see Result Helper Methods.

	
num_fields()

	

	Returns:	Number of fields in the result set

	Return type:	int

Returns the number of fields in the result set.

Usage: see Result Helper Methods.

	
field_data()

	

	Returns:	Array containing field meta-data

	Return type:	array

Generates an array of stdClass objects containing
field meta-data.

	
free_result()

	

	Return type:	void

Frees a result set.

Usage: see Result Helper Methods.

	
list_fields()

	

	Returns:	Array of column names

	Return type:	array

Returns an array containing the field names in the
result set.

Query Helper Methods

Information From Executing a Query

$this->db->insert_id()

The insert ID number when performing database inserts.

Note

If using the PDO driver with PostgreSQL, or using the Interbase
driver, this function requires a $name parameter, which specifies the
appropriate sequence to check for the insert id.

$this->db->affected_rows()

Displays the number of affected rows, when doing “write” type queries
(insert, update, etc.).

Note

In MySQL “DELETE FROM TABLE” returns 0 affected rows. The database
class has a small hack that allows it to return the correct number of
affected rows. By default this hack is enabled but it can be turned off
in the database driver file.

$this->db->last_query()

Returns the last query that was run (the query string, not the result).
Example:

$str = $this->db->last_query();

// Produces: SELECT * FROM sometable....

Note

Disabling the save_queries setting in your database
configuration will render this function useless.

Information About Your Database

$this->db->count_all()

Permits you to determine the number of rows in a particular table.
Submit the table name in the first parameter. Example:

echo $this->db->count_all('my_table');

// Produces an integer, like 25

$this->db->platform()

Outputs the database platform you are running (MySQL, MS SQL, Postgres,
etc…):

echo $this->db->platform();

$this->db->version()

Outputs the database version you are running:

echo $this->db->version();

Making Your Queries Easier

$this->db->insert_string()

This function simplifies the process of writing database inserts. It
returns a correctly formatted SQL insert string. Example:

$data = array('name' => $name, 'email' => $email, 'url' => $url);

$str = $this->db->insert_string('table_name', $data);

The first parameter is the table name, the second is an associative
array with the data to be inserted. The above example produces:

INSERT INTO table_name (name, email, url) VALUES ('Rick', 'rick@example.com', 'example.com')

Note

Values are automatically escaped, producing safer queries.

$this->db->update_string()

This function simplifies the process of writing database updates. It
returns a correctly formatted SQL update string. Example:

$data = array('name' => $name, 'email' => $email, 'url' => $url);

$where = "author_id = 1 AND status = 'active'";

$str = $this->db->update_string('table_name', $data, $where);

The first parameter is the table name, the second is an associative
array with the data to be updated, and the third parameter is the
“where” clause. The above example produces:

UPDATE table_name SET name = 'Rick', email = 'rick@example.com', url = 'example.com' WHERE author_id = 1 AND status = 'active'

Note

Values are automatically escaped, producing safer queries.

Query Builder Class

CodeIgniter gives you access to a Query Builder class. This pattern
allows information to be retrieved, inserted, and updated in your
database with minimal scripting. In some cases only one or two lines
of code are necessary to perform a database action.
CodeIgniter does not require that each database table be its own class
file. It instead provides a more simplified interface.

Beyond simplicity, a major benefit to using the Query Builder features
is that it allows you to create database independent applications, since
the query syntax is generated by each database adapter. It also allows
for safer queries, since the values are escaped automatically by the
system.

Note

If you intend to write your own queries you can disable this
class in your database config file, allowing the core database library
and adapter to utilize fewer resources.

	Selecting Data

	Looking for Specific Data

	Looking for Similar Data

	Ordering results

	Limiting or Counting Results

	Query grouping

	Inserting Data

	Updating Data

	Deleting Data

	Method Chaining

	Query Builder Caching

	Resetting Query Builder

	Class Reference

Selecting Data

The following functions allow you to build SQL SELECT statements.

$this->db->get()

Runs the selection query and returns the result. Can be used by itself
to retrieve all records from a table:

$query = $this->db->get('mytable'); // Produces: SELECT * FROM mytable

The second and third parameters enable you to set a limit and offset
clause:

$query = $this->db->get('mytable', 10, 20);

// Executes: SELECT * FROM mytable LIMIT 20, 10
// (in MySQL. Other databases have slightly different syntax)

You’ll notice that the above function is assigned to a variable named
$query, which can be used to show the results:

$query = $this->db->get('mytable');

foreach ($query->result() as $row)
{
 echo $row->title;
}

Please visit the result functions page for a full
discussion regarding result generation.

$this->db->get_compiled_select()

Compiles the selection query just like $this->db->get() but does not run
the query. This method simply returns the SQL query as a string.

Example:

$sql = $this->db->get_compiled_select('mytable');
echo $sql;

// Prints string: SELECT * FROM mytable

The second parameter enables you to set whether or not the query builder query
will be reset (by default it will be reset, just like when using $this->db->get()):

echo $this->db->limit(10,20)->get_compiled_select('mytable', FALSE);

// Prints string: SELECT * FROM mytable LIMIT 20, 10
// (in MySQL. Other databases have slightly different syntax)

echo $this->db->select('title, content, date')->get_compiled_select();

// Prints string: SELECT title, content, date FROM mytable LIMIT 20, 10

The key thing to notice in the above example is that the second query did not
utilize $this->db->from() and did not pass a table name into the first
parameter. The reason for this outcome is because the query has not been
executed using $this->db->get() which resets values or reset directly
using $this->db->reset_query().

$this->db->get_where()

Identical to the above function except that it permits you to add a
“where” clause in the second parameter, instead of using the db->where()
function:

$query = $this->db->get_where('mytable', array('id' => $id), $limit, $offset);

Please read the about the where function below for more information.

Note

get_where() was formerly known as getwhere(), which has been removed

$this->db->select()

Permits you to write the SELECT portion of your query:

$this->db->select('title, content, date');
$query = $this->db->get('mytable');

// Executes: SELECT title, content, date FROM mytable

Note

If you are selecting all (*) from a table you do not need to
use this function. When omitted, CodeIgniter assumes that you wish
to select all fields and automatically adds ‘SELECT *’.

$this->db->select() accepts an optional second parameter. If you set it
to FALSE, CodeIgniter will not try to protect your field or table names.
This is useful if you need a compound select statement where automatic
escaping of fields may break them.

$this->db->select('(SELECT SUM(payments.amount) FROM payments WHERE payments.invoice_id=4) AS amount_paid', FALSE);
$query = $this->db->get('mytable');

$this->db->select_max()

Writes a SELECT MAX(field) portion for your query. You can optionally
include a second parameter to rename the resulting field.

$this->db->select_max('age');
$query = $this->db->get('members'); // Produces: SELECT MAX(age) as age FROM members

$this->db->select_max('age', 'member_age');
$query = $this->db->get('members'); // Produces: SELECT MAX(age) as member_age FROM members

$this->db->select_min()

Writes a “SELECT MIN(field)” portion for your query. As with
select_max(), You can optionally include a second parameter to rename
the resulting field.

$this->db->select_min('age');
$query = $this->db->get('members'); // Produces: SELECT MIN(age) as age FROM members

$this->db->select_avg()

Writes a “SELECT AVG(field)” portion for your query. As with
select_max(), You can optionally include a second parameter to rename
the resulting field.

$this->db->select_avg('age');
$query = $this->db->get('members'); // Produces: SELECT AVG(age) as age FROM members

$this->db->select_sum()

Writes a “SELECT SUM(field)” portion for your query. As with
select_max(), You can optionally include a second parameter to rename
the resulting field.

$this->db->select_sum('age');
$query = $this->db->get('members'); // Produces: SELECT SUM(age) as age FROM members

$this->db->from()

Permits you to write the FROM portion of your query:

$this->db->select('title, content, date');
$this->db->from('mytable');
$query = $this->db->get(); // Produces: SELECT title, content, date FROM mytable

Note

As shown earlier, the FROM portion of your query can be specified
in the $this->db->get() function, so use whichever method you prefer.

$this->db->join()

Permits you to write the JOIN portion of your query:

$this->db->select('*');
$this->db->from('blogs');
$this->db->join('comments', 'comments.id = blogs.id');
$query = $this->db->get();

// Produces:
// SELECT * FROM blogs JOIN comments ON comments.id = blogs.id

Multiple function calls can be made if you need several joins in one
query.

If you need a specific type of JOIN you can specify it via the third
parameter of the function. Options are: left, right, outer, inner, left
outer, and right outer.

$this->db->join('comments', 'comments.id = blogs.id', 'left');
// Produces: LEFT JOIN comments ON comments.id = blogs.id

Looking for Specific Data

$this->db->where()

This function enables you to set WHERE clauses using one of four
methods:

Note

All values passed to this function are escaped automatically,
producing safer queries.

	Simple key/value method:

$this->db->where('name', $name); // Produces: WHERE name = 'Joe'

Notice that the equal sign is added for you.

If you use multiple function calls they will be chained together with
AND between them:

$this->db->where('name', $name);
$this->db->where('title', $title);
$this->db->where('status', $status);
// WHERE name = 'Joe' AND title = 'boss' AND status = 'active'

	Custom key/value method:

You can include an operator in the first parameter in order to
control the comparison:

$this->db->where('name !=', $name);
$this->db->where('id <', $id); // Produces: WHERE name != 'Joe' AND id < 45

	Associative array method:

$array = array('name' => $name, 'title' => $title, 'status' => $status);
$this->db->where($array);
// Produces: WHERE name = 'Joe' AND title = 'boss' AND status = 'active'

You can include your own operators using this method as well:

$array = array('name !=' => $name, 'id <' => $id, 'date >' => $date);
$this->db->where($array);

	
	Custom string:

	You can write your own clauses manually:

$where = "name='Joe' AND status='boss' OR status='active'";
$this->db->where($where);

$this->db->where() accepts an optional third parameter. If you set it to
FALSE, CodeIgniter will not try to protect your field or table names.

$this->db->where('MATCH (field) AGAINST ("value")', NULL, FALSE);

$this->db->or_where()

This function is identical to the one above, except that multiple
instances are joined by OR:

$this->db->where('name !=', $name);
$this->db->or_where('id >', $id); // Produces: WHERE name != 'Joe' OR id > 50

Note

or_where() was formerly known as orwhere(), which has been
removed.

$this->db->where_in()

Generates a WHERE field IN (‘item’, ‘item’) SQL query joined with AND if
appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->where_in('username', $names);
// Produces: WHERE username IN ('Frank', 'Todd', 'James')

$this->db->or_where_in()

Generates a WHERE field IN (‘item’, ‘item’) SQL query joined with OR if
appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->or_where_in('username', $names);
// Produces: OR username IN ('Frank', 'Todd', 'James')

$this->db->where_not_in()

Generates a WHERE field NOT IN (‘item’, ‘item’) SQL query joined with
AND if appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->where_not_in('username', $names);
// Produces: WHERE username NOT IN ('Frank', 'Todd', 'James')

$this->db->or_where_not_in()

Generates a WHERE field NOT IN (‘item’, ‘item’) SQL query joined with OR
if appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->or_where_not_in('username', $names);
// Produces: OR username NOT IN ('Frank', 'Todd', 'James')

Looking for Similar Data

$this->db->like()

This method enables you to generate LIKE clauses, useful for doing
searches.

Note

All values passed to this method are escaped automatically.

	Simple key/value method:

$this->db->like('title', 'match');
// Produces: WHERE `title` LIKE '%match%' ESCAPE '!'

If you use multiple method calls they will be chained together with
AND between them:

$this->db->like('title', 'match');
$this->db->like('body', 'match');
// WHERE `title` LIKE '%match%' ESCAPE '!' AND `body` LIKE '%match% ESCAPE '!'

If you want to control where the wildcard (%) is placed, you can use
an optional third argument. Your options are ‘before’, ‘after’, ‘none’ and
‘both’ (which is the default).

$this->db->like('title', 'match', 'before'); // Produces: WHERE `title` LIKE '%match' ESCAPE '!'
$this->db->like('title', 'match', 'after'); // Produces: WHERE `title` LIKE 'match%' ESCAPE '!'
$this->db->like('title', 'match', 'none'); // Produces: WHERE `title` LIKE 'match' ESCAPE '!'
$this->db->like('title', 'match', 'both'); // Produces: WHERE `title` LIKE '%match%' ESCAPE '!'

	Associative array method:

$array = array('title' => $match, 'page1' => $match, 'page2' => $match);
$this->db->like($array);
// WHERE `title` LIKE '%match%' ESCAPE '!' AND `page1` LIKE '%match%' ESCAPE '!' AND `page2` LIKE '%match%' ESCAPE '!'

$this->db->or_like()

This method is identical to the one above, except that multiple
instances are joined by OR:

$this->db->like('title', 'match'); $this->db->or_like('body', $match);
// WHERE `title` LIKE '%match%' ESCAPE '!' OR `body` LIKE '%match%' ESCAPE '!'

Note

or_like() was formerly known as orlike(), which has been removed.

$this->db->not_like()

This method is identical to like(), except that it generates
NOT LIKE statements:

$this->db->not_like('title', 'match'); // WHERE `title` NOT LIKE '%match% ESCAPE '!'

$this->db->or_not_like()

This method is identical to not_like(), except that multiple
instances are joined by OR:

$this->db->like('title', 'match');
$this->db->or_not_like('body', 'match');
// WHERE `title` LIKE '%match% OR `body` NOT LIKE '%match%' ESCAPE '!'

$this->db->group_by()

Permits you to write the GROUP BY portion of your query:

$this->db->group_by("title"); // Produces: GROUP BY title

You can also pass an array of multiple values as well:

$this->db->group_by(array("title", "date")); // Produces: GROUP BY title, date

Note

group_by() was formerly known as groupby(), which has been
removed.

$this->db->distinct()

Adds the “DISTINCT” keyword to a query

$this->db->distinct();
$this->db->get('table'); // Produces: SELECT DISTINCT * FROM table

$this->db->having()

Permits you to write the HAVING portion of your query. There are 2
possible syntaxes, 1 argument or 2:

$this->db->having('user_id = 45'); // Produces: HAVING user_id = 45
$this->db->having('user_id', 45); // Produces: HAVING user_id = 45

You can also pass an array of multiple values as well:

$this->db->having(array('title =' => 'My Title', 'id <' => $id));
// Produces: HAVING title = 'My Title', id < 45

If you are using a database that CodeIgniter escapes queries for, you
can prevent escaping content by passing an optional third argument, and
setting it to FALSE.

$this->db->having('user_id', 45); // Produces: HAVING `user_id` = 45 in some databases such as MySQL
$this->db->having('user_id', 45, FALSE); // Produces: HAVING user_id = 45

$this->db->or_having()

Identical to having(), only separates multiple clauses with “OR”.

Ordering results

$this->db->order_by()

Lets you set an ORDER BY clause.

The first parameter contains the name of the column you would like to order by.

The second parameter lets you set the direction of the result.
Options are ASC, DESC AND RANDOM.

$this->db->order_by('title', 'DESC');
// Produces: ORDER BY `title` DESC

You can also pass your own string in the first parameter:

$this->db->order_by('title DESC, name ASC');
// Produces: ORDER BY `title` DESC, `name` ASC

Or multiple function calls can be made if you need multiple fields.

$this->db->order_by('title', 'DESC');
$this->db->order_by('name', 'ASC');
// Produces: ORDER BY `title` DESC, `name` ASC

If you choose the RANDOM direction option, then the first parameters will
be ignored, unless you specify a numeric seed value.

$this->db->order_by('title', 'RANDOM');
// Produces: ORDER BY RAND()

$this->db->order_by(42, 'RANDOM');
// Produces: ORDER BY RAND(42)

Note

order_by() was formerly known as orderby(), which has been
removed.

Note

Random ordering is not currently supported in Oracle and
will default to ASC instead.

Limiting or Counting Results

$this->db->limit()

Lets you limit the number of rows you would like returned by the query:

$this->db->limit(10); // Produces: LIMIT 10

The second parameter lets you set a result offset.

$this->db->limit(10, 20); // Produces: LIMIT 20, 10 (in MySQL. Other databases have slightly different syntax)

$this->db->count_all_results()

Permits you to determine the number of rows in a particular Active
Record query. Queries will accept Query Builder restrictors such as
where(), or_where(), like(), or_like(), etc. Example:

echo $this->db->count_all_results('my_table'); // Produces an integer, like 25
$this->db->like('title', 'match');
$this->db->from('my_table');
echo $this->db->count_all_results(); // Produces an integer, like 17

However, this method also resets any field values that you may have passed
to select(). If you need to keep them, you can pass FALSE as the
second parameter:

echo $this->db->count_all_results('my_table', FALSE);

$this->db->count_all()

Permits you to determine the number of rows in a particular table.
Submit the table name in the first parameter. Example:

echo $this->db->count_all('my_table'); // Produces an integer, like 25

Query grouping

Query grouping allows you to create groups of WHERE clauses by enclosing them in parentheses. This will allow
you to create queries with complex WHERE clauses. Nested groups are supported. Example:

$this->db->select('*')->from('my_table')
 ->group_start()
 ->where('a', 'a')
 ->or_group_start()
 ->where('b', 'b')
 ->where('c', 'c')
 ->group_end()
 ->group_end()
 ->where('d', 'd')
->get();

// Generates:
// SELECT * FROM (`my_table`) WHERE (`a` = 'a' OR (`b` = 'b' AND `c` = 'c')) AND `d` = 'd'

Note

groups need to be balanced, make sure every group_start() is matched by a group_end().

$this->db->group_start()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query.

$this->db->or_group_start()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query, prefixing it with ‘OR’.

$this->db->not_group_start()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query, prefixing it with ‘NOT’.

$this->db->or_not_group_start()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query, prefixing it with ‘OR NOT’.

$this->db->group_end()

Ends the current group by adding an closing parenthesis to the WHERE clause of the query.

Inserting Data

$this->db->insert()

Generates an insert string based on the data you supply, and runs the
query. You can either pass an array or an object to the
function. Here is an example using an array:

$data = array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
);

$this->db->insert('mytable', $data);
// Produces: INSERT INTO mytable (title, name, date) VALUES ('My title', 'My name', 'My date')

The first parameter will contain the table name, the second is an
associative array of values.

Here is an example using an object:

/*
class Myclass {
 public $title = 'My Title';
 public $content = 'My Content';
 public $date = 'My Date';
}
*/

$object = new Myclass;
$this->db->insert('mytable', $object);
// Produces: INSERT INTO mytable (title, content, date) VALUES ('My Title', 'My Content', 'My Date')

The first parameter will contain the table name, the second is an
object.

Note

All values are escaped automatically producing safer queries.

$this->db->get_compiled_insert()

Compiles the insertion query just like $this->db->insert() but does not
run the query. This method simply returns the SQL query as a string.

Example:

$data = array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
);

$sql = $this->db->set($data)->get_compiled_insert('mytable');
echo $sql;

// Produces string: INSERT INTO mytable (`title`, `name`, `date`) VALUES ('My title', 'My name', 'My date')

The second parameter enables you to set whether or not the query builder query
will be reset (by default it will be–just like $this->db->insert()):

echo $this->db->set('title', 'My Title')->get_compiled_insert('mytable', FALSE);

// Produces string: INSERT INTO mytable (`title`) VALUES ('My Title')

echo $this->db->set('content', 'My Content')->get_compiled_insert();

// Produces string: INSERT INTO mytable (`title`, `content`) VALUES ('My Title', 'My Content')

The key thing to notice in the above example is that the second query did not
utilize $this->db->from() nor did it pass a table name into the first
parameter. The reason this worked is because the query has not been executed
using $this->db->insert() which resets values or reset directly using
$this->db->reset_query().

Note

This method doesn’t work for batched inserts.

$this->db->insert_batch()

Generates an insert string based on the data you supply, and runs the
query. You can either pass an array or an object to the
function. Here is an example using an array:

$data = array(
 array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
),
 array(
 'title' => 'Another title',
 'name' => 'Another Name',
 'date' => 'Another date'
)
);

$this->db->insert_batch('mytable', $data);
// Produces: INSERT INTO mytable (title, name, date) VALUES ('My title', 'My name', 'My date'), ('Another title', 'Another name', 'Another date')

The first parameter will contain the table name, the second is an
associative array of values.

Note

All values are escaped automatically producing safer queries.

Updating Data

$this->db->replace()

This method executes a REPLACE statement, which is basically the SQL
standard for (optional) DELETE + INSERT, using PRIMARY and UNIQUE
keys as the determining factor.
In our case, it will save you from the need to implement complex
logics with different combinations of select(), update(),
delete() and insert() calls.

Example:

$data = array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
);

$this->db->replace('table', $data);

// Executes: REPLACE INTO mytable (title, name, date) VALUES ('My title', 'My name', 'My date')

In the above example, if we assume that the title field is our primary
key, then if a row containing ‘My title’ as the title value, that row
will be deleted with our new row data replacing it.

Usage of the set() method is also allowed and all fields are
automatically escaped, just like with insert().

$this->db->set()

This function enables you to set values for inserts or updates.

It can be used instead of passing a data array directly to the insert
or update functions:

$this->db->set('name', $name);
$this->db->insert('mytable'); // Produces: INSERT INTO mytable (`name`) VALUES ('{$name}')

If you use multiple function called they will be assembled properly
based on whether you are doing an insert or an update:

$this->db->set('name', $name);
$this->db->set('title', $title);
$this->db->set('status', $status);
$this->db->insert('mytable');

set() will also accept an optional third parameter ($escape), that
will prevent data from being escaped if set to FALSE. To illustrate the
difference, here is set() used both with and without the escape
parameter.

$this->db->set('field', 'field+1', FALSE);
$this->db->where('id', 2);
$this->db->update('mytable'); // gives UPDATE mytable SET field = field+1 WHERE id = 2

$this->db->set('field', 'field+1');
$this->db->where('id', 2);
$this->db->update('mytable'); // gives UPDATE `mytable` SET `field` = 'field+1' WHERE `id` = 2

You can also pass an associative array to this function:

$array = array(
 'name' => $name,
 'title' => $title,
 'status' => $status
);

$this->db->set($array);
$this->db->insert('mytable');

Or an object:

/*
class Myclass {
 public $title = 'My Title';
 public $content = 'My Content';
 public $date = 'My Date';
}
*/

$object = new Myclass;
$this->db->set($object);
$this->db->insert('mytable');

$this->db->update()

Generates an update string and runs the query based on the data you
supply. You can pass an array or an object to the function. Here
is an example using an array:

$data = array(
 'title' => $title,
 'name' => $name,
 'date' => $date
);

$this->db->where('id', $id);
$this->db->update('mytable', $data);
// Produces:
//
// UPDATE mytable
// SET title = '{$title}', name = '{$name}', date = '{$date}'
// WHERE id = $id

Or you can supply an object:

/*
class Myclass {
 public $title = 'My Title';
 public $content = 'My Content';
 public $date = 'My Date';
}
*/

$object = new Myclass;
$this->db->where('id', $id);
$this->db->update('mytable', $object);
// Produces:
//
// UPDATE `mytable`
// SET `title` = '{$title}', `name` = '{$name}', `date` = '{$date}'
// WHERE id = `$id`

Note

All values are escaped automatically producing safer queries.

You’ll notice the use of the $this->db->where() function, enabling you
to set the WHERE clause. You can optionally pass this information
directly into the update function as a string:

$this->db->update('mytable', $data, "id = 4");

Or as an array:

$this->db->update('mytable', $data, array('id' => $id));

You may also use the $this->db->set() function described above when
performing updates.

$this->db->update_batch()

Generates an update string based on the data you supply, and runs the query.
You can either pass an array or an object to the function.
Here is an example using an array:

$data = array(
 array(
 'title' => 'My title' ,
 'name' => 'My Name 2' ,
 'date' => 'My date 2'
),
 array(
 'title' => 'Another title' ,
 'name' => 'Another Name 2' ,
 'date' => 'Another date 2'
)
);

$this->db->update_batch('mytable', $data, 'title');

// Produces:
// UPDATE `mytable` SET `name` = CASE
// WHEN `title` = 'My title' THEN 'My Name 2'
// WHEN `title` = 'Another title' THEN 'Another Name 2'
// ELSE `name` END,
// `date` = CASE
// WHEN `title` = 'My title' THEN 'My date 2'
// WHEN `title` = 'Another title' THEN 'Another date 2'
// ELSE `date` END
// WHERE `title` IN ('My title','Another title')

The first parameter will contain the table name, the second is an associative
array of values, the third parameter is the where key.

Note

All values are escaped automatically producing safer queries.

Note

affected_rows() won’t give you proper results with this method,
due to the very nature of how it works. Instead, update_batch()
returns the number of rows affected.

$this->db->get_compiled_update()

This works exactly the same way as $this->db->get_compiled_insert() except
that it produces an UPDATE SQL string instead of an INSERT SQL string.

For more information view documentation for $this->db->get_compiled_insert().

Note

This method doesn’t work for batched updates.

Deleting Data

$this->db->delete()

Generates a delete SQL string and runs the query.

$this->db->delete('mytable', array('id' => $id)); // Produces: // DELETE FROM mytable // WHERE id = $id

The first parameter is the table name, the second is the where clause.
You can also use the where() or or_where() functions instead of passing
the data to the second parameter of the function:

$this->db->where('id', $id);
$this->db->delete('mytable');

// Produces:
// DELETE FROM mytable
// WHERE id = $id

An array of table names can be passed into delete() if you would like to
delete data from more than 1 table.

$tables = array('table1', 'table2', 'table3');
$this->db->where('id', '5');
$this->db->delete($tables);

If you want to delete all data from a table, you can use the truncate()
function, or empty_table().

$this->db->empty_table()

Generates a delete SQL string and runs the
query.:

$this->db->empty_table('mytable'); // Produces: DELETE FROM mytable

$this->db->truncate()

Generates a truncate SQL string and runs the query.

$this->db->from('mytable');
$this->db->truncate();

// or

$this->db->truncate('mytable');

// Produce:
// TRUNCATE mytable

Note

If the TRUNCATE command isn’t available, truncate() will
execute as “DELETE FROM table”.

$this->db->get_compiled_delete()

This works exactly the same way as $this->db->get_compiled_insert() except
that it produces a DELETE SQL string instead of an INSERT SQL string.

For more information view documentation for $this->db->get_compiled_insert().

Method Chaining

Method chaining allows you to simplify your syntax by connecting
multiple functions. Consider this example:

$query = $this->db->select('title')
 ->where('id', $id)
 ->limit(10, 20)
 ->get('mytable');

Query Builder Caching

While not “true” caching, Query Builder enables you to save (or “cache”)
certain parts of your queries for reuse at a later point in your
script’s execution. Normally, when an Query Builder call is completed,
all stored information is reset for the next call. With caching, you can
prevent this reset, and reuse information easily.

Cached calls are cumulative. If you make 2 cached select() calls, and
then 2 uncached select() calls, this will result in 4 select() calls.
There are three Caching functions available:

$this->db->start_cache()

This function must be called to begin caching. All Query Builder queries
of the correct type (see below for supported queries) are stored for
later use.

$this->db->stop_cache()

This function can be called to stop caching.

$this->db->flush_cache()

This function deletes all items from the Query Builder cache.

An example of caching

Here’s a usage example:

$this->db->start_cache();
$this->db->select('field1');
$this->db->stop_cache();
$this->db->get('tablename');
//Generates: SELECT `field1` FROM (`tablename`)

$this->db->select('field2');
$this->db->get('tablename');
//Generates: SELECT `field1`, `field2` FROM (`tablename`)

$this->db->flush_cache();
$this->db->select('field2');
$this->db->get('tablename');
//Generates: SELECT `field2` FROM (`tablename`)

Note

The following statements can be cached: select, from, join,
where, like, group_by, having, order_by

Resetting Query Builder

$this->db->reset_query()

Resetting Query Builder allows you to start fresh with your query without
executing it first using a method like $this->db->get() or $this->db->insert().
Just like the methods that execute a query, this will not reset items you’ve
cached using Query Builder Caching.

This is useful in situations where you are using Query Builder to generate SQL
(ex. $this->db->get_compiled_select()) but then choose to, for instance,
run the query:

// Note that the second parameter of the get_compiled_select method is FALSE
$sql = $this->db->select(array('field1','field2'))
 ->where('field3',5)
 ->get_compiled_select('mytable', FALSE);

// ...
// Do something crazy with the SQL code... like add it to a cron script for
// later execution or something...
// ...

$data = $this->db->get()->result_array();

// Would execute and return an array of results of the following query:
// SELECT field1, field1 from mytable where field3 = 5;

Note

Double calls to get_compiled_select() while you’re using the
Query Builder Caching functionality and NOT resetting your queries
will results in the cache being merged twice. That in turn will
i.e. if you’re caching a select() - select the same field twice.

Class Reference

	
class CI_DB_query_builder

	
	
reset_query()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Resets the current Query Builder state. Useful when you want
to build a query that can be cancelled under certain conditions.

	
start_cache()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Starts the Query Builder cache.

	
stop_cache()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Stops the Query Builder cache.

	
flush_cache()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Empties the Query Builder cache.

	
set_dbprefix([$prefix = ''])

	

	Parameters:	
	$prefix (string) – The new prefix to use

	Returns:	The DB prefix in use

	Return type:	string

Sets the database prefix, without having to reconnect.

	
dbprefix([$table = ''])

	

	Parameters:	
	$table (string) – The table name to prefix

	Returns:	The prefixed table name

	Return type:	string

Prepends a database prefix, if one exists in configuration.

	
count_all_results([$table = ''[, $reset = TRUE]])

	

	Parameters:	
	$table (string) – Table name

	$reset (bool) – Whether to reset values for SELECTs

	Returns:	Number of rows in the query result

	Return type:	int

Generates a platform-specific query string that counts
all records returned by an Query Builder query.

	
get([$table = ''[, $limit = NULL[, $offset = NULL]]])

	

	Parameters:	
	$table (string) – The table to query

	$limit (int) – The LIMIT clause

	$offset (int) – The OFFSET clause

	Returns:	CI_DB_result instance (method chaining)

	Return type:	CI_DB_result

Compiles and runs SELECT statement based on the already
called Query Builder methods.

	
get_where([$table = ''[, $where = NULL[, $limit = NULL[, $offset = NULL]]]])

	

	Parameters:	
	$table (mixed) – The table(s) to fetch data from; string or array

	$where (string) – The WHERE clause

	$limit (int) – The LIMIT clause

	$offset (int) – The OFFSET clause

	Returns:	CI_DB_result instance (method chaining)

	Return type:	CI_DB_result

Same as get(), but also allows the WHERE to be added directly.

	
select([$select = '*'[, $escape = NULL]])

	

	Parameters:	
	$select (string) – The SELECT portion of a query

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a SELECT clause to a query.

	
select_avg([$select = ''[, $alias = '']])

	

	Parameters:	
	$select (string) – Field to compute the average of

	$alias (string) – Alias for the resulting value name

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a SELECT AVG(field) clause to a query.

	
select_max([$select = ''[, $alias = '']])

	

	Parameters:	
	$select (string) – Field to compute the maximum of

	$alias (string) – Alias for the resulting value name

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a SELECT MAX(field) clause to a query.

	
select_min([$select = ''[, $alias = '']])

	

	Parameters:	
	$select (string) – Field to compute the minimum of

	$alias (string) – Alias for the resulting value name

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a SELECT MIN(field) clause to a query.

	
select_sum([$select = ''[, $alias = '']])

	

	Parameters:	
	$select (string) – Field to compute the sum of

	$alias (string) – Alias for the resulting value name

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a SELECT SUM(field) clause to a query.

	
distinct([$val = TRUE])

	

	Parameters:	
	$val (bool) – Desired value of the “distinct” flag

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Sets a flag which tells the query builder to add
a DISTINCT clause to the SELECT portion of the query.

	
from($from)

	

	Parameters:	
	$from (mixed) – Table name(s); string or array

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Specifies the FROM clause of a query.

	
join($table, $cond[, $type = ''[, $escape = NULL]])

	

	Parameters:	
	$table (string) – Table name to join

	$cond (string) – The JOIN ON condition

	$type (string) – The JOIN type

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a JOIN clause to a query.

	
where($key[, $value = NULL[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Name of field to compare, or associative array

	$value (mixed) – If a single key, compared to this value

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates the WHERE portion of the query.
Separates multiple calls with ‘AND’.

	
or_where($key[, $value = NULL[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Name of field to compare, or associative array

	$value (mixed) – If a single key, compared to this value

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates the WHERE portion of the query.
Separates multiple calls with ‘OR’.

	
or_where_in([$key = NULL[, $values = NULL[, $escape = NULL]]])

	

	Parameters:	
	$key (string) – The field to search

	$values (array) – The values searched on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates a WHERE field IN(‘item’, ‘item’) SQL query,
joined with ‘OR’ if appropriate.

	
or_where_not_in([$key = NULL[, $values = NULL[, $escape = NULL]]])

	

	Parameters:	
	$key (string) – The field to search

	$values (array) – The values searched on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates a WHERE field NOT IN(‘item’, ‘item’) SQL query,
joined with ‘OR’ if appropriate.

	
where_in([$key = NULL[, $values = NULL[, $escape = NULL]]])

	

	Parameters:	
	$key (string) – Name of field to examine

	$values (array) – Array of target values

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates a WHERE field IN(‘item’, ‘item’) SQL query,
joined with ‘AND’ if appropriate.

	
where_not_in([$key = NULL[, $values = NULL[, $escape = NULL]]])

	

	Parameters:	
	$key (string) – Name of field to examine

	$values (array) – Array of target values

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates a WHERE field NOT IN(‘item’, ‘item’) SQL query,
joined with ‘AND’ if appropriate.

	
group_start()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Starts a group expression, using ANDs for the conditions inside it.

	
or_group_start()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Starts a group expression, using ORs for the conditions inside it.

	
not_group_start()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Starts a group expression, using AND NOTs for the conditions inside it.

	
or_not_group_start()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Starts a group expression, using OR NOTs for the conditions inside it.

	
group_end()

	

	Returns:	DB_query_builder instance

	Return type:	object

Ends a group expression.

	
like($field[, $match = ''[, $side = 'both'[, $escape = NULL]]])

	

	Parameters:	
	$field (string) – Field name

	$match (string) – Text portion to match

	$side (string) – Which side of the expression to put the ‘%’ wildcard on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a LIKE clause to a query, separating multiple calls with AND.

	
or_like($field[, $match = ''[, $side = 'both'[, $escape = NULL]]])

	

	Parameters:	
	$field (string) – Field name

	$match (string) – Text portion to match

	$side (string) – Which side of the expression to put the ‘%’ wildcard on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a LIKE clause to a query, separating multiple class with OR.

	
not_like($field[, $match = ''[, $side = 'both'[, $escape = NULL]]])

	

	Parameters:	
	$field (string) – Field name

	$match (string) – Text portion to match

	$side (string) – Which side of the expression to put the ‘%’ wildcard on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a NOT LIKE clause to a query, separating multiple calls with AND.

	
or_not_like($field[, $match = ''[, $side = 'both'[, $escape = NULL]]])

	

	Parameters:	
	$field (string) – Field name

	$match (string) – Text portion to match

	$side (string) – Which side of the expression to put the ‘%’ wildcard on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a NOT LIKE clause to a query, separating multiple calls with OR.

	
having($key[, $value = NULL[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Identifier (string) or associative array of field/value pairs

	$value (string) – Value sought if $key is an identifier

	$escape (string) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a HAVING clause to a query, separating multiple calls with AND.

	
or_having($key[, $value = NULL[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Identifier (string) or associative array of field/value pairs

	$value (string) – Value sought if $key is an identifier

	$escape (string) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a HAVING clause to a query, separating multiple calls with OR.

	
group_by($by[, $escape = NULL])

	

	Parameters:	
	$by (mixed) – Field(s) to group by; string or array

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a GROUP BY clause to a query.

	
order_by($orderby[, $direction = ''[, $escape = NULL]])

	

	Parameters:	
	$orderby (string) – Field to order by

	$direction (string) – The order requested - ASC, DESC or random

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds an ORDER BY clause to a query.

	
limit($value[, $offset = 0])

	

	Parameters:	
	$value (int) – Number of rows to limit the results to

	$offset (int) – Number of rows to skip

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds LIMIT and OFFSET clauses to a query.

	
offset($offset)

	

	Parameters:	
	$offset (int) – Number of rows to skip

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds an OFFSET clause to a query.

	
set($key[, $value = ''[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Field name, or an array of field/value pairs

	$value (string) – Field value, if $key is a single field

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds field/value pairs to be passed later to insert(),
update() or replace().

	
insert([$table = ''[, $set = NULL[, $escape = NULL]]])

	

	Parameters:	
	$table (string) – Table name

	$set (array) – An associative array of field/value pairs

	$escape (bool) – Whether to escape values and identifiers

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Compiles and executes an INSERT statement.

	
insert_batch($table[, $set = NULL[, $escape = NULL[, $batch_size = 100]]])

	

	Parameters:	
	$table (string) – Table name

	$set (array) – Data to insert

	$escape (bool) – Whether to escape values and identifiers

	$batch_size (int) – Count of rows to insert at once

	Returns:	Number of rows inserted or FALSE on failure

	Return type:	mixed

Compiles and executes batch INSERT statements.

Note

When more than $batch_size rows are provided, multiple
INSERT queries will be executed, each trying to insert
up to $batch_size rows.

	
set_insert_batch($key[, $value = ''[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Field name or an array of field/value pairs

	$value (string) – Field value, if $key is a single field

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds field/value pairs to be inserted in a table later via insert_batch().

	
update([$table = ''[, $set = NULL[, $where = NULL[, $limit = NULL]]]])

	

	Parameters:	
	$table (string) – Table name

	$set (array) – An associative array of field/value pairs

	$where (string) – The WHERE clause

	$limit (int) – The LIMIT clause

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Compiles and executes an UPDATE statement.

	
update_batch($table[, $set = NULL[, $value = NULL[, $batch_size = 100]]])

	

	Parameters:	
	$table (string) – Table name

	$set (array) – Field name, or an associative array of field/value pairs

	$value (string) – Field value, if $set is a single field

	$batch_size (int) – Count of conditions to group in a single query

	Returns:	Number of rows updated or FALSE on failure

	Return type:	mixed

Compiles and executes batch UPDATE statements.

Note

When more than $batch_size field/value pairs are provided,
multiple queries will be executed, each handling up to
$batch_size field/value pairs.

	
set_update_batch($key[, $value = ''[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Field name or an array of field/value pairs

	$value (string) – Field value, if $key is a single field

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds field/value pairs to be updated in a table later via update_batch().

	
replace([$table = ''[, $set = NULL]])

	

	Parameters:	
	$table (string) – Table name

	$set (array) – An associative array of field/value pairs

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Compiles and executes a REPLACE statement.

	
delete([$table = ''[, $where = ''[, $limit = NULL[, $reset_data = TRUE]]]])

	

	Parameters:	
	$table (mixed) – The table(s) to delete from; string or array

	$where (string) – The WHERE clause

	$limit (int) – The LIMIT clause

	$reset_data (bool) – TRUE to reset the query “write” clause

	Returns:	CI_DB_query_builder instance (method chaining) or FALSE on failure

	Return type:	mixed

Compiles and executes a DELETE query.

	
truncate([$table = ''])

	

	Parameters:	
	$table (string) – Table name

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Executes a TRUNCATE statement on a table.

Note

If the database platform in use doesn’t support TRUNCATE,
a DELETE statement will be used instead.

	
empty_table([$table = ''])

	

	Parameters:	
	$table (string) – Table name

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Deletes all records from a table via a DELETE statement.

	
get_compiled_select([$table = ''[, $reset = TRUE]])

	

	Parameters:	
	$table (string) – Table name

	$reset (bool) – Whether to reset the current QB values or not

	Returns:	The compiled SQL statement as a string

	Return type:	string

Compiles a SELECT statement and returns it as a string.

	
get_compiled_insert([$table = ''[, $reset = TRUE]])

	

	Parameters:	
	$table (string) – Table name

	$reset (bool) – Whether to reset the current QB values or not

	Returns:	The compiled SQL statement as a string

	Return type:	string

Compiles an INSERT statement and returns it as a string.

	
get_compiled_update([$table = ''[, $reset = TRUE]])

	

	Parameters:	
	$table (string) – Table name

	$reset (bool) – Whether to reset the current QB values or not

	Returns:	The compiled SQL statement as a string

	Return type:	string

Compiles an UPDATE statement and returns it as a string.

	
get_compiled_delete([$table = ''[, $reset = TRUE]])

	

	Parameters:	
	$table (string) – Table name

	$reset (bool) – Whether to reset the current QB values or not

	Returns:	The compiled SQL statement as a string

	Return type:	string

Compiles a DELETE statement and returns it as a string.

Transactions

CodeIgniter’s database abstraction allows you to use transactions with
databases that support transaction-safe table types. In MySQL, you’ll
need to be running InnoDB or BDB table types rather than the more common
MyISAM. Most other database platforms support transactions natively.

If you are not familiar with transactions we recommend you find a good
online resource to learn about them for your particular database. The
information below assumes you have a basic understanding of
transactions.

CodeIgniter’s Approach to Transactions

CodeIgniter utilizes an approach to transactions that is very similar to
the process used by the popular database class ADODB. We’ve chosen that
approach because it greatly simplifies the process of running
transactions. In most cases all that is required are two lines of code.

Traditionally, transactions have required a fair amount of work to
implement since they demand that you keep track of your queries and
determine whether to commit or rollback based on the success or failure
of your queries. This is particularly cumbersome with nested queries. In
contrast, we’ve implemented a smart transaction system that does all
this for you automatically (you can also manage your transactions
manually if you choose to, but there’s really no benefit).

Running Transactions

To run your queries using transactions you will use the
$this->db->trans_start() and $this->db->trans_complete() functions as
follows:

$this->db->trans_start();
$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->query('AND YET ANOTHER QUERY...');
$this->db->trans_complete();

You can run as many queries as you want between the start/complete
functions and they will all be committed or rolled back based on success
or failure of any given query.

Strict Mode

By default CodeIgniter runs all transactions in Strict Mode. When strict
mode is enabled, if you are running multiple groups of transactions, if
one group fails all groups will be rolled back. If strict mode is
disabled, each group is treated independently, meaning a failure of one
group will not affect any others.

Strict Mode can be disabled as follows:

$this->db->trans_strict(FALSE);

Managing Errors

If you have error reporting enabled in your config/database.php file
you’ll see a standard error message if the commit was unsuccessful. If
debugging is turned off, you can manage your own errors like this:

$this->db->trans_start();
$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->trans_complete();

if ($this->db->trans_status() === FALSE)
{
 // generate an error... or use the log_message() function to log your error
}

Disabling Transactions

If you would like to disable transactions you can do so using
$this->db->trans_off():

$this->db->trans_off();

$this->db->trans_start();
$this->db->query('AN SQL QUERY...');
$this->db->trans_complete();

When transactions are disabled, your queries will be auto-committed, just as
they are when running queries without transactions, practically ignoring
any calls to trans_start(), trans_complete(), etc.

Test Mode

You can optionally put the transaction system into “test mode”, which
will cause your queries to be rolled back – even if the queries produce
a valid result. To use test mode simply set the first parameter in the
$this->db->trans_start() function to TRUE:

$this->db->trans_start(TRUE); // Query will be rolled back
$this->db->query('AN SQL QUERY...');
$this->db->trans_complete();

Running Transactions Manually

If you would like to run transactions manually you can do so as follows:

$this->db->trans_begin();

$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->query('AND YET ANOTHER QUERY...');

if ($this->db->trans_status() === FALSE)
{
 $this->db->trans_rollback();
}
else
{
 $this->db->trans_commit();
}

Note

Make sure to use $this->db->trans_begin() when running manual
transactions, NOT $this->db->trans_start().

Database Metadata

Table MetaData

These functions let you fetch table information.

List the Tables in Your Database

$this->db->list_tables();

Returns an array containing the names of all the tables in the database
you are currently connected to. Example:

$tables = $this->db->list_tables();

foreach ($tables as $table)
{
 echo $table;
}

Determine If a Table Exists

$this->db->table_exists();

Sometimes it’s helpful to know whether a particular table exists before
running an operation on it. Returns a boolean TRUE/FALSE. Usage example:

if ($this->db->table_exists('table_name'))
{
 // some code...
}

Note

Replace table_name with the name of the table you are looking for.

Field MetaData

List the Fields in a Table

$this->db->list_fields()

Returns an array containing the field names. This query can be called
two ways:

1. You can supply the table name and call it from the $this->db->
object:

$fields = $this->db->list_fields('table_name');

foreach ($fields as $field)
{
 echo $field;
}

2. You can gather the field names associated with any query you run by
calling the function from your query result object:

$query = $this->db->query('SELECT * FROM some_table');

foreach ($query->list_fields() as $field)
{
 echo $field;
}

Determine If a Field is Present in a Table

$this->db->field_exists()

Sometimes it’s helpful to know whether a particular field exists before
performing an action. Returns a boolean TRUE/FALSE. Usage example:

if ($this->db->field_exists('field_name', 'table_name'))
{
 // some code...
}

Note

Replace field_name with the name of the column you are looking
for, and replace table_name with the name of the table you are
looking for.

Retrieve Field Metadata

$this->db->field_data()

Returns an array of objects containing field information.

Sometimes it’s helpful to gather the field names or other metadata, like
the column type, max length, etc.

Note

Not all databases provide meta-data.

Usage example:

$fields = $this->db->field_data('table_name');

foreach ($fields as $field)
{
 echo $field->name;
 echo $field->type;
 echo $field->max_length;
 echo $field->primary_key;
}

If you have run a query already you can use the result object instead of
supplying the table name:

$query = $this->db->query("YOUR QUERY");
$fields = $query->field_data();

The following data is available from this function if supported by your
database:

	name - column name

	max_length - maximum length of the column

	primary_key - 1 if the column is a primary key

	type - the type of the column

Custom Function Calls

$this->db->call_function();

This function enables you to call PHP database functions that are not
natively included in CodeIgniter, in a platform independent manner. For
example, let’s say you want to call the mysql_get_client_info()
function, which is not natively supported by CodeIgniter. You could
do so like this:

$this->db->call_function('get_client_info');

You must supply the name of the function, without the mysql_
prefix, in the first parameter. The prefix is added automatically based
on which database driver is currently being used. This permits you to
run the same function on different database platforms. Obviously not all
function calls are identical between platforms, so there are limits to
how useful this function can be in terms of portability.

Any parameters needed by the function you are calling will be added to
the second parameter.

$this->db->call_function('some_function', $param1, $param2, etc..);

Often, you will either need to supply a database connection ID or a
database result ID. The connection ID can be accessed using:

$this->db->conn_id;

The result ID can be accessed from within your result object, like this:

$query = $this->db->query("SOME QUERY");

$query->result_id;

Database Caching Class

The Database Caching Class permits you to cache your queries as text
files for reduced database load.

Important

This class is initialized automatically by the database
driver when caching is enabled. Do NOT load this class manually.

Important

Not all query result functions are available when you
use caching. Please read this page carefully.

Enabling Caching

Caching is enabled in three steps:

	Create a writable directory on your server where the cache files can
be stored.

	Set the path to your cache folder in your
application/config/database.php file.

	Enable the caching feature, either globally by setting the preference
in your application/config/database.php file, or manually as
described below.

Once enabled, caching will happen automatically whenever a page is
loaded that contains database queries.

How Does Caching Work?

CodeIgniter’s query caching system happens dynamically when your pages
are viewed. When caching is enabled, the first time a web page is
loaded, the query result object will be serialized and stored in a text
file on your server. The next time the page is loaded the cache file
will be used instead of accessing your database. Your database usage can
effectively be reduced to zero for any pages that have been cached.

Only read-type (SELECT) queries can be cached, since these are the only
type of queries that produce a result. Write-type (INSERT, UPDATE, etc.)
queries, since they don’t generate a result, will not be cached by the
system.

Cache files DO NOT expire. Any queries that have been cached will remain
cached until you delete them. The caching system permits you clear
caches associated with individual pages, or you can delete the entire
collection of cache files. Typically you’ll want to use the housekeeping
functions described below to delete cache files after certain events
take place, like when you’ve added new information to your database.

Will Caching Improve Your Site’s Performance?

Getting a performance gain as a result of caching depends on many
factors. If you have a highly optimized database under very little load,
you probably won’t see a performance boost. If your database is under
heavy use you probably will see an improved response, assuming your
file-system is not overly taxed. Remember that caching simply changes
how your information is retrieved, shifting it from being a database
operation to a file-system one.

In some clustered server environments, for example, caching may be
detrimental since file-system operations are so intense. On single
servers in shared environments, caching will probably be beneficial.
Unfortunately there is no single answer to the question of whether you
should cache your database. It really depends on your situation.

How are Cache Files Stored?

CodeIgniter places the result of EACH query into its own cache file.
Sets of cache files are further organized into sub-folders corresponding
to your controller functions. To be precise, the sub-folders are named
identically to the first two segments of your URI (the controller class
name and function name).

For example, let’s say you have a controller called blog with a function
called comments that contains three queries. The caching system will
create a cache folder called blog+comments, into which it will write
three cache files.

If you use dynamic queries that change based on information in your URI
(when using pagination, for example), each instance of the query will
produce its own cache file. It’s possible, therefore, to end up with
many times more cache files than you have queries.

Managing your Cache Files

Since cache files do not expire, you’ll need to build deletion routines
into your application. For example, let’s say you have a blog that
allows user commenting. Whenever a new comment is submitted you’ll want
to delete the cache files associated with the controller function that
serves up your comments. You’ll find two delete functions described
below that help you clear data.

Not All Database Functions Work with Caching

Lastly, we need to point out that the result object that is cached is a
simplified version of the full result object. For that reason, some of
the query result functions are not available for use.

The following functions ARE NOT available when using a cached result
object:

	num_fields()

	field_names()

	field_data()

	free_result()

Also, the two database resources (result_id and conn_id) are not
available when caching, since result resources only pertain to run-time
operations.

Function Reference

$this->db->cache_on() / $this->db->cache_off()

Manually enables/disables caching. This can be useful if you want to
keep certain queries from being cached. Example:

// Turn caching on
$this->db->cache_on();
$query = $this->db->query("SELECT * FROM mytable");

// Turn caching off for this one query
$this->db->cache_off();
$query = $this->db->query("SELECT * FROM members WHERE member_id = '$current_user'");

// Turn caching back on
$this->db->cache_on();
$query = $this->db->query("SELECT * FROM another_table");

$this->db->cache_delete()

Deletes the cache files associated with a particular page. This is
useful if you need to clear caching after you update your database.

The caching system saves your cache files to folders that correspond to
the URI of the page you are viewing. For example, if you are viewing a
page at example.com/index.php/blog/comments, the caching system will put
all cache files associated with it in a folder called blog+comments. To
delete those particular cache files you will use:

$this->db->cache_delete('blog', 'comments');

If you do not use any parameters the current URI will be used when
determining what should be cleared.

$this->db->cache_delete_all()

Clears all existing cache files. Example:

$this->db->cache_delete_all();

Database Forge Class

The Database Forge Class contains methods that help you manage your
database.

Table of Contents

	Database Forge Class
	Initializing the Forge Class

	Creating and Dropping Databases

	Creating and Dropping Tables
	Adding fields

	Adding Keys

	Creating a table

	Dropping a table

	Renaming a table

	Modifying Tables
	Adding a Column to a Table

	Dropping a Column From a Table

	Modifying a Column in a Table

	Class Reference

Initializing the Forge Class

Important

In order to initialize the Forge class, your database
driver must already be running, since the forge class relies on it.

Load the Forge Class as follows:

$this->load->dbforge()

You can also pass another database object to the DB Forge loader, in case
the database you want to manage isn’t the default one:

$this->myforge = $this->load->dbforge($this->other_db, TRUE);

In the above example, we’re passing a custom database object as the first
parameter and then tell it to return the dbforge object, instead of
assigning it directly to $this->dbforge.

Note

Both of the parameters can be used individually, just pass an empty
value as the first one if you wish to skip it.

Once initialized you will access the methods using the $this->dbforge
object:

$this->dbforge->some_method();

Creating and Dropping Databases

$this->dbforge->create_database(‘db_name’)

Permits you to create the database specified in the first parameter.
Returns TRUE/FALSE based on success or failure:

if ($this->dbforge->create_database('my_db'))
{
 echo 'Database created!';
}

$this->dbforge->drop_database(‘db_name’)

Permits you to drop the database specified in the first parameter.
Returns TRUE/FALSE based on success or failure:

if ($this->dbforge->drop_database('my_db'))
{
 echo 'Database deleted!';
}

Creating and Dropping Tables

There are several things you may wish to do when creating tables. Add
fields, add keys to the table, alter columns. CodeIgniter provides a
mechanism for this.

Adding fields

Fields are created via an associative array. Within the array you must
include a ‘type’ key that relates to the datatype of the field. For
example, INT, VARCHAR, TEXT, etc. Many datatypes (for example VARCHAR)
also require a ‘constraint’ key.

$fields = array(
 'users' => array(
 'type' => 'VARCHAR',
 'constraint' => '100',
),
);
// will translate to "users VARCHAR(100)" when the field is added.

Additionally, the following key/values can be used:

	unsigned/true : to generate “UNSIGNED” in the field definition.

	default/value : to generate a default value in the field definition.

	null/true : to generate “NULL” in the field definition. Without this,
the field will default to “NOT NULL”.

	auto_increment/true : generates an auto_increment flag on the
field. Note that the field type must be a type that supports this,
such as integer.

	unique/true : to generate a unique key for the field definition.

$fields = array(
 'blog_id' => array(
 'type' => 'INT',
 'constraint' => 5,
 'unsigned' => TRUE,
 'auto_increment' => TRUE
),
 'blog_title' => array(
 'type' => 'VARCHAR',
 'constraint' => '100',
 'unique' => TRUE,
),
 'blog_author' => array(
 'type' =>'VARCHAR',
 'constraint' => '100',
 'default' => 'King of Town',
),
 'blog_description' => array(
 'type' => 'TEXT',
 'null' => TRUE,
),
);

After the fields have been defined, they can be added using
$this->dbforge->add_field($fields); followed by a call to the
create_table() method.

$this->dbforge->add_field()

The add fields method will accept the above array.

Passing strings as fields

If you know exactly how you want a field to be created, you can pass the
string into the field definitions with add_field()

$this->dbforge->add_field("label varchar(100) NOT NULL DEFAULT 'default label'");

Note

Passing raw strings as fields cannot be followed by add_key() calls on those fields.

Note

Multiple calls to add_field() are cumulative.

Creating an id field

There is a special exception for creating id fields. A field with type
id will automatically be assigned as an INT(9) auto_incrementing
Primary Key.

$this->dbforge->add_field('id');
// gives id INT(9) NOT NULL AUTO_INCREMENT

Adding Keys

Generally speaking, you’ll want your table to have Keys. This is
accomplished with $this->dbforge->add_key(‘field’). An optional second
parameter set to TRUE will make it a primary key. Note that add_key()
must be followed by a call to create_table().

Multiple column non-primary keys must be sent as an array. Sample output
below is for MySQL.

$this->dbforge->add_key('blog_id', TRUE);
// gives PRIMARY KEY `blog_id` (`blog_id`)

$this->dbforge->add_key('blog_id', TRUE);
$this->dbforge->add_key('site_id', TRUE);
// gives PRIMARY KEY `blog_id_site_id` (`blog_id`, `site_id`)

$this->dbforge->add_key('blog_name');
// gives KEY `blog_name` (`blog_name`)

$this->dbforge->add_key(array('blog_name', 'blog_label'));
// gives KEY `blog_name_blog_label` (`blog_name`, `blog_label`)

Creating a table

After fields and keys have been declared, you can create a new table
with

$this->dbforge->create_table('table_name');
// gives CREATE TABLE table_name

An optional second parameter set to TRUE adds an “IF NOT EXISTS” clause
into the definition

$this->dbforge->create_table('table_name', TRUE);
// gives CREATE TABLE IF NOT EXISTS table_name

You could also pass optional table attributes, such as MySQL’s ENGINE:

$attributes = array('ENGINE' => 'InnoDB');
$this->dbforge->create_table('table_name', FALSE, $attributes);
// produces: CREATE TABLE `table_name` (...) ENGINE = InnoDB DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci

Note

Unless you specify the CHARACTER SET and/or COLLATE attributes,
create_table() will always add them with your configured char_set
and dbcollat values, as long as they are not empty (MySQL only).

Dropping a table

Execute a DROP TABLE statement and optionally add an IF EXISTS clause.

// Produces: DROP TABLE table_name
$this->dbforge->drop_table('table_name');

// Produces: DROP TABLE IF EXISTS table_name
$this->dbforge->drop_table('table_name',TRUE);

Renaming a table

Executes a TABLE rename

$this->dbforge->rename_table('old_table_name', 'new_table_name');
// gives ALTER TABLE old_table_name RENAME TO new_table_name

Modifying Tables

Adding a Column to a Table

$this->dbforge->add_column()

The add_column() method is used to modify an existing table. It
accepts the same field array as above, and can be used for an unlimited
number of additional fields.

$fields = array(
 'preferences' => array('type' => 'TEXT')
);
$this->dbforge->add_column('table_name', $fields);
// Executes: ALTER TABLE table_name ADD preferences TEXT

If you are using MySQL or CUBIRD, then you can take advantage of their
AFTER and FIRST clauses to position the new column.

Examples:

// Will place the new column after the `another_field` column:
$fields = array(
 'preferences' => array('type' => 'TEXT', 'after' => 'another_field')
);

// Will place the new column at the start of the table definition:
$fields = array(
 'preferences' => array('type' => 'TEXT', 'first' => TRUE)
);

Dropping a Column From a Table

$this->dbforge->drop_column()

Used to remove a column from a table.

$this->dbforge->drop_column('table_name', 'column_to_drop');

Modifying a Column in a Table

$this->dbforge->modify_column()

The usage of this method is identical to add_column(), except it
alters an existing column rather than adding a new one. In order to
change the name you can add a “name” key into the field defining array.

$fields = array(
 'old_name' => array(
 'name' => 'new_name',
 'type' => 'TEXT',
),
);
$this->dbforge->modify_column('table_name', $fields);
// gives ALTER TABLE table_name CHANGE old_name new_name TEXT

Class Reference

	
class CI_DB_forge

	
	
add_column($table[, $field = array()[, $_after = NULL]])

	

	Parameters:	
	$table (string) – Table name to add the column to

	$field (array) – Column definition(s)

	$_after (string) – Column for AFTER clause (deprecated)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Adds a column to a table. Usage: See Adding a Column to a Table.

	
add_field($field)

	

	Parameters:	
	$field (array) – Field definition to add

	Returns:	CI_DB_forge instance (method chaining)

	Return type:	CI_DB_forge

Adds a field to the set that will be used to create a table. Usage: See Adding fields.

	
add_key($key[, $primary = FALSE])

	

	Parameters:	
	$key (array) – Name of a key field

	$primary (bool) – Set to TRUE if it should be a primary key or a regular one

	Returns:	CI_DB_forge instance (method chaining)

	Return type:	CI_DB_forge

Adds a key to the set that will be used to create a table. Usage: See Adding Keys.

	
create_database($db_name)

	

	Parameters:	
	$db_name (string) – Name of the database to create

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Creates a new database. Usage: See Creating and Dropping Databases.

	
create_table($table[, $if_not_exists = FALSE[, array $attributes = array()]])

	

	Parameters:	
	$table (string) – Name of the table to create

	$if_not_exists (string) – Set to TRUE to add an ‘IF NOT EXISTS’ clause

	$attributes (string) – An associative array of table attributes

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Creates a new table. Usage: See Creating a table.

	
drop_column($table, $column_name)

	

	Parameters:	
	$table (string) – Table name

	$column_name (array) – The column name to drop

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Drops a column from a table. Usage: See Dropping a Column From a Table.

	
drop_database($db_name)

	

	Parameters:	
	$db_name (string) – Name of the database to drop

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Drops a database. Usage: See Creating and Dropping Databases.

	
drop_table($table_name[, $if_exists = FALSE])

	

	Parameters:	
	$table (string) – Name of the table to drop

	$if_exists (string) – Set to TRUE to add an ‘IF EXISTS’ clause

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Drops a table. Usage: See Dropping a table.

	
modify_column($table, $field)

	

	Parameters:	
	$table (string) – Table name

	$field (array) – Column definition(s)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Modifies a table column. Usage: See Modifying a Column in a Table.

	
rename_table($table_name, $new_table_name)

	

	Parameters:	
	$table (string) – Current of the table

	$new_table_name (string) – New name of the table

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Renames a table. Usage: See Renaming a table.

Database Utility Class

The Database Utility Class contains methods that help you manage your
database.

	Initializing the Utility Class

	Using the Database Utilities
	Retrieve list of database names

	Determine If a Database Exists

	Optimize a Table

	Repair a Table

	Optimize a Database

	Export a Query Result as a CSV File

	Export a Query Result as an XML Document

	Backup Your Database
	Database Backup Notes

	Usage Example

	Setting Backup Preferences

	Description of Backup Preferences

	Class Reference

Initializing the Utility Class

Important

In order to initialize the Utility class, your database
driver must already be running, since the utilities class relies on it.

Load the Utility Class as follows:

$this->load->dbutil();

You can also pass another database object to the DB Utility loader, in case
the database you want to manage isn’t the default one:

$this->myutil = $this->load->dbutil($this->other_db, TRUE);

In the above example, we’re passing a custom database object as the first
parameter and then tell it to return the dbutil object, instead of
assigning it directly to $this->dbutil.

Note

Both of the parameters can be used individually, just pass an empty
value as the first one if you wish to skip it.

Once initialized you will access the methods using the $this->dbutil
object:

$this->dbutil->some_method();

Using the Database Utilities

Retrieve list of database names

Returns an array of database names:

$dbs = $this->dbutil->list_databases();

foreach ($dbs as $db)
{
 echo $db;
}

Determine If a Database Exists

Sometimes it’s helpful to know whether a particular database exists.
Returns a boolean TRUE/FALSE. Usage example:

if ($this->dbutil->database_exists('database_name'))
{
 // some code...
}

Note

Replace database_name with the name of the database you are
looking for. This method is case sensitive.

Optimize a Table

Permits you to optimize a table using the table name specified in the
first parameter. Returns TRUE/FALSE based on success or failure:

if ($this->dbutil->optimize_table('table_name'))
{
 echo 'Success!';
}

Note

Not all database platforms support table optimization. It is
mostly for use with MySQL.

Repair a Table

Permits you to repair a table using the table name specified in the
first parameter. Returns TRUE/FALSE based on success or failure:

if ($this->dbutil->repair_table('table_name'))
{
 echo 'Success!';
}

Note

Not all database platforms support table repairs.

Optimize a Database

Permits you to optimize the database your DB class is currently
connected to. Returns an array containing the DB status messages or
FALSE on failure.

$result = $this->dbutil->optimize_database();

if ($result !== FALSE)
{
 print_r($result);
}

Note

Not all database platforms support database optimization. It
it is mostly for use with MySQL.

Export a Query Result as a CSV File

Permits you to generate a CSV file from a query result. The first
parameter of the method must contain the result object from your
query. Example:

$this->load->dbutil();

$query = $this->db->query("SELECT * FROM mytable");

echo $this->dbutil->csv_from_result($query);

The second, third, and fourth parameters allow you to set the delimiter
newline, and enclosure characters respectively. By default commas are
used as the delimiter, “n” is used as a new line, and a double-quote
is used as the enclosure. Example:

$delimiter = ",";
$newline = "\r\n";
$enclosure = '"';

echo $this->dbutil->csv_from_result($query, $delimiter, $newline, $enclosure);

Important

This method will NOT write the CSV file for you. It
simply creates the CSV layout. If you need to write the file
use the File Helper.

Export a Query Result as an XML Document

Permits you to generate an XML file from a query result. The first
parameter expects a query result object, the second may contain an
optional array of config parameters. Example:

$this->load->dbutil();

$query = $this->db->query("SELECT * FROM mytable");

$config = array (
 'root' => 'root',
 'element' => 'element',
 'newline' => "\n",
 'tab' => "\t"
);

echo $this->dbutil->xml_from_result($query, $config);

Important

This method will NOT write the XML file for you. It
simply creates the XML layout. If you need to write the file
use the File Helper.

Backup Your Database

Database Backup Notes

Permits you to backup your full database or individual tables. The
backup data can be compressed in either Zip or Gzip format.

Note

This feature is only available for MySQL and Interbase/Firebird databases.

Note

For Interbase/Firebird databases, the backup file name is the only parameter.

$this->dbutil->backup(‘db_backup_filename’);

Note

Due to the limited execution time and memory available to PHP,
backing up very large databases may not be possible. If your database is
very large you might need to backup directly from your SQL server via
the command line, or have your server admin do it for you if you do not
have root privileges.

Usage Example

// Load the DB utility class
$this->load->dbutil();

// Backup your entire database and assign it to a variable
$backup = $this->dbutil->backup();

// Load the file helper and write the file to your server
$this->load->helper('file');
write_file('/path/to/mybackup.gz', $backup);

// Load the download helper and send the file to your desktop
$this->load->helper('download');
force_download('mybackup.gz', $backup);

Setting Backup Preferences

Backup preferences are set by submitting an array of values to the first
parameter of the backup() method. Example:

$prefs = array(
 'tables' => array('table1', 'table2'), // Array of tables to backup.
 'ignore' => array(), // List of tables to omit from the backup
 'format' => 'txt', // gzip, zip, txt
 'filename' => 'mybackup.sql', // File name - NEEDED ONLY WITH ZIP FILES
 'add_drop' => TRUE, // Whether to add DROP TABLE statements to backup file
 'add_insert' => TRUE, // Whether to add INSERT data to backup file
 'newline' => "\n" // Newline character used in backup file
);

$this->dbutil->backup($prefs);

Description of Backup Preferences

	Preference
	Default Value
	Options
	Description

	tables
	empty array
	None
	An array of tables you want backed up. If left blank all tables will be
exported.

	ignore
	empty array
	None
	An array of tables you want the backup routine to ignore.

	format
	gzip
	gzip, zip, txt
	The file format of the export file.

	filename
	the current date/time
	None
	The name of the backed-up file. The name is needed only if you are using
zip compression.

	add_drop
	TRUE
	TRUE/FALSE
	Whether to include DROP TABLE statements in your SQL export file.

	add_insert
	TRUE
	TRUE/FALSE
	Whether to include INSERT statements in your SQL export file.

	newline
	“\n”
	“\n”, “\r”, “\r\n”
	Type of newline to use in your SQL export file.

	foreign_key_checks
	TRUE
	TRUE/FALSE
	Whether output should keep foreign key checks enabled.

Class Reference

	
class CI_DB_utility

	
	
backup([$params = array()])

	

	Parameters:	
	$params (array) – An associative array of options

	Returns:	raw/(g)zipped SQL query string

	Return type:	string

Perform a database backup, per user preferences.

	
database_exists($database_name)

	

	Parameters:	
	$database_name (string) – Database name

	Returns:	TRUE if the database exists, FALSE otherwise

	Return type:	bool

Check for the existence of a database.

	
list_databases()

	

	Returns:	Array of database names found

	Return type:	array

Retrieve a list of all the database names.

	
optimize_database()

	

	Returns:	Array of optimization messages or FALSE on failure

	Return type:	array

Optimizes the database.

	
optimize_table($table_name)

	

	Parameters:	
	$table_name (string) – Name of the table to optimize

	Returns:	Array of optimization messages or FALSE on failure

	Return type:	array

Optimizes a database table.

	
repair_table($table_name)

	

	Parameters:	
	$table_name (string) – Name of the table to repair

	Returns:	Array of repair messages or FALSE on failure

	Return type:	array

Repairs a database table.

	
csv_from_result($query[, $delim = ', '[, $newline = "n"[, $enclosure = '"']]])

	

	Parameters:	
	$query (object) – A database result object

	$delim (string) – The CSV field delimiter to use

	$newline (string) – The newline character to use

	$enclosure (string) – The enclosure delimiter to use

	Returns:	The generated CSV file as a string

	Return type:	string

Translates a database result object into a CSV document.

	
xml_from_result($query[, $params = array()])

	

	Parameters:	
	$query (object) – A database result object

	$params (array) – An associative array of preferences

	Returns:	The generated XML document as a string

	Return type:	string

Translates a database result object into an XML document.

DB Driver Reference

This is the platform-independent base DB implementation class.
This class will not be called directly. Rather, the adapter
class for the specific database will extend and instantiate it.

The how-to material for this has been split over several articles.
This article is intended to be a reference for them.

Important

Not all methods are supported by all database drivers,
some of them may fail (and return FALSE) if the underlying
driver does not support them.

	
class CI_DB_driver

	
	
initialize()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Initialize database settings, establish a connection to
the database.

	
db_connect($persistent = TRUE)

	

	Parameters:	
	$persistent (bool) – Whether to establish a persistent connection or a regular one

	Returns:	Database connection resource/object or FALSE on failure

	Return type:	mixed

Establish a connection with the database.

Note

The returned value depends on the underlying
driver in use. For example, a mysqli instance
will be returned with the ‘mysqli’ driver.

	
db_pconnect()

	

	Returns:	Database connection resource/object or FALSE on failure

	Return type:	mixed

Establish a persistent connection with the database.

Note

This method is just an alias for db_connect(TRUE).

	
reconnect()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Keep / reestablish the database connection if no queries
have been sent for a length of time exceeding the
server’s idle timeout.

	
db_select([$database = ''])

	

	Parameters:	
	$database (string) – Database name

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Select / switch the current database.

	
db_set_charset($charset)

	

	Parameters:	
	$charset (string) – Character set name

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Set client character set.

	
platform()

	

	Returns:	Platform name

	Return type:	string

The name of the platform in use (mysql, mssql, etc…).

	
version()

	

	Returns:	The version of the database being used

	Return type:	string

Database version number.

	
query($sql[, $binds = FALSE[, $return_object = NULL]])

	

	Parameters:	
	$sql (string) – The SQL statement to execute

	$binds (array) – An array of binding data

	$return_object (bool) – Whether to return a result object or not

	Returns:	TRUE for successful “write-type” queries, CI_DB_result instance (method chaining) on “query” success, FALSE on failure

	Return type:	mixed

Execute an SQL query.

Accepts an SQL string as input and returns a result object
upon successful execution of a “read” type query.

Returns:

	Boolean TRUE upon successful execution of a “write type” queries

	Boolean FALSE upon failure

	CI_DB_result object for “read type” queries

	
simple_query($sql)

	

	Parameters:	
	$sql (string) – The SQL statement to execute

	Returns:	Whatever the underlying driver’s “query” function returns

	Return type:	mixed

A simplified version of the query() method, appropriate
for use when you don’t need to get a result object or to
just send a query to the database and not care for the result.

	
affected_rows()

	

	Returns:	Number of rows affected

	Return type:	int

Returns the number of rows changed by the last executed query.

Useful for checking how much rows were created, updated or deleted
during the last executed query.

	
trans_strict([$mode = TRUE])

	

	Parameters:	
	$mode (bool) – Strict mode flag

	Return type:	void

Enable/disable transaction “strict” mode.

When strict mode is enabled, if you are running multiple
groups of transactions and one group fails, all subsequent
groups will be rolled back.

If strict mode is disabled, each group is treated
autonomously, meaning a failure of one group will not
affect any others.

	
trans_off()

	

	Return type:	void

Disables transactions at run-time.

	
trans_start([$test_mode = FALSE])

	

	Parameters:	
	$test_mode (bool) – Test mode flag

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Start a transaction.

	
trans_complete()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Complete Transaction.

	
trans_status()

	

	Returns:	TRUE if the transaction succeeded, FALSE if it failed

	Return type:	bool

Lets you retrieve the transaction status flag to
determine if it has failed.

	
compile_binds($sql, $binds)

	

	Parameters:	
	$sql (string) – The SQL statement

	$binds (array) – An array of binding data

	Returns:	The updated SQL statement

	Return type:	string

Compiles an SQL query with the bind values passed for it.

	
is_write_type($sql)

	

	Parameters:	
	$sql (string) – The SQL statement

	Returns:	TRUE if the SQL statement is of “write type”, FALSE if not

	Return type:	bool

Determines if a query is of a “write” type (such as
INSERT, UPDATE, DELETE) or “read” type (i.e. SELECT).

	
elapsed_time([$decimals = 6])

	

	Parameters:	
	$decimals (int) – The number of decimal places

	Returns:	The aggregate query elapsed time, in microseconds

	Return type:	string

Calculate the aggregate query elapsed time.

	
total_queries()

	

	Returns:	The total number of queries executed

	Return type:	int

Returns the total number of queries that have been
executed so far.

	
last_query()

	

	Returns:	The last query executed

	Return type:	string

Returns the last query that was executed.

	
escape($str)

	

	Parameters:	
	$str (mixed) – The value to escape, or an array of multiple ones

	Returns:	The escaped value(s)

	Return type:	mixed

Escapes input data based on type, including boolean and
NULLs.

	
escape_str($str[, $like = FALSE])

	

	Parameters:	
	$str (mixed) – A string value or array of multiple ones

	$like (bool) – Whether or not the string will be used in a LIKE condition

	Returns:	The escaped string(s)

	Return type:	mixed

Escapes string values.

Warning

The returned strings do NOT include quotes
around them.

	
escape_like_str($str)

	

	Parameters:	
	$str (mixed) – A string value or array of multiple ones

	Returns:	The escaped string(s)

	Return type:	mixed

Escape LIKE strings.

Similar to escape_str(), but will also escape the %
and _ wildcard characters, so that they don’t cause
false-positives in LIKE conditions.

Important

The escape_like_str() method uses ‘!’ (exclamation mark)
to escape special characters for LIKE conditions. Because this
method escapes partial strings that you would wrap in quotes
yourself, it cannot automatically add the ESCAPE '!'
condition for you, and so you’ll have to manually do that.

	
primary($table)

	

	Parameters:	
	$table (string) – Table name

	Returns:	The primary key name, FALSE if none

	Return type:	string

Retrieves the primary key of a table.

Note

If the database platform does not support primary
key detection, the first column name may be assumed
as the primary key.

	
count_all([$table = ''])

	

	Parameters:	
	$table (string) – Table name

	Returns:	Row count for the specified table

	Return type:	int

Returns the total number of rows in a table, or 0 if no
table was provided.

	
list_tables([$constrain_by_prefix = FALSE])

	

	Parameters:	
	$constrain_by_prefix (bool) – TRUE to match table names by the configured dbprefix

	Returns:	Array of table names or FALSE on failure

	Return type:	array

Gets a list of the tables in the current database.

	
table_exists($table_name)

	

	Parameters:	
	$table_name (string) – The table name

	Returns:	TRUE if that table exists, FALSE if not

	Return type:	bool

Determine if a particular table exists.

	
list_fields($table)

	

	Parameters:	
	$table (string) – The table name

	Returns:	Array of field names or FALSE on failure

	Return type:	array

Gets a list of the field names in a table.

	
field_exists($field_name, $table_name)

	

	Parameters:	
	$table_name (string) – The table name

	$field_name (string) – The field name

	Returns:	TRUE if that field exists in that table, FALSE if not

	Return type:	bool

Determine if a particular field exists.

	
field_data($table)

	

	Parameters:	
	$table (string) – The table name

	Returns:	Array of field data items or FALSE on failure

	Return type:	array

Gets a list containing field data about a table.

	
escape_identifiers($item)

	

	Parameters:	
	$item (mixed) – The item or array of items to escape

	Returns:	The input item(s), escaped

	Return type:	mixed

Escape SQL identifiers, such as column, table and names.

	
insert_string($table, $data)

	

	Parameters:	
	$table (string) – The target table

	$data (array) – An associative array of key/value pairs

	Returns:	The SQL INSERT statement, as a string

	Return type:	string

Generate an INSERT statement string.

	
update_string($table, $data, $where)

	

	Parameters:	
	$table (string) – The target table

	$data (array) – An associative array of key/value pairs

	$where (mixed) – The WHERE statement conditions

	Returns:	The SQL UPDATE statement, as a string

	Return type:	string

Generate an UPDATE statement string.

	
call_function($function)

	

	Parameters:	
	$function (string) – Function name

	Returns:	The function result

	Return type:	string

Runs a native PHP function , using a platform agnostic
wrapper.

	
cache_set_path([$path = ''])

	

	Parameters:	
	$path (string) – Path to the cache directory

	Return type:	void

Sets the directory path to use for caching storage.

	
cache_on()

	

	Returns:	TRUE if caching is on, FALSE if not

	Return type:	bool

Enable database results caching.

	
cache_off()

	

	Returns:	TRUE if caching is on, FALSE if not

	Return type:	bool

Disable database results caching.

	
cache_delete([$segment_one = ''[, $segment_two = '']])

	

	Parameters:	
	$segment_one (string) – First URI segment

	$segment_two (string) – Second URI segment

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Delete the cache files associated with a particular URI.

	
cache_delete_all()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Delete all cache files.

	
close()

	

	Return type:	void

Close the DB Connection.

	
display_error([$error = ''[, $swap = ''[, $native = FALSE]]])

	

	Parameters:	
	$error (string) – The error message

	$swap (string) – Any “swap” values

	$native (bool) – Whether to localize the message

	Return type:	void

	Returns:	Displays the DB error screensends the application/views/errors/error_db.php template

	Return type:	string

Display an error message and stop script execution.

The message is displayed using the
application/views/errors/error_db.php template.

	
protect_identifiers($item[, $prefix_single = FALSE[, $protect_identifiers = NULL[, $field_exists = TRUE]]])

	

	Parameters:	
	$item (string) – The item to work with

	$prefix_single (bool) – Whether to apply the dbprefix even if the input item is a single identifier

	$protect_identifiers (bool) – Whether to quote identifiers

	$field_exists (bool) – Whether the supplied item contains a field name or not

	Returns:	The modified item

	Return type:	string

Takes a column or table name (optionally with an alias)
and applies the configured dbprefix to it.

Some logic is necessary in order to deal with
column names that include the path.

Consider a query like this:

SELECT * FROM hostname.database.table.column AS c FROM hostname.database.table

Or a query with aliasing:

SELECT m.member_id, m.member_name FROM members AS m

Since the column name can include up to four segments
(host, DB, table, column) or also have an alias prefix,
we need to do a bit of work to figure this out and
insert the table prefix (if it exists) in the proper
position, and escape only the correct identifiers.

This method is used extensively by the Query Builder class.

Helpers

	Array Helper

	CAPTCHA Helper

	Cookie Helper

	Date Helper

	Directory Helper

	Download Helper

	Email Helper

	File Helper

	Form Helper

	HTML Helper

	Inflector Helper

	Language Helper

	Number Helper

	Path Helper

	Security Helper

	Smiley Helper

	String Helper

	Text Helper

	Typography Helper

	URL Helper

	XML Helper

Array Helper

The Array Helper file contains functions that assist in working with
arrays.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('array');

Available Functions

The following functions are available:

	
element($item, $array[, $default = NULL])

	

	Parameters:	
	$item (string) – Item to fetch from the array

	$array (array) – Input array

	$default (bool) – What to return if the array isn’t valid

	Returns:	NULL on failure or the array item.

	Return type:	mixed

Lets you fetch an item from an array. The function tests whether the
array index is set and whether it has a value. If a value exists it is
returned. If a value does not exist it returns NULL, or whatever you’ve
specified as the default value via the third parameter.

Example:

$array = array(
 'color' => 'red',
 'shape' => 'round',
 'size' => ''
);

echo element('color', $array); // returns "red"
echo element('size', $array, 'foobar'); // returns "foobar"

	
elements($items, $array[, $default = NULL])

	

	Parameters:	
	$item (string) – Item to fetch from the array

	$array (array) – Input array

	$default (bool) – What to return if the array isn’t valid

	Returns:	NULL on failure or the array item.

	Return type:	mixed

Lets you fetch a number of items from an array. The function tests
whether each of the array indices is set. If an index does not exist it
is set to NULL, or whatever you’ve specified as the default value via
the third parameter.

Example:

$array = array(
 'color' => 'red',
 'shape' => 'round',
 'radius' => '10',
 'diameter' => '20'
);

$my_shape = elements(array('color', 'shape', 'height'), $array);

The above will return the following array:

array(
 'color' => 'red',
 'shape' => 'round',
 'height' => NULL
);

You can set the third parameter to any default value you like.

$my_shape = elements(array('color', 'shape', 'height'), $array, 'foobar');

The above will return the following array:

array(
 'color' => 'red',
 'shape' => 'round',
 'height' => 'foobar'
);

This is useful when sending the $_POST array to one of your Models.
This prevents users from sending additional POST data to be entered into
your tables.

$this->load->model('post_model');
$this->post_model->update(
 elements(array('id', 'title', 'content'), $_POST)
);

This ensures that only the id, title and content fields are sent to be
updated.

	
random_element($array)

	

	Parameters:	
	$array (array) – Input array

	Returns:	A random element from the array

	Return type:	mixed

Takes an array as input and returns a random element from it.

Usage example:

$quotes = array(
 "I find that the harder I work, the more luck I seem to have. - Thomas Jefferson",
 "Don't stay in bed, unless you can make money in bed. - George Burns",
 "We didn't lose the game; we just ran out of time. - Vince Lombardi",
 "If everything seems under control, you're not going fast enough. - Mario Andretti",
 "Reality is merely an illusion, albeit a very persistent one. - Albert Einstein",
 "Chance favors the prepared mind - Louis Pasteur"
);

echo random_element($quotes);

CAPTCHA Helper

The CAPTCHA Helper file contains functions that assist in creating
CAPTCHA images.

	Loading this Helper

	Using the CAPTCHA helper
	Adding a Database

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('captcha');

Using the CAPTCHA helper

Once loaded you can generate a CAPTCHA like this:

$vals = array(
 'word' => 'Random word',
 'img_path' => './captcha/',
 'img_url' => 'http://example.com/captcha/',
 'font_path' => './path/to/fonts/texb.ttf',
 'img_width' => '150',
 'img_height' => 30,
 'expiration' => 7200,
 'word_length' => 8,
 'font_size' => 16,
 'img_id' => 'Imageid',
 'pool' => '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',

 // White background and border, black text and red grid
 'colors' => array(
 'background' => array(255, 255, 255),
 'border' => array(255, 255, 255),
 'text' => array(0, 0, 0),
 'grid' => array(255, 40, 40)
)
);

$cap = create_captcha($vals);
echo $cap['image'];

	The captcha function requires the GD image library.

	Only the img_path and img_url are required.

	If a word is not supplied, the function will generate a random
ASCII string. You might put together your own word library that you
can draw randomly from.

	If you do not specify a path to a TRUE TYPE font, the native ugly GD
font will be used.

	The “captcha” directory must be writable

	The expiration (in seconds) signifies how long an image will remain
in the captcha folder before it will be deleted. The default is two
hours.

	word_length defaults to 8, pool defaults to ‘0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’

	font_size defaults to 16, the native GD font has a size limit. Specify a “true type” font for bigger sizes.

	The img_id will be set as the “id” of the captcha image.

	If any of the colors values is missing, it will be replaced by the default.

Adding a Database

In order for the captcha function to prevent someone from submitting,
you will need to add the information returned from create_captcha()
to your database. Then, when the data from the form is submitted by
the user you will need to verify that the data exists in the database
and has not expired.

Here is a table prototype:

CREATE TABLE captcha (
 captcha_id bigint(13) unsigned NOT NULL auto_increment,
 captcha_time int(10) unsigned NOT NULL,
 ip_address varchar(45) NOT NULL,
 word varchar(20) NOT NULL,
 PRIMARY KEY `captcha_id` (`captcha_id`),
 KEY `word` (`word`)
);

Here is an example of usage with a database. On the page where the
CAPTCHA will be shown you’ll have something like this:

$this->load->helper('captcha');
$vals = array(
 'img_path' => './captcha/',
 'img_url' => 'http://example.com/captcha/'
);

$cap = create_captcha($vals);
$data = array(
 'captcha_time' => $cap['time'],
 'ip_address' => $this->input->ip_address(),
 'word' => $cap['word']
);

$query = $this->db->insert_string('captcha', $data);
$this->db->query($query);

echo 'Submit the word you see below:';
echo $cap['image'];
echo '<input type="text" name="captcha" value="" />';

Then, on the page that accepts the submission you’ll have something like
this:

// First, delete old captchas
$expiration = time() - 7200; // Two hour limit
$this->db->where('captcha_time < ', $expiration)
 ->delete('captcha');

// Then see if a captcha exists:
$sql = 'SELECT COUNT(*) AS count FROM captcha WHERE word = ? AND ip_address = ? AND captcha_time > ?';
$binds = array($_POST['captcha'], $this->input->ip_address(), $expiration);
$query = $this->db->query($sql, $binds);
$row = $query->row();

if ($row->count == 0)
{
 echo 'You must submit the word that appears in the image.';
}

Available Functions

The following functions are available:

	
create_captcha([$data = ''[, $img_path = ''[, $img_url = ''[, $font_path = '']]]])

	

	Parameters:	
	$data (array) – Array of data for the CAPTCHA

	$img_path (string) – Path to create the image in (DEPRECATED)

	$img_url (string) – URL to the CAPTCHA image folder (DEPRECATED)

	$font_path (string) – Server path to font (DEPRECATED)

	Returns:	array(‘word’ => $word, ‘time’ => $now, ‘image’ => $img)

	Return type:	array

Takes an array of information to generate the CAPTCHA as input and
creates the image to your specifications, returning an array of
associative data about the image.

array(
 'image' => IMAGE TAG
 'time' => TIMESTAMP (in microtime)
 'word' => CAPTCHA WORD
)

The image is the actual image tag:

The time is the micro timestamp used as the image name without the
file extension. It will be a number like this: 1139612155.3422

The word is the word that appears in the captcha image, which if not
supplied to the function, will be a random string.

Note

Usage of the $img_path, $img_url and $font_path
parameters is DEPRECATED. Provide them in the $data array
instead.

Cookie Helper

The Cookie Helper file contains functions that assist in working with
cookies.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('cookie');

Available Functions

The following functions are available:

	
set_cookie($name[, $value = ''[, $expire = ''[, $domain = ''[, $path = '/'[, $prefix = ''[, $secure = NULL[, $httponly = NULL]]]]]]])

	

	Parameters:	
	$name (mixed) – Cookie name or associative array of all of the parameters available to this function

	$value (string) – Cookie value

	$expire (int) – Number of seconds until expiration

	$domain (string) – Cookie domain (usually: .yourdomain.com)

	$path (string) – Cookie path

	$prefix (string) – Cookie name prefix

	$secure (bool) – Whether to only send the cookie through HTTPS

	$httponly (bool) – Whether to hide the cookie from JavaScript

	Return type:	void

This helper function gives you friendlier syntax to set browser
cookies. Refer to the Input Library for
a description of its use, as this function is an alias for
CI_Input::set_cookie().

	
get_cookie($index[, $xss_clean = NULL])

	

	Parameters:	
	$index (string) – Cookie name

	$xss_clean (bool) – Whether to apply XSS filtering to the returned value

	Returns:	The cookie value or NULL if not found

	Return type:	mixed

This helper function gives you friendlier syntax to get browser
cookies. Refer to the Input Library for
detailed description of its use, as this function acts very
similarly to CI_Input::cookie(), except it will also prepend
the $config['cookie_prefix'] that you might’ve set in your
application/config/config.php file.

	
delete_cookie($name[, $domain = ''[, $path = '/'[, $prefix = '']]])

	

	Parameters:	
	$name (string) – Cookie name

	$domain (string) – Cookie domain (usually: .yourdomain.com)

	$path (string) – Cookie path

	$prefix (string) – Cookie name prefix

	Return type:	void

Lets you delete a cookie. Unless you’ve set a custom path or other
values, only the name of the cookie is needed.

delete_cookie('name');

This function is otherwise identical to set_cookie(), except that it
does not have the value and expiration parameters. You can submit an
array of values in the first parameter or you can set discrete
parameters.

delete_cookie($name, $domain, $path, $prefix);

Date Helper

The Date Helper file contains functions that help you work with dates.

	Loading this Helper

	Available Functions

	Timezone Reference

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('date');

Available Functions

The following functions are available:

	
now([$timezone = NULL])

	

	Parameters:	
	$timezone (string) – Timezone

	Returns:	UNIX timestamp

	Return type:	int

Returns the current time as a UNIX timestamp, referenced either to your server’s
local time or any PHP supported timezone, based on the “time reference” setting
in your config file. If you do not intend to set your master time reference to
any other PHP supported timezone (which you’ll typically do if you run a site
that lets each user set their own timezone settings) there is no benefit to using
this function over PHP’s time() function.

echo now('Australia/Victoria');

If a timezone is not provided, it will return time() based on the
time_reference setting.

	
mdate([$datestr = ''[, $time = '']])

	

	Parameters:	
	$datestr (string) – Date string

	$time (int) – UNIX timestamp

	Returns:	MySQL-formatted date

	Return type:	string

This function is identical to PHP’s date() [http://php.net/manual/en/function.date.php]
function, except that it lets you use MySQL style date codes, where each
code letter is preceded with a percent sign, e.g. %Y %m %d

The benefit of doing dates this way is that you don’t have to worry
about escaping any characters that are not date codes, as you would
normally have to do with the date() function.

Example:

$datestring = 'Year: %Y Month: %m Day: %d - %h:%i %a';
$time = time();
echo mdate($datestring, $time);

If a timestamp is not included in the second parameter the current time
will be used.

	
standard_date([$fmt = 'DATE_RFC822'[, $time = NULL]])

	

	Parameters:	
	$fmt (string) – Date format

	$time (int) – UNIX timestamp

	Returns:	Formatted date or FALSE on invalid format

	Return type:	string

Lets you generate a date string in one of several standardized formats.

Example:

$format = 'DATE_RFC822';
$time = time();
echo standard_date($format, $time);

Note

This function is DEPRECATED. Use the native date() combined with
DateTime’s format constants [https://secure.php.net/manual/en/class.datetime.php#datetime.constants.types]
instead:

echo date(DATE_RFC822, time());

Supported formats:

	Constant
	Description
	Example

	DATE_ATOM
	Atom
	2005-08-15T16:13:03+0000

	DATE_COOKIE
	HTTP Cookies
	Sun, 14 Aug 2005 16:13:03 UTC

	DATE_ISO8601
	ISO-8601
	2005-08-14T16:13:03+00:00

	DATE_RFC822
	RFC 822
	Sun, 14 Aug 05 16:13:03 UTC

	DATE_RFC850
	RFC 850
	Sunday, 14-Aug-05 16:13:03 UTC

	DATE_RFC1036
	RFC 1036
	Sunday, 14-Aug-05 16:13:03 UTC

	DATE_RFC1123
	RFC 1123
	Sun, 14 Aug 2005 16:13:03 UTC

	DATE_RFC2822
	RFC 2822
	Sun, 14 Aug 2005 16:13:03 +0000

	DATE_RSS
	RSS
	Sun, 14 Aug 2005 16:13:03 UTC

	DATE_W3C
	W3C
	2005-08-14T16:13:03+0000

	
local_to_gmt([$time = ''])

	

	Parameters:	
	$time (int) – UNIX timestamp

	Returns:	UNIX timestamp

	Return type:	int

Takes a UNIX timestamp as input and returns it as GMT.

Example:

$gmt = local_to_gmt(time());

	
gmt_to_local([$time = ''[, $timezone = 'UTC'[, $dst = FALSE]]])

	

	Parameters:	
	$time (int) – UNIX timestamp

	$timezone (string) – Timezone

	$dst (bool) – Whether DST is active

	Returns:	UNIX timestamp

	Return type:	int

Takes a UNIX timestamp (referenced to GMT) as input, and converts it to
a localized timestamp based on the timezone and Daylight Saving Time
submitted.

Example:

$timestamp = 1140153693;
$timezone = 'UM8';
$daylight_saving = TRUE;
echo gmt_to_local($timestamp, $timezone, $daylight_saving);

Note

For a list of timezones see the reference at the bottom of this page.

	
mysql_to_unix([$time = ''])

	

	Parameters:	
	$time (string) – MySQL timestamp

	Returns:	UNIX timestamp

	Return type:	int

Takes a MySQL Timestamp as input and returns it as a UNIX timestamp.

Example:

$unix = mysql_to_unix('20061124092345');

	
unix_to_human([$time = ''[, $seconds = FALSE[, $fmt = 'us']]])

	

	Parameters:	
	$time (int) – UNIX timestamp

	$seconds (bool) – Whether to show seconds

	$fmt (string) – format (us or euro)

	Returns:	Formatted date

	Return type:	string

Takes a UNIX timestamp as input and returns it in a human readable
format with this prototype:

YYYY-MM-DD HH:MM:SS AM/PM

This can be useful if you need to display a date in a form field for
submission.

The time can be formatted with or without seconds, and it can be set to
European or US format. If only the timestamp is submitted it will return
the time without seconds formatted for the U.S.

Examples:

$now = time();
echo unix_to_human($now); // U.S. time, no seconds
echo unix_to_human($now, TRUE, 'us'); // U.S. time with seconds
echo unix_to_human($now, TRUE, 'eu'); // Euro time with seconds

	
human_to_unix([$datestr = ''])

	

	Parameters:	
	$datestr (int) – Date string

	Returns:	UNIX timestamp or FALSE on failure

	Return type:	int

The opposite of the unix_to_time() function. Takes a “human”
time as input and returns it as a UNIX timestamp. This is useful if you
accept “human” formatted dates submitted via a form. Returns boolean FALSE
date string passed to it is not formatted as indicated above.

Example:

$now = time();
$human = unix_to_human($now);
$unix = human_to_unix($human);

	
nice_date([$bad_date = ''[, $format = FALSE]])

	

	Parameters:	
	$bad_date (int) – The terribly formatted date-like string

	$format (string) – Date format to return (same as PHP’s date() function)

	Returns:	Formatted date

	Return type:	string

This function can take a number poorly-formed date formats and convert
them into something useful. It also accepts well-formed dates.

The function will return a UNIX timestamp by default. You can, optionally,
pass a format string (the same type as the PHP date() function accepts)
as the second parameter.

Example:

$bad_date = '199605';
// Should Produce: 1996-05-01
$better_date = nice_date($bad_date, 'Y-m-d');

$bad_date = '9-11-2001';
// Should Produce: 2001-09-11
$better_date = nice_date($bad_date, 'Y-m-d');

Note

This function is DEPRECATED. Use PHP’s native DateTime class [https://secure.php.net/datetime] instead.

	
timespan([$seconds = 1[, $time = ''[, $units = '']]])

	

	Parameters:	
	$seconds (int) – Number of seconds

	$time (string) – UNIX timestamp

	$units (int) – Number of time units to display

	Returns:	Formatted time difference

	Return type:	string

Formats a UNIX timestamp so that is appears similar to this:

1 Year, 10 Months, 2 Weeks, 5 Days, 10 Hours, 16 Minutes

The first parameter must contain a UNIX timestamp.
The second parameter must contain a timestamp that is greater that the
first timestamp.
The thirdparameter is optional and limits the number of time units to display.

If the second parameter empty, the current time will be used.

The most common purpose for this function is to show how much time has
elapsed from some point in time in the past to now.

Example:

$post_date = '1079621429';
$now = time();
$units = 2;
echo timespan($post_date, $now, $units);

Note

The text generated by this function is found in the following language
file: language/<your_lang>/date_lang.php

	
days_in_month([$month = 0[, $year = '']])

	

	Parameters:	
	$month (int) – a numeric month

	$year (int) – a numeric year

	Returns:	Count of days in the specified month

	Return type:	int

Returns the number of days in a given month/year. Takes leap years into
account.

Example:

echo days_in_month(06, 2005);

If the second parameter is empty, the current year will be used.

Note

This function will alias the native cal_days_in_month(), if
it is available.

	
date_range([$unix_start = ''[, $mixed = ''[, $is_unix = TRUE[, $format = 'Y-m-d']]]])

	

	Parameters:	
	$unix_start (int) – UNIX timestamp of the range start date

	$mixed (int) – UNIX timestamp of the range end date or interval in days

	$is_unix (bool) – set to FALSE if $mixed is not a timestamp

	$format (string) – Output date format, same as in date()

	Returns:	An array of dates

	Return type:	array

Returns a list of dates within a specified period.

Example:

$range = date_range('2012-01-01', '2012-01-15');
echo "First 15 days of 2012:";
foreach ($range as $date)
{
 echo $date."\n";
}

	
timezones([$tz = ''])

	

	Parameters:	
	$tz (string) – A numeric timezone

	Returns:	Hour difference from UTC

	Return type:	int

Takes a timezone reference (for a list of valid timezones, see the
“Timezone Reference” below) and returns the number of hours offset from
UTC.

Example:

echo timezones('UM5');

This function is useful when used with timezone_menu().

	
timezone_menu([$default = 'UTC'[, $class = ''[, $name = 'timezones'[, $attributes = '']]]])

	

	Parameters:	
	$default (string) – Timezone

	$class (string) – Class name

	$name (string) – Menu name

	$attributes (mixed) – HTML attributes

	Returns:	HTML drop down menu with time zones

	Return type:	string

Generates a pull-down menu of timezones, like this one:

 (UTC -12:00) Baker/Howland Island

 (UTC -11:00) Samoa Time Zone, Niue

 (UTC -10:00) Hawaii-Aleutian Standard Time, Cook Islands, Tahiti

 (UTC -9:30) Marquesas Islands

 (UTC -9:00) Alaska Standard Time, Gambier Islands

 (UTC -8:00) Pacific Standard Time, Clipperton Island

 (UTC -7:00) Mountain Standard Time

 (UTC -6:00) Central Standard Time

 (UTC -5:00) Eastern Standard Time, Western Caribbean Standard Time

 (UTC -4:30) Venezuelan Standard Time

 (UTC -4:00) Atlantic Standard Time, Eastern Caribbean Standard Time

 (UTC -3:30) Newfoundland Standard Time

 (UTC -3:00) Argentina, Brazil, French Guiana, Uruguay

 (UTC -2:00) South Georgia/South Sandwich Islands

 (UTC -1:00) Azores, Cape Verde Islands

 (UTC) Greenwich Mean Time, Western European Time

 (UTC +1:00) Central European Time, West Africa Time

 (UTC +2:00) Central Africa Time, Eastern European Time, Kaliningrad Time

 (UTC +3:00) Moscow Time, East Africa Time

 (UTC +3:30) Iran Standard Time

 (UTC +4:00) Azerbaijan Standard Time, Samara Time

 (UTC +4:30) Afghanistan

 (UTC +5:00) Pakistan Standard Time, Yekaterinburg Time

 (UTC +5:30) Indian Standard Time, Sri Lanka Time

 (UTC +5:45) Nepal Time

 (UTC +6:00) Bangladesh Standard Time, Bhutan Time, Omsk Time

 (UTC +6:30) Cocos Islands, Myanmar

 (UTC +7:00) Krasnoyarsk Time, Cambodia, Laos, Thailand, Vietnam

 (UTC +8:00) Australian Western Standard Time, Beijing Time, Irkutsk Time

 (UTC +8:45) Australian Central Western Standard Time

 (UTC +9:00) Japan Standard Time, Korea Standard Time, Yakutsk Time

 (UTC +9:30) Australian Central Standard Time

 (UTC +10:00) Australian Eastern Standard Time, Vladivostok Time

 (UTC +10:30) Lord Howe Island

 (UTC +11:00) Srednekolymsk Time, Solomon Islands, Vanuatu

 (UTC +11:30) Norfolk Island

 (UTC +12:00) Fiji, Gilbert Islands, Kamchatka Time, New Zealand Standard Time

 (UTC +12:45) Chatham Islands Standard Time

 (UTC +13:00) Phoenix Islands Time, Tonga

 (UTC +14:00) Line Islands

This menu is useful if you run a membership site in which your users are
allowed to set their local timezone value.

The first parameter lets you set the “selected” state of the menu. For
example, to set Pacific time as the default you will do this:

echo timezone_menu('UM8');

Please see the timezone reference below to see the values of this menu.

The second parameter lets you set a CSS class name for the menu.

The fourth parameter lets you set one or more attributes on the generated select tag.

Note

The text contained in the menu is found in the following
language file: language/<your_lang>/date_lang.php

Timezone Reference

The following table indicates each timezone and its location.

Note some of the location lists have been abridged for clarity and formatting.

	Time Zone
	Location

	UM12
	(UTC - 12:00) Baker/Howland Island

	UM11
	(UTC - 11:00) Samoa Time Zone, Niue

	UM10
	(UTC - 10:00) Hawaii-Aleutian Standard Time, Cook Islands

	UM95
	(UTC - 09:30) Marquesas Islands

	UM9
	(UTC - 09:00) Alaska Standard Time, Gambier Islands

	UM8
	(UTC - 08:00) Pacific Standard Time, Clipperton Island

	UM7
	(UTC - 07:00) Mountain Standard Time

	UM6
	(UTC - 06:00) Central Standard Time

	UM5
	(UTC - 05:00) Eastern Standard Time, Western Caribbean

	UM45
	(UTC - 04:30) Venezuelan Standard Time

	UM4
	(UTC - 04:00) Atlantic Standard Time, Eastern Caribbean

	UM35
	(UTC - 03:30) Newfoundland Standard Time

	UM3
	(UTC - 03:00) Argentina, Brazil, French Guiana, Uruguay

	UM2
	(UTC - 02:00) South Georgia/South Sandwich Islands

	UM1
	(UTC -1:00) Azores, Cape Verde Islands

	UTC
	(UTC) Greenwich Mean Time, Western European Time

	UP1
	(UTC +1:00) Central European Time, West Africa Time

	UP2
	(UTC +2:00) Central Africa Time, Eastern European Time

	UP3
	(UTC +3:00) Moscow Time, East Africa Time

	UP35
	(UTC +3:30) Iran Standard Time

	UP4
	(UTC +4:00) Azerbaijan Standard Time, Samara Time

	UP45
	(UTC +4:30) Afghanistan

	UP5
	(UTC +5:00) Pakistan Standard Time, Yekaterinburg Time

	UP55
	(UTC +5:30) Indian Standard Time, Sri Lanka Time

	UP575
	(UTC +5:45) Nepal Time

	UP6
	(UTC +6:00) Bangladesh Standard Time, Bhutan Time, Omsk Time

	UP65
	(UTC +6:30) Cocos Islands, Myanmar

	UP7
	(UTC +7:00) Krasnoyarsk Time, Cambodia, Laos, Thailand, Vietnam

	UP8
	(UTC +8:00) Australian Western Standard Time, Beijing Time

	UP875
	(UTC +8:45) Australian Central Western Standard Time

	UP9
	(UTC +9:00) Japan Standard Time, Korea Standard Time, Yakutsk

	UP95
	(UTC +9:30) Australian Central Standard Time

	UP10
	(UTC +10:00) Australian Eastern Standard Time, Vladivostok Time

	UP105
	(UTC +10:30) Lord Howe Island

	UP11
	(UTC +11:00) Srednekolymsk Time, Solomon Islands, Vanuatu

	UP115
	(UTC +11:30) Norfolk Island

	UP12
	(UTC +12:00) Fiji, Gilbert Islands, Kamchatka, New Zealand

	UP1275
	(UTC +12:45) Chatham Islands Standard Time

	UP13
	(UTC +13:00) Phoenix Islands Time, Tonga

	UP14
	(UTC +14:00) Line Islands

Directory Helper

The Directory Helper file contains functions that assist in working with
directories.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('directory');

Available Functions

The following functions are available:

	
directory_map($source_dir[, $directory_depth = 0[, $hidden = FALSE]])

	

	Parameters:	
	$source_dir (string) – Path to the source directory

	$directory_depth (int) – Depth of directories to traverse (0 = fully recursive, 1 = current dir, etc)

	$hidden (bool) – Whether to include hidden directories

	Returns:	An array of files

	Return type:	array

Examples:

$map = directory_map('./mydirectory/');

Note

Paths are almost always relative to your main index.php file.

Sub-folders contained within the directory will be mapped as well. If
you wish to control the recursion depth, you can do so using the second
parameter (integer). A depth of 1 will only map the top level directory:

$map = directory_map('./mydirectory/', 1);

By default, hidden files will not be included in the returned array. To
override this behavior, you may set a third parameter to true (boolean):

$map = directory_map('./mydirectory/', FALSE, TRUE);

Each folder name will be an array index, while its contained files will
be numerically indexed. Here is an example of a typical array:

Array (
 [libraries] => Array
 (
 [0] => benchmark.html
 [1] => config.html
 ["database/"] => Array
 (
 [0] => query_builder.html
 [1] => binds.html
 [2] => configuration.html
 [3] => connecting.html
 [4] => examples.html
 [5] => fields.html
 [6] => index.html
 [7] => queries.html
)
 [2] => email.html
 [3] => file_uploading.html
 [4] => image_lib.html
 [5] => input.html
 [6] => language.html
 [7] => loader.html
 [8] => pagination.html
 [9] => uri.html
)

Download Helper

The Download Helper lets you download data to your desktop.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('download');

Available Functions

The following functions are available:

	
force_download([$filename = ''[, $data = ''[, $set_mime = FALSE]]])

	

	Parameters:	
	$filename (string) – Filename

	$data (mixed) – File contents

	$set_mime (bool) – Whether to try to send the actual MIME type

	Return type:	void

Generates server headers which force data to be downloaded to your
desktop. Useful with file downloads. The first parameter is the name
you want the downloaded file to be named, the second parameter is the
file data.

If you set the second parameter to NULL and $filename is an existing, readable
file path, then its content will be read instead.

If you set the third parameter to boolean TRUE, then the actual file MIME type
(based on the filename extension) will be sent, so that if your browser has a
handler for that type - it can use it.

Example:

$data = 'Here is some text!';
$name = 'mytext.txt';
force_download($name, $data);

If you want to download an existing file from your server you’ll need to
do the following:

// Contents of photo.jpg will be automatically read
force_download('/path/to/photo.jpg', NULL);

Email Helper

The Email Helper provides some assistive functions for working with
Email. For a more robust email solution, see CodeIgniter’s Email
Class.

Important

The Email helper is DEPRECATED and is currently
only kept for backwards compatibility.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('email');

Available Functions

The following functions are available:

	
valid_email($email)

	

	Parameters:	
	$email (string) – E-mail address

	Returns:	TRUE if a valid email is supplied, FALSE otherwise

	Return type:	bool

Checks if the input is a correctly formatted e-mail address. Note that is
doesn’t actually prove that the address will be able recieve mail, but
simply that it is a validly formed address.

Example:

if (valid_email('email@somesite.com'))
{
 echo 'email is valid';
}
else
{
 echo 'email is not valid';
}

Note

All that this function does is to use PHP’s native filter_var():

(bool) filter_var($email, FILTER_VALIDATE_EMAIL);

	
send_email($recipient, $subject, $message)

	

	Parameters:	
	$recipient (string) – E-mail address

	$subject (string) – Mail subject

	$message (string) – Message body

	Returns:	TRUE if the mail was successfully sent, FALSE in case of an error

	Return type:	bool

Sends an email using PHP’s native mail() [http://php.net/function.mail]
function.

Note

All that this function does is to use PHP’s native mail

mail($recipient, $subject, $message);

For a more robust email solution, see CodeIgniter’s Email Library.

File Helper

The File Helper file contains functions that assist in working with files.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('file');

Available Functions

The following functions are available:

	
read_file($file)

	

	Parameters:	
	$file (string) – File path

	Returns:	File contents or FALSE on failure

	Return type:	string

Returns the data contained in the file specified in the path.

Example:

$string = read_file('./path/to/file.php');

The path can be a relative or full server path. Returns FALSE (boolean) on failure.

Note

The path is relative to your main site index.php file, NOT your
controller or view files. CodeIgniter uses a front controller so paths
are always relative to the main site index.

Note

This function is DEPRECATED. Use the native file_get_contents()
instead.

Important

If your server is running an open_basedir restriction this
function might not work if you are trying to access a file above the
calling script.

	
write_file($path, $data[, $mode = 'wb'])

	

	Parameters:	
	$path (string) – File path

	$data (string) – Data to write to file

	$mode (string) – fopen() mode

	Returns:	TRUE if the write was successful, FALSE in case of an error

	Return type:	bool

Writes data to the file specified in the path. If the file does not exist then the
function will create it.

Example:

$data = 'Some file data';
if (! write_file('./path/to/file.php', $data))
{
 echo 'Unable to write the file';
}
else
{
 echo 'File written!';
}

You can optionally set the write mode via the third parameter:

write_file('./path/to/file.php', $data, 'r+');

The default mode is ‘wb’. Please see the PHP user guide [http://php.net/manual/en/function.fopen.php]
for mode options.

Note

The path is relative to your main site index.php file, NOT your
controller or view files. CodeIgniter uses a front controller so paths
are always relative to the main site index.

Note

This function acquires an exclusive lock on the file while writing to it.

	
delete_files($path[, $del_dir = FALSE[, $htdocs = FALSE]])

	

	Parameters:	
	$path (string) – Directory path

	$del_dir (bool) – Whether to also delete directories

	$htdocs (bool) – Whether to skip deleting .htaccess and index page files

	Returns:	TRUE on success, FALSE in case of an error

	Return type:	bool

Deletes ALL files contained in the supplied path.

Example:

delete_files('./path/to/directory/');

If the second parameter is set to TRUE, any directories contained within the supplied
root path will be deleted as well.

Example:

delete_files('./path/to/directory/', TRUE);

Note

The files must be writable or owned by the system in order to be deleted.

	
get_filenames($source_dir[, $include_path = FALSE])

	

	Parameters:	
	$source_dir (string) – Directory path

	$include_path (bool) – Whether to include the path as part of the filenames

	Returns:	An array of file names

	Return type:	array

Takes a server path as input and returns an array containing the names of all files
contained within it. The file path can optionally be added to the file names by setting
the second parameter to TRUE.

Example:

$controllers = get_filenames(APPPATH.'controllers/');

	
get_dir_file_info($source_dir, $top_level_only)

	

	Parameters:	
	$source_dir (string) – Directory path

	$top_level_only (bool) – Whether to look only at the specified directory (excluding sub-directories)

	Returns:	An array containing info on the supplied directory’s contents

	Return type:	array

Reads the specified directory and builds an array containing the filenames, filesize,
dates, and permissions. Sub-folders contained within the specified path are only read
if forced by sending the second parameter to FALSE, as this can be an intensive
operation.

Example:

$models_info = get_dir_file_info(APPPATH.'models/');

	
get_file_info($file[, $returned_values = array('name', 'server_path', 'size', 'date')])

	

	Parameters:	
	$file (string) – File path

	$returned_values (array) – What type of info to return

	Returns:	An array containing info on the specified file or FALSE on failure

	Return type:	array

Given a file and path, returns (optionally) the name, path, size and date modified
information attributes for a file. Second parameter allows you to explicitly declare what
information you want returned.

Valid $returned_values options are: name, size, date, readable, writeable,
executable and fileperms.

	
get_mime_by_extension($filename)

	

	Parameters:	
	$filename (string) – File name

	Returns:	MIME type string or FALSE on failure

	Return type:	string

Translates a filename extension into a MIME type based on config/mimes.php.
Returns FALSE if it can’t determine the type, or read the MIME config file.

$file = 'somefile.png';
echo $file.' is has a mime type of '.get_mime_by_extension($file);

Note

This is not an accurate way of determining file MIME types, and
is here strictly for convenience. It should not be used for security
purposes.

	
symbolic_permissions($perms)

	

	Parameters:	
	$perms (int) – Permissions

	Returns:	Symbolic permissions string

	Return type:	string

Takes numeric permissions (such as is returned by fileperms()) and returns
standard symbolic notation of file permissions.

echo symbolic_permissions(fileperms('./index.php')); // -rw-r--r--

	
octal_permissions($perms)

	

	Parameters:	
	$perms (int) – Permissions

	Returns:	Octal permissions string

	Return type:	string

Takes numeric permissions (such as is returned by fileperms()) and returns
a three character octal notation of file permissions.

echo octal_permissions(fileperms('./index.php')); // 644

Form Helper

The Form Helper file contains functions that assist in working with
forms.

	Loading this Helper

	Escaping field values

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('form');

Escaping field values

You may need to use HTML and characters such as quotes within your form
elements. In order to do that safely, you’ll need to use
common function
html_escape().

Consider the following example:

$string = 'Here is a string containing "quoted" text.';

<input type="text" name="myfield" value="<?php echo $string; ?>" />

Since the above string contains a set of quotes, it will cause the form
to break. The html_escape() function converts HTML special
characters so that it can be used safely:

<input type="text" name="myfield" value="<?php echo html_escape($string); ?>" />

Note

If you use any of the form helper functions listed on this page,
the form values will be automatically escaped, so there is no need
to call this function. Use it only if you are creating your own
form elements.

Available Functions

The following functions are available:

	
form_open([$action = ''[, $attributes = ''[, $hidden = array()]]])

	

	Parameters:	
	$action (string) – Form action/target URI string

	$attributes (array) – HTML attributes

	$hidden (array) – An array of hidden fields’ definitions

	Returns:	An HTML form opening tag

	Return type:	string

Creates an opening form tag with a base URL built from your config preferences.
It will optionally let you add form attributes and hidden input fields, and
will always add the accept-charset attribute based on the charset value in your
config file.

The main benefit of using this tag rather than hard coding your own HTML is that
it permits your site to be more portable in the event your URLs ever change.

Here’s a simple example:

echo form_open('email/send');

The above example would create a form that points to your base URL plus the
“email/send” URI segments, like this:

<form method="post" accept-charset="utf-8" action="http://example.com/index.php/email/send">

Adding Attributes

Attributes can be added by passing an associative array to the second
parameter, like this:

$attributes = array('class' => 'email', 'id' => 'myform');
echo form_open('email/send', $attributes);

Alternatively, you can specify the second parameter as a string:

echo form_open('email/send', 'class="email" id="myform"');

The above examples would create a form similar to this:

<form method="post" accept-charset="utf-8" action="http://example.com/index.php/email/send" class="email" id="myform">

Adding Hidden Input Fields

Hidden fields can be added by passing an associative array to the
third parameter, like this:

$hidden = array('username' => 'Joe', 'member_id' => '234');
echo form_open('email/send', '', $hidden);

You can skip the second parameter by passing any falsy value to it.

The above example would create a form similar to this:

<form method="post" accept-charset="utf-8" action="http://example.com/index.php/email/send">
 <input type="hidden" name="username" value="Joe" />
 <input type="hidden" name="member_id" value="234" />

	
form_open_multipart([$action = ''[, $attributes = array()[, $hidden = array()]]])

	

	Parameters:	
	$action (string) – Form action/target URI string

	$attributes (array) – HTML attributes

	$hidden (array) – An array of hidden fields’ definitions

	Returns:	An HTML multipart form opening tag

	Return type:	string

This function is absolutely identical to form_open() above,
except that it adds a multipart attribute, which is necessary if you
would like to use the form to upload files with.

	
form_hidden($name[, $value = ''])

	

	Parameters:	
	$name (string) – Field name

	$value (string) – Field value

	Returns:	An HTML hidden input field tag

	Return type:	string

Lets you generate hidden input fields. You can either submit a
name/value string to create one field:

form_hidden('username', 'johndoe');
// Would produce: <input type="hidden" name="username" value="johndoe" />

… or you can submit an associative array to create multiple fields:

$data = array(
 'name' => 'John Doe',
 'email' => 'john@example.com',
 'url' => 'http://example.com'
);

echo form_hidden($data);

/*
 Would produce:
 <input type="hidden" name="name" value="John Doe" />
 <input type="hidden" name="email" value="john@example.com" />
 <input type="hidden" name="url" value="http://example.com" />
*/

You can also pass an associative array to the value field:

$data = array(
 'name' => 'John Doe',
 'email' => 'john@example.com',
 'url' => 'http://example.com'
);

echo form_hidden('my_array', $data);

/*
 Would produce:

 <input type="hidden" name="my_array[name]" value="John Doe" />
 <input type="hidden" name="my_array[email]" value="john@example.com" />
 <input type="hidden" name="my_array[url]" value="http://example.com" />
*/

If you want to create hidden input fields with extra attributes:

$data = array(
 'type' => 'hidden',
 'name' => 'email',
 'id' => 'hiddenemail',
 'value' => 'john@example.com',
 'class' => 'hiddenemail'
);

echo form_input($data);

/*
 Would produce:

 <input type="hidden" name="email" value="john@example.com" id="hiddenemail" class="hiddenemail" />
*/

	
form_input([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML text input field tag

	Return type:	string

Lets you generate a standard text input field. You can minimally pass
the field name and value in the first and second parameter:

echo form_input('username', 'johndoe');

Or you can pass an associative array containing any data you wish your
form to contain:

$data = array(
 'name' => 'username',
 'id' => 'username',
 'value' => 'johndoe',
 'maxlength' => '100',
 'size' => '50',
 'style' => 'width:50%'
);

echo form_input($data);

/*
 Would produce:

 <input type="text" name="username" value="johndoe" id="username" maxlength="100" size="50" style="width:50%" />
*/

If you would like your form to contain some additional data, like
JavaScript, you can pass it as a string in the third parameter:

$js = 'onClick="some_function()"';
echo form_input('username', 'johndoe', $js);

Or you can pass it as an array:

$js = array('onClick' => 'some_function();');
echo form_input('username', 'johndoe', $js);

	
form_password([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML password input field tag

	Return type:	string

This function is identical in all respects to the form_input()
function above except that it uses the “password” input type.

	
form_upload([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML file upload input field tag

	Return type:	string

This function is identical in all respects to the form_input()
function above except that it uses the “file” input type, allowing it to
be used to upload files.

	
form_textarea([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML textarea tag

	Return type:	string

This function is identical in all respects to the form_input()
function above except that it generates a “textarea” type.

Note

Instead of the maxlength and size attributes in the above example,
you will instead specify rows and cols.

	
form_dropdown([$name = ''[, $options = array()[, $selected = array()[, $extra = '']]]])

	

	Parameters:	
	$name (string) – Field name

	$options (array) – An associative array of options to be listed

	$selected (array) – List of fields to mark with the selected attribute

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML dropdown select field tag

	Return type:	string

Lets you create a standard drop-down field. The first parameter will
contain the name of the field, the second parameter will contain an
associative array of options, and the third parameter will contain the
value you wish to be selected. You can also pass an array of multiple
items through the third parameter, and CodeIgniter will create a
multiple select for you.

Example:

$options = array(
 'small' => 'Small Shirt',
 'med' => 'Medium Shirt',
 'large' => 'Large Shirt',
 'xlarge' => 'Extra Large Shirt',
);

$shirts_on_sale = array('small', 'large');
echo form_dropdown('shirts', $options, 'large');

/*
 Would produce:

 <select name="shirts">
 <option value="small">Small Shirt</option>
 <option value="med">Medium Shirt</option>
 <option value="large" selected="selected">Large Shirt</option>
 <option value="xlarge">Extra Large Shirt</option>
 </select>
*/

echo form_dropdown('shirts', $options, $shirts_on_sale);

/*
 Would produce:

 <select name="shirts" multiple="multiple">
 <option value="small" selected="selected">Small Shirt</option>
 <option value="med">Medium Shirt</option>
 <option value="large" selected="selected">Large Shirt</option>
 <option value="xlarge">Extra Large Shirt</option>
 </select>
*/

If you would like the opening <select> to contain additional data, like
an id attribute or JavaScript, you can pass it as a string in the fourth
parameter:

$js = 'id="shirts" onChange="some_function();"';
echo form_dropdown('shirts', $options, 'large', $js);

Or you can pass it as an array:

$js = array(
 'id' => 'shirts',
 'onChange' => 'some_function();'
);
echo form_dropdown('shirts', $options, 'large', $js);

If the array passed as $options is a multidimensional array, then
form_dropdown() will produce an <optgroup> with the array key as the
label.

	
form_multiselect([$name = ''[, $options = array()[, $selected = array()[, $extra = '']]]])

	

	Parameters:	
	$name (string) – Field name

	$options (array) – An associative array of options to be listed

	$selected (array) – List of fields to mark with the selected attribute

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML dropdown multiselect field tag

	Return type:	string

Lets you create a standard multiselect field. The first parameter will
contain the name of the field, the second parameter will contain an
associative array of options, and the third parameter will contain the
value or values you wish to be selected.

The parameter usage is identical to using form_dropdown() above,
except of course that the name of the field will need to use POST array
syntax, e.g. foo[].

	
form_fieldset([$legend_text = ''[, $attributes = array()]])

	

	Parameters:	
	$legend_text (string) – Text to put in the <legend> tag

	$attributes (array) – Attributes to be set on the <fieldset> tag

	Returns:	An HTML fieldset opening tag

	Return type:	string

Lets you generate fieldset/legend fields.

Example:

echo form_fieldset('Address Information');
echo "<p>fieldset content here</p>\n";
echo form_fieldset_close();

/*
 Produces:

 <fieldset>
 <legend>Address Information</legend>
 <p>fieldset content here</p>
 </fieldset>
*/

Similar to other functions, you can submit an associative array in the
second parameter if you prefer to set additional attributes:

$attributes = array(
 'id' => 'address_info',
 'class' => 'address_info'
);

echo form_fieldset('Address Information', $attributes);
echo "<p>fieldset content here</p>\n";
echo form_fieldset_close();

/*
 Produces:

 <fieldset id="address_info" class="address_info">
 <legend>Address Information</legend>
 <p>fieldset content here</p>
 </fieldset>
*/

	
form_fieldset_close([$extra = ''])

	

	Parameters:	
	$extra (string) – Anything to append after the closing tag, as is

	Returns:	An HTML fieldset closing tag

	Return type:	string

Produces a closing </fieldset> tag. The only advantage to using this
function is it permits you to pass data to it which will be added below
the tag. For example

$string = '</div></div>';
echo form_fieldset_close($string);
// Would produce: </fieldset></div></div>

	
form_checkbox([$data = ''[, $value = ''[, $checked = FALSE[, $extra = '']]]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$checked (bool) – Whether to mark the checkbox as being checked

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML checkbox input tag

	Return type:	string

Lets you generate a checkbox field. Simple example:

echo form_checkbox('newsletter', 'accept', TRUE);
// Would produce: <input type="checkbox" name="newsletter" value="accept" checked="checked" />

The third parameter contains a boolean TRUE/FALSE to determine whether
the box should be checked or not.

Similar to the other form functions in this helper, you can also pass an
array of attributes to the function:

$data = array(
 'name' => 'newsletter',
 'id' => 'newsletter',
 'value' => 'accept',
 'checked' => TRUE,
 'style' => 'margin:10px'
);

echo form_checkbox($data);
// Would produce: <input type="checkbox" name="newsletter" id="newsletter" value="accept" checked="checked" style="margin:10px" />

Also as with other functions, if you would like the tag to contain
additional data like JavaScript, you can pass it as a string in the
fourth parameter:

$js = 'onClick="some_function()"';
echo form_checkbox('newsletter', 'accept', TRUE, $js);

Or you can pass it as an array:

$js = array('onClick' => 'some_function();');
echo form_checkbox('newsletter', 'accept', TRUE, $js);

	
form_radio([$data = ''[, $value = ''[, $checked = FALSE[, $extra = '']]]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$checked (bool) – Whether to mark the radio button as being checked

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML radio input tag

	Return type:	string

This function is identical in all respects to the form_checkbox()
function above except that it uses the “radio” input type.

	
form_label([$label_text = ''[, $id = ''[, $attributes = array()]]])

	

	Parameters:	
	$label_text (string) – Text to put in the <label> tag

	$id (string) – ID of the form element that we’re making a label for

	$attributes (mixed) – HTML attributes

	Returns:	An HTML field label tag

	Return type:	string

Lets you generate a <label>. Simple example:

echo form_label('What is your Name', 'username');
// Would produce: <label for="username">What is your Name</label>

Similar to other functions, you can submit an associative array in the
third parameter if you prefer to set additional attributes.

Example:

$attributes = array(
 'class' => 'mycustomclass',
 'style' => 'color: #000;'
);

echo form_label('What is your Name', 'username', $attributes);
// Would produce: <label for="username" class="mycustomclass" style="color: #000;">What is your Name</label>

	
form_submit([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (string) – Button name

	$value (string) – Button value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML input submit tag

	Return type:	string

Lets you generate a standard submit button. Simple example:

echo form_submit('mysubmit', 'Submit Post!');
// Would produce: <input type="submit" name="mysubmit" value="Submit Post!" />

Similar to other functions, you can submit an associative array in the
first parameter if you prefer to set your own attributes. The third
parameter lets you add extra data to your form, like JavaScript.

	
form_reset([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (string) – Button name

	$value (string) – Button value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML input reset button tag

	Return type:	string

Lets you generate a standard reset button. Use is identical to
form_submit().

	
form_button([$data = ''[, $content = ''[, $extra = '']]])

	

	Parameters:	
	$data (string) – Button name

	$content (string) – Button label

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML button tag

	Return type:	string

Lets you generate a standard button element. You can minimally pass the
button name and content in the first and second parameter:

echo form_button('name','content');
// Would produce: <button name="name" type="button">Content</button>

Or you can pass an associative array containing any data you wish your
form to contain:

$data = array(
 'name' => 'button',
 'id' => 'button',
 'value' => 'true',
 'type' => 'reset',
 'content' => 'Reset'
);

echo form_button($data);
// Would produce: <button name="button" id="button" value="true" type="reset">Reset</button>

If you would like your form to contain some additional data, like
JavaScript, you can pass it as a string in the third parameter:

$js = 'onClick="some_function()"';
echo form_button('mybutton', 'Click Me', $js);

	
form_close([$extra = ''])

	

	Parameters:	
	$extra (string) – Anything to append after the closing tag, as is

	Returns:	An HTML form closing tag

	Return type:	string

Produces a closing </form> tag. The only advantage to using this
function is it permits you to pass data to it which will be added below
the tag. For example:

$string = '</div></div>';
echo form_close($string);
// Would produce: </form> </div></div>

	
set_value($field[, $default = ''[, $html_escape = TRUE]])

	

	Parameters:	
	$field (string) – Field name

	$default (string) – Default value

	$html_escape (bool) – Whether to turn off HTML escaping of the value

	Returns:	Field value

	Return type:	string

Permits you to set the value of an input form or textarea. You must
supply the field name via the first parameter of the function. The
second (optional) parameter allows you to set a default value for the
form. The third (optional) parameter allows you to turn off HTML escaping
of the value, in case you need to use this function in combination with
i.e. form_input() and avoid double-escaping.

Example:

<input type="text" name="quantity" value="<?php echo set_value('quantity', '0'); ?>" size="50" />

The above form will show “0” when loaded for the first time.

Note

If you’ve loaded the Form Validation Library and
have set a validation rule for the field name in use with this helper, then it will
forward the call to the Form Validation Library’s
own set_value() method. Otherwise, this function looks in $_POST for the
field value.

	
set_select($field[, $value = ''[, $default = FALSE]])

	

	Parameters:	
	$field (string) – Field name

	$value (string) – Value to check for

	$default (string) – Whether the value is also a default one

	Returns:	‘selected’ attribute or an empty string

	Return type:	string

If you use a <select> menu, this function permits you to display the
menu item that was selected.

The first parameter must contain the name of the select menu, the second
parameter must contain the value of each item, and the third (optional)
parameter lets you set an item as the default (use boolean TRUE/FALSE).

Example:

<select name="myselect">
 <option value="one" <?php echo set_select('myselect', 'one', TRUE); ?> >One</option>
 <option value="two" <?php echo set_select('myselect', 'two'); ?> >Two</option>
 <option value="three" <?php echo set_select('myselect', 'three'); ?> >Three</option>
</select>

	
set_checkbox($field[, $value = ''[, $default = FALSE]])

	

	Parameters:	
	$field (string) – Field name

	$value (string) – Value to check for

	$default (string) – Whether the value is also a default one

	Returns:	‘checked’ attribute or an empty string

	Return type:	string

Permits you to display a checkbox in the state it was submitted.

The first parameter must contain the name of the checkbox, the second
parameter must contain its value, and the third (optional) parameter
lets you set an item as the default (use boolean TRUE/FALSE).

Example:

<input type="checkbox" name="mycheck" value="1" <?php echo set_checkbox('mycheck', '1'); ?> />
<input type="checkbox" name="mycheck" value="2" <?php echo set_checkbox('mycheck', '2'); ?> />

	
set_radio($field[, $value = ''[, $default = FALSE]])

	

	Parameters:	
	$field (string) – Field name

	$value (string) – Value to check for

	$default (string) – Whether the value is also a default one

	Returns:	‘checked’ attribute or an empty string

	Return type:	string

Permits you to display radio buttons in the state they were submitted.
This function is identical to the set_checkbox() function above.

Example:

<input type="radio" name="myradio" value="1" <?php echo set_radio('myradio', '1', TRUE); ?> />
<input type="radio" name="myradio" value="2" <?php echo set_radio('myradio', '2'); ?> />

Note

If you are using the Form Validation class, you must always specify
a rule for your field, even if empty, in order for the set_*()
functions to work. This is because if a Form Validation object is
defined, the control for set_*() is handed over to a method of the
class instead of the generic helper function.

	
form_error([$field = ''[, $prefix = ''[, $suffix = '']]])

	

	Parameters:	
	$field (string) – Field name

	$prefix (string) – Error opening tag

	$suffix (string) – Error closing tag

	Returns:	HTML-formatted form validation error message(s)

	Return type:	string

Returns a validation error message from the Form Validation Library, associated with the specified field name.
You can optionally specify opening and closing tag(s) to put around the error
message.

Example:

// Assuming that the 'username' field value was incorrect:
echo form_error('myfield', '<div class="error">', '</div>');

// Would produce: <div class="error">Error message associated with the "username" field.</div>

	
validation_errors([$prefix = ''[, $suffix = '']])

	

	Parameters:	
	$prefix (string) – Error opening tag

	$suffix (string) – Error closing tag

	Returns:	HTML-formatted form validation error message(s)

	Return type:	string

Similarly to the form_error() function, returns all validation
error messages produced by the Form Validation Library, with optional opening and closing tags
around each of the messages.

Example:

echo validation_errors('', '');

/*
 Would produce, e.g.:

 The "email" field doesn't contain a valid e-mail address!
 The "password" field doesn't match the "repeat_password" field!

 */

	
form_prep($str)

	

	Parameters:	
	$str (string) – Value to escape

	Returns:	Escaped value

	Return type:	string

Allows you to safely use HTML and characters such as quotes within form
elements without breaking out of the form.

Note

If you use any of the form helper functions listed in this page the form
values will be prepped automatically, so there is no need to call this
function. Use it only if you are creating your own form elements.

Note

This function is DEPRECATED and is just an alias for
common function
html_escape() - please use that instead.

HTML Helper

The HTML Helper file contains functions that assist in working with
HTML.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('html');

Available Functions

The following functions are available:

	
heading([$data = ''[, $h = '1'[, $attributes = '']]])

	

	Parameters:	
	$data (string) – Content

	$h (string) – Heading level

	$attributes (mixed) – HTML attributes

	Returns:	HTML heading tag

	Return type:	string

Lets you create HTML heading tags. The first parameter will contain the
data, the second the size of the heading. Example:

echo heading('Welcome!', 3);

The above would produce: <h3>Welcome!</h3>

Additionally, in order to add attributes to the heading tag such as HTML
classes, ids or inline styles, a third parameter accepts either a string
or an array:

echo heading('Welcome!', 3, 'class="pink"');
echo heading('How are you?', 4, array('id' => 'question', 'class' => 'green'));

The above code produces:

<h3 class="pink">Welcome!<h3>
<h4 id="question" class="green">How are you?</h4>

	
img([$src = ''[, $index_page = FALSE[, $attributes = '']]])

	

	Parameters:	
	$src (string) – Image source data

	$index_page (bool) – Whether to treat $src as a routed URI string

	$attributes (array) – HTML attributes

	Returns:	HTML image tag

	Return type:	string

Lets you create HTML tags. The first parameter contains the
image source. Example:

echo img('images/picture.jpg'); // gives

There is an optional second parameter that is a TRUE/FALSE value that
specifics if the src should have the page specified by
$config['index_page'] added to the address it creates.
Presumably, this would be if you were using a media controller:

echo img('images/picture.jpg', TRUE); // gives

Additionally, an associative array can be passed to the img() function
for complete control over all attributes and values. If an alt attribute
is not provided, CodeIgniter will generate an empty string.

Example:

$image_properties = array(
 'src' => 'images/picture.jpg',
 'alt' => 'Me, demonstrating how to eat 4 slices of pizza at one time',
 'class' => 'post_images',
 'width' => '200',
 'height'=> '200',
 'title' => 'That was quite a night',
 'rel' => 'lightbox'
);

img($image_properties);
//

	
link_tag([$href = ''[, $rel = 'stylesheet'[, $type = 'text/css'[, $title = ''[, $media = ''[, $index_page = FALSE]]]]]])

	

	Parameters:	
	$href (string) – What are we linking to

	$rel (string) – Relation type

	$type (string) – Type of the related document

	$title (string) – Link title

	$media (string) – Media type

	$index_page (bool) – Whether to treat $src as a routed URI string

	Returns:	HTML link tag

	Return type:	string

Lets you create HTML <link /> tags. This is useful for stylesheet links,
as well as other links. The parameters are href, with optional rel,
type, title, media and index_page.

index_page is a boolean value that specifies if the href should have
the page specified by $config['index_page'] added to the address it creates.

Example:

echo link_tag('css/mystyles.css');
// gives <link href="http://site.com/css/mystyles.css" rel="stylesheet" type="text/css" />

Further examples:

echo link_tag('favicon.ico', 'shortcut icon', 'image/ico');
// <link href="http://site.com/favicon.ico" rel="shortcut icon" type="image/ico" />

echo link_tag('feed', 'alternate', 'application/rss+xml', 'My RSS Feed');
// <link href="http://site.com/feed" rel="alternate" type="application/rss+xml" title="My RSS Feed" />

Additionally, an associative array can be passed to the link() function
for complete control over all attributes and values:

$link = array(
 'href' => 'css/printer.css',
 'rel' => 'stylesheet',
 'type' => 'text/css',
 'media' => 'print'
);

echo link_tag($link);
// <link href="http://site.com/css/printer.css" rel="stylesheet" type="text/css" media="print" />

	
ul($list[, $attributes = ''])

	

	Parameters:	
	$list (array) – List entries

	$attributes (array) – HTML attributes

	Returns:	HTML-formatted unordered list

	Return type:	string

Permits you to generate unordered HTML lists from simple or
multi-dimensional arrays. Example:

$list = array(
 'red',
 'blue',
 'green',
 'yellow'
);

$attributes = array(
 'class' => 'boldlist',
 'id' => 'mylist'
);

echo ul($list, $attributes);

The above code will produce this:

<ul class="boldlist" id="mylist">
 red
 blue
 green
 yellow

Here is a more complex example, using a multi-dimensional array:

$attributes = array(
 'class' => 'boldlist',
 'id' => 'mylist'
);

$list = array(
 'colors' => array(
 'red',
 'blue',
 'green'
),
 'shapes' => array(
 'round',
 'square',
 'circles' => array(
 'ellipse',
 'oval',
 'sphere'
)
),
 'moods' => array(
 'happy',
 'upset' => array(
 'defeated' => array(
 'dejected',
 'disheartened',
 'depressed'
),
 'annoyed',
 'cross',
 'angry'
)
)
);

echo ul($list, $attributes);

The above code will produce this:

<ul class="boldlist" id="mylist">
 colors

 red
 blue
 green

 shapes

 round
 suare
 circles

 elipse
 oval
 sphere

 moods

 happy
 upset

 defeated

 dejected
 disheartened
 depressed

 annoyed
 cross
 angry

	
ol($list, $attributes = '')

	

	Parameters:	
	$list (array) – List entries

	$attributes (array) – HTML attributes

	Returns:	HTML-formatted ordered list

	Return type:	string

Identical to ul(), only it produces the tag for
ordered lists instead of .

	
meta([$name = ''[, $content = ''[, $type = 'name'[, $newline = "n"]]]])

	

	Parameters:	
	$name (string) – Meta name

	$content (string) – Meta content

	$type (string) – Meta type

	$newline (string) – Newline character

	Returns:	HTML meta tag

	Return type:	string

Helps you generate meta tags. You can pass strings to the function, or
simple arrays, or multidimensional ones.

Examples:

echo meta('description', 'My Great site');
// Generates: <meta name="description" content="My Great Site" />

echo meta('Content-type', 'text/html; charset=utf-8', 'equiv');
// Note the third parameter. Can be "equiv" or "name"
// Generates: <meta http-equiv="Content-type" content="text/html; charset=utf-8" />

echo meta(array('name' => 'robots', 'content' => 'no-cache'));
// Generates: <meta name="robots" content="no-cache" />

$meta = array(
 array(
 'name' => 'robots',
 'content' => 'no-cache'
),
 array(
 'name' => 'description',
 'content' => 'My Great Site'
),
 array(
 'name' => 'keywords',
 'content' => 'love, passion, intrigue, deception'
),
 array(
 'name' => 'robots',
 'content' => 'no-cache'
),
 array(
 'name' => 'Content-type',
 'content' => 'text/html; charset=utf-8', 'type' => 'equiv'
)
);

echo meta($meta);
// Generates:
// <meta name="robots" content="no-cache" />
// <meta name="description" content="My Great Site" />
// <meta name="keywords" content="love, passion, intrigue, deception" />
// <meta name="robots" content="no-cache" />
// <meta http-equiv="Content-type" content="text/html; charset=utf-8" />

	
doctype([$type = 'xhtml1-strict'])

	

	Parameters:	
	$type (string) – Doctype name

	Returns:	HTML DocType tag

	Return type:	string

Helps you generate document type declarations, or DTD’s. XHTML 1.0
Strict is used by default, but many doctypes are available.

Example:

echo doctype(); // <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

echo doctype('html4-trans'); // <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

The following is a list of doctype choices. These are configurable, and
pulled from application/config/doctypes.php

	Document type
	Option
	Result

	XHTML 1.1
	xhtml11
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN” “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

	XHTML 1.0 Strict
	xhtml1-strict
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

	XHTML 1.0 Transitional
	xhtml1-trans
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

	XHTML 1.0 Frameset
	xhtml1-frame
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

	XHTML Basic 1.1
	xhtml-basic11
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.1//EN” “http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd”>

	HTML 5
	html5
	<!DOCTYPE html>

	HTML 4 Strict
	html4-strict
	<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/TR/html4/strict.dtd”>

	HTML 4 Transitional
	html4-trans
	<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” “http://www.w3.org/TR/html4/loose.dtd”>

	HTML 4 Frameset
	html4-frame
	<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN” “http://www.w3.org/TR/html4/frameset.dtd”>

	MathML 1.01
	mathml1
	<!DOCTYPE math SYSTEM “http://www.w3.org/Math/DTD/mathml1/mathml.dtd”>

	MathML 2.0
	mathml2
	<!DOCTYPE math PUBLIC “-//W3C//DTD MathML 2.0//EN” “http://www.w3.org/Math/DTD/mathml2/mathml2.dtd”>

	SVG 1.0
	svg10
	<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN” “http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>

	SVG 1.1 Full
	svg11
	<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN” “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

	SVG 1.1 Basic
	svg11-basic
	<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1 Basic//EN” “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-basic.dtd”>

	SVG 1.1 Tiny
	svg11-tiny
	<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1 Tiny//EN” “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-tiny.dtd”>

	XHTML+MathML+SVG (XHTML host)
	xhtml-math-svg-xh
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN” “http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd”>

	XHTML+MathML+SVG (SVG host)
	xhtml-math-svg-sh
	<!DOCTYPE svg:svg PUBLIC “-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN” “http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd”>

	XHTML+RDFa 1.0
	xhtml-rdfa-1
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML+RDFa 1.0//EN” “http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd”>

	XHTML+RDFa 1.1
	xhtml-rdfa-2
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML+RDFa 1.1//EN” “http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd”>

	
br([$count = 1])

	

	Parameters:	
	$count (int) – Number of times to repeat the tag

	Returns:	HTML line break tag

	Return type:	string

Generates line break tags (
) based on the number you submit.
Example:

echo br(3);

The above would produce:

Note

This function is DEPRECATED. Use the native str_repeat()
in combination with
 instead.

	
nbs([$num = 1])

	

	Parameters:	
	$num (int) – Number of space entities to produce

	Returns:	A sequence of non-breaking space HTML entities

	Return type:	string

Generates non-breaking spaces () based on the number you submit.
Example:

echo nbs(3);

The above would produce:

Note

This function is DEPRECATED. Use the native str_repeat()
in combination with instead.

Inflector Helper

The Inflector Helper file contains functions that permits you to change
English words to plural, singular, camel case, etc.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('inflector');

Available Functions

The following functions are available:

	
singular($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	A singular word

	Return type:	string

Changes a plural word to singular. Example:

echo singular('dogs'); // Prints 'dog'

	
plural($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	A plural word

	Return type:	string

Changes a singular word to plural. Example:

echo plural('dog'); // Prints 'dogs'

	
camelize($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Camelized string

	Return type:	string

Changes a string of words separated by spaces or underscores to camel
case. Example:

echo camelize('my_dog_spot'); // Prints 'myDogSpot'

	
underscore($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	String containing underscores instead of spaces

	Return type:	string

Takes multiple words separated by spaces and underscores them.
Example:

echo underscore('my dog spot'); // Prints 'my_dog_spot'

	
humanize($str[, $separator = '_'])

	

	Parameters:	
	$str (string) – Input string

	$separator (string) – Input separator

	Returns:	Humanized string

	Return type:	string

Takes multiple words separated by underscores and adds spaces between
them. Each word is capitalized.

Example:

echo humanize('my_dog_spot'); // Prints 'My Dog Spot'

To use dashes instead of underscores:

echo humanize('my-dog-spot', '-'); // Prints 'My Dog Spot'

	
word_is_countable($word)

	

	Parameters:	
	$word (string) – Input string

	Returns:	TRUE if the word is countable or FALSE if not

	Return type:	bool

Checks if the given word has a plural version. Example:

word_is_countable('equipment'); // Returns FALSE

Note

This function used to be called is_countable() in
in previous CodeIgniter versions.

Language Helper

The Language Helper file contains functions that assist in working with
language files.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('language');

Available Functions

The following functions are available:

	
lang($line[, $for = ''[, $attributes = array()]])

	

	Parameters:	
	$line (string) – Language line key

	$for (string) – HTML “for” attribute (ID of the element we’re creating a label for)

	$attributes (array) – Any additional HTML attributes

	Returns:	The language line; in an HTML label tag, if the $for parameter is not empty

	Return type:	string

This function returns a line of text from a loaded language file with
simplified syntax that may be more desirable for view files than
CI_Lang::line().

Examples:

echo lang('language_key');
// Outputs: Language line

echo lang('language_key', 'form_item_id', array('class' => 'myClass'));
// Outputs: <label for="form_item_id" class="myClass">Language line</label>

Number Helper

The Number Helper file contains functions that help you work with
numeric data.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('number');

Available Functions

The following functions are available:

	
byte_format($num[, $precision = 1])

	

	Parameters:	
	$num (mixed) – Number of bytes

	$precision (int) – Floating point precision

	Returns:	Formatted data size string

	Return type:	string

Formats numbers as bytes, based on size, and adds the appropriate
suffix. Examples:

echo byte_format(456); // Returns 456 Bytes
echo byte_format(4567); // Returns 4.5 KB
echo byte_format(45678); // Returns 44.6 KB
echo byte_format(456789); // Returns 447.8 KB
echo byte_format(3456789); // Returns 3.3 MB
echo byte_format(12345678912345); // Returns 1.8 GB
echo byte_format(123456789123456789); // Returns 11,228.3 TB

An optional second parameter allows you to set the precision of the
result:

echo byte_format(45678, 2); // Returns 44.61 KB

Note

The text generated by this function is found in the following
language file: language/<your_lang>/number_lang.php

Path Helper

The Path Helper file contains functions that permits you to work with
file paths on the server.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('path');

Available Functions

The following functions are available:

	
set_realpath($path[, $check_existance = FALSE])

	

	Parameters:	
	$path (string) – Path

	$check_existance (bool) – Whether to check if the path actually exists

	Returns:	An absolute path

	Return type:	string

This function will return a server path without symbolic links or
relative directory structures. An optional second argument will
cause an error to be triggered if the path cannot be resolved.

Examples:

$file = '/etc/php5/apache2/php.ini';
echo set_realpath($file); // Prints '/etc/php5/apache2/php.ini'

$non_existent_file = '/path/to/non-exist-file.txt';
echo set_realpath($non_existent_file, TRUE); // Shows an error, as the path cannot be resolved
echo set_realpath($non_existent_file, FALSE); // Prints '/path/to/non-exist-file.txt'

$directory = '/etc/php5';
echo set_realpath($directory); // Prints '/etc/php5/'

$non_existent_directory = '/path/to/nowhere';
echo set_realpath($non_existent_directory, TRUE); // Shows an error, as the path cannot be resolved
echo set_realpath($non_existent_directory, FALSE); // Prints '/path/to/nowhere'

Security Helper

The Security Helper file contains security related functions.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('security');

Available Functions

The following functions are available:

	
xss_clean($str[, $is_image = FALSE])

	

	Parameters:	
	$str (string) – Input data

	$is_image (bool) – Whether we’re dealing with an image

	Returns:	XSS-clean string

	Return type:	string

Provides Cross Site Script Hack filtering.

This function is an alias for CI_Input::xss_clean(). For more info,
please see the Input Library documentation.

	
sanitize_filename($filename)

	

	Parameters:	
	$filename (string) – Filename

	Returns:	Sanitized file name

	Return type:	string

Provides protection against directory traversal.

This function is an alias for CI_Security::sanitize_filename().
For more info, please see the Security Library
documentation.

	
do_hash($str[, $type = 'sha1'])

	

	Parameters:	
	$str (string) – Input

	$type (string) – Algorithm

	Returns:	Hex-formatted hash

	Return type:	string

Permits you to create one way hashes suitable for encrypting
passwords. Will use SHA1 by default.

See hash_algos() [http://php.net/function.hash_algos]
for a full list of supported algorithms.

Examples:

$str = do_hash($str); // SHA1
$str = do_hash($str, 'md5'); // MD5

Note

This function was formerly named dohash(), which has been
removed in favor of do_hash().

Note

This function is DEPRECATED. Use the native hash() instead.

	
strip_image_tags($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	The input string with no image tags

	Return type:	string

This is a security function that will strip image tags from a string.
It leaves the image URL as plain text.

Example:

$string = strip_image_tags($string);

This function is an alias for CI_Security::strip_image_tags(). For
more info, please see the Security Library
documentation.

	
encode_php_tags($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Safely formatted string

	Return type:	string

This is a security function that converts PHP tags to entities.

Note

xss_clean() does this automatically, if you use it.

Example:

$string = encode_php_tags($string);

Smiley Helper

The Smiley Helper file contains functions that let you manage smileys
(emoticons).

Important

The Smiley helper is DEPRECATED and should not be used.
It is currently only kept for backwards compatibility.

	Loading this Helper

	Overview

	Clickable Smileys Tutorial
	The Controller

	Field Aliases

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('smiley');

Overview

The Smiley helper has a renderer that takes plain text smileys, like
:-) and turns them into a image representation, like [image: smile!]

It also lets you display a set of smiley images that when clicked will
be inserted into a form field. For example, if you have a blog that
allows user commenting you can show the smileys next to the comment
form. Your users can click a desired smiley and with the help of some
JavaScript it will be placed into the form field.

Clickable Smileys Tutorial

Here is an example demonstrating how you might create a set of clickable
smileys next to a form field. This example requires that you first
download and install the smiley images, then create a controller and the
View as described.

Important

Before you begin, please download the smiley images [https://ellislab.com/asset/ci_download_files/smileys.zip]
and put them in a publicly accessible place on your server.
This helper also assumes you have the smiley replacement array
located at application/config/smileys.php

The Controller

In your application/controllers/ directory, create a file called
Smileys.php and place the code below in it.

Important

Change the URL in the get_clickable_smileys()
function below so that it points to your smiley folder.

You’ll notice that in addition to the smiley helper, we are also using
the Table Class:

<?php

class Smileys extends CI_Controller {

 public function index()
 {
 $this->load->helper('smiley');
 $this->load->library('table');

 $image_array = get_clickable_smileys('http://example.com/images/smileys/', 'comments');
 $col_array = $this->table->make_columns($image_array, 8);

 $data['smiley_table'] = $this->table->generate($col_array);
 $this->load->view('smiley_view', $data);
 }

}

In your application/views/ directory, create a file called smiley_view.php
and place this code in it:

<html>
 <head>
 <title>Smileys</title>
 <?php echo smiley_js(); ?>
 </head>
 <body>
 <form name="blog">
 <textarea name="comments" id="comments" cols="40" rows="4"></textarea>
 </form>
 <p>Click to insert a smiley!</p>
 <?php echo $smiley_table; ?> </body> </html>
 When you have created the above controller and view, load it by visiting http://www.example.com/index.php/smileys/
 </body>
</html>

Field Aliases

When making changes to a view it can be inconvenient to have the field
id in the controller. To work around this, you can give your smiley
links a generic name that will be tied to a specific id in your view.

$image_array = get_smiley_links("http://example.com/images/smileys/", "comment_textarea_alias");

To map the alias to the field id, pass them both into the
smiley_js() function:

$image_array = smiley_js("comment_textarea_alias", "comments");

Available Functions

	
get_clickable_smileys($image_url[, $alias = ''[, $smileys = NULL]])

	

	Parameters:	
	$image_url (string) – URL path to the smileys directory

	$alias (string) – Field alias

	Returns:	An array of ready to use smileys

	Return type:	array

Returns an array containing your smiley images wrapped in a clickable
link. You must supply the URL to your smiley folder and a field id or
field alias.

Example:

$image_array = get_clickable_smileys('http://example.com/images/smileys/', 'comment');

	
smiley_js([$alias = ''[, $field_id = ''[, $inline = TRUE]]])

	

	Parameters:	
	$alias (string) – Field alias

	$field_id (string) – Field ID

	$inline (bool) – Whether we’re inserting an inline smiley

	Returns:	Smiley-enabling JavaScript code

	Return type:	string

Generates the JavaScript that allows the images to be clicked and
inserted into a form field. If you supplied an alias instead of an id
when generating your smiley links, you need to pass the alias and
corresponding form id into the function. This function is designed to be
placed into the <head> area of your web page.

Example:

<?php echo smiley_js(); ?>

	
parse_smileys([$str = ''[, $image_url = ''[, $smileys = NULL]]])

	

	Parameters:	
	$str (string) – Text containing smiley codes

	$image_url (string) – URL path to the smileys directory

	$smileys (array) – An array of smileys

	Returns:	Parsed smileys

	Return type:	string

Takes a string of text as input and replaces any contained plain text
smileys into the image equivalent. The first parameter must contain your
string, the second must contain the URL to your smiley folder

Example:

$str = 'Here are some smileys: :-) ;-)';
$str = parse_smileys($str, 'http://example.com/images/smileys/');
echo $str;

String Helper

The String Helper file contains functions that assist in working with
strings.

Important

Please note that these functions are NOT intended, nor
suitable to be used for any kind of security-related logic.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('string');

Available Functions

The following functions are available:

	
random_string([$type = 'alnum'[, $len = 8]])

	

	Parameters:	
	$type (string) – Randomization type

	$len (int) – Output string length

	Returns:	A random string

	Return type:	string

Generates a random string based on the type and length you specify.
Useful for creating passwords or generating random hashes.

The first parameter specifies the type of string, the second parameter
specifies the length. The following choices are available:

	alpha: A string with lower and uppercase letters only.

	alnum: Alpha-numeric string with lower and uppercase characters.

	basic: A random number based on mt_rand().

	numeric: Numeric string.

	nozero: Numeric string with no zeros.

	md5: An encrypted random number based on md5() (fixed length of 32).

	sha1: An encrypted random number based on sha1() (fixed length of 40).

Usage example:

echo random_string('alnum', 16);

Note

Usage of the unique and encrypt types is DEPRECATED. They
are just aliases for md5 and sha1 respectively.

	
increment_string($str[, $separator = '_'[, $first = 1]])

	

	Parameters:	
	$str (string) – Input string

	$separator (string) – Separator to append a duplicate number with

	$first (int) – Starting number

	Returns:	An incremented string

	Return type:	string

Increments a string by appending a number to it or increasing the
number. Useful for creating “copies” or a file or duplicating database
content which has unique titles or slugs.

Usage example:

echo increment_string('file', '_'); // "file_1"
echo increment_string('file', '-', 2); // "file-2"
echo increment_string('file_4'); // "file_5"

	
alternator($args)

	

	Parameters:	
	$args (mixed) – A variable number of arguments

	Returns:	Alternated string(s)

	Return type:	mixed

Allows two or more items to be alternated between, when cycling through
a loop. Example:

for ($i = 0; $i < 10; $i++)
{
 echo alternator('string one', 'string two');
}

You can add as many parameters as you want, and with each iteration of
your loop the next item will be returned.

for ($i = 0; $i < 10; $i++)
{
 echo alternator('one', 'two', 'three', 'four', 'five');
}

Note

To use multiple separate calls to this function simply call the
function with no arguments to re-initialize.

	
repeater($data[, $num = 1])

	

	Parameters:	
	$data (string) – Input

	$num (int) – Number of times to repeat

	Returns:	Repeated string

	Return type:	string

Generates repeating copies of the data you submit. Example:

$string = "\n";
echo repeater($string, 30);

The above would generate 30 newlines.

Note

This function is DEPRECATED. Use the native str_repeat()
instead.

	
reduce_double_slashes($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	A string with normalized slashes

	Return type:	string

Converts double slashes in a string to a single slash, except those
found in URL protocol prefixes (e.g. http://).

Example:

$string = "http://example.com//index.php";
echo reduce_double_slashes($string); // results in "http://example.com/index.php"

	
strip_slashes($data)

	

	Parameters:	
	$data (mixed) – Input string or an array of strings

	Returns:	String(s) with stripped slashes

	Return type:	mixed

Removes any slashes from an array of strings.

Example:

$str = array(
 'question' => 'Is your name O\'reilly?',
 'answer' => 'No, my name is O\'connor.'
);

$str = strip_slashes($str);

The above will return the following array:

array(
 'question' => "Is your name O'reilly?",
 'answer' => "No, my name is O'connor."
);

Note

For historical reasons, this function will also accept
and handle string inputs. This however makes it just an
alias for stripslashes().

	
trim_slashes($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Slash-trimmed string

	Return type:	string

Removes any leading/trailing slashes from a string. Example:

$string = "/this/that/theother/";
echo trim_slashes($string); // results in this/that/theother

Note

This function is DEPRECATED. Use the native trim() instead:
|
| trim($str, ‘/’);

	
reduce_multiples($str[, $character = ''[, $trim = FALSE]])

	

	Parameters:	
	$str (string) – Text to search in

	$character (string) – Character to reduce

	$trim (bool) – Whether to also trim the specified character

	Returns:	Reduced string

	Return type:	string

Reduces multiple instances of a particular character occurring directly
after each other. Example:

$string = "Fred, Bill,, Joe, Jimmy";
$string = reduce_multiples($string,","); //results in "Fred, Bill, Joe, Jimmy"

If the third parameter is set to TRUE it will remove occurrences of the
character at the beginning and the end of the string. Example:

$string = ",Fred, Bill,, Joe, Jimmy,";
$string = reduce_multiples($string, ", ", TRUE); //results in "Fred, Bill, Joe, Jimmy"

	
quotes_to_entities($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	String with quotes converted to HTML entities

	Return type:	string

Converts single and double quotes in a string to the corresponding HTML
entities. Example:

$string = "Joe's \"dinner\"";
$string = quotes_to_entities($string); //results in "Joe's "dinner""

	
strip_quotes($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	String with quotes stripped

	Return type:	string

Removes single and double quotes from a string. Example:

$string = "Joe's \"dinner\"";
$string = strip_quotes($string); //results in "Joes dinner"

Text Helper

The Text Helper file contains functions that assist in working with
text.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('text');

Available Functions

The following functions are available:

	
word_limiter($str[, $limit = 100[, $end_char = '…']])

	

	Parameters:	
	$str (string) – Input string

	$limit (int) – Limit

	$end_char (string) – End character (usually an ellipsis)

	Returns:	Word-limited string

	Return type:	string

Truncates a string to the number of words specified. Example:

$string = "Here is a nice text string consisting of eleven words.";
$string = word_limiter($string, 4);
// Returns: Here is a nice

The third parameter is an optional suffix added to the string. By
default it adds an ellipsis.

	
character_limiter($str[, $n = 500[, $end_char = '…']])

	

	Parameters:	
	$str (string) – Input string

	$n (int) – Number of characters

	$end_char (string) – End character (usually an ellipsis)

	Returns:	Character-limited string

	Return type:	string

Truncates a string to the number of characters specified. It
maintains the integrity of words so the character count may be slightly
more or less than what you specify.

Example:

$string = "Here is a nice text string consisting of eleven words.";
$string = character_limiter($string, 20);
// Returns: Here is a nice text string

The third parameter is an optional suffix added to the string, if
undeclared this helper uses an ellipsis.

Note

If you need to truncate to an exact number of characters please
see the ellipsize() function below.

	
ascii_to_entities($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	A string with ASCII values converted to entities

	Return type:	string

Converts ASCII values to character entities, including high ASCII and MS
Word characters that can cause problems when used in a web page, so that
they can be shown consistently regardless of browser settings or stored
reliably in a database. There is some dependence on your server’s
supported character sets, so it may not be 100% reliable in all cases,
but for the most part it should correctly identify characters outside
the normal range (like accented characters).

Example:

$string = ascii_to_entities($string);

	
convert_accented_characters($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	A string with accented characters converted

	Return type:	string

Transliterates high ASCII characters to low ASCII equivalents. Useful
when non-English characters need to be used where only standard ASCII
characters are safely used, for instance, in URLs.

Example:

$string = convert_accented_characters($string);

Note

This function uses a companion config file
application/config/foreign_chars.php to define the to and
from array for transliteration.

	
word_censor($str, $censored[, $replacement = ''])

	

	Parameters:	
	$str (string) – Input string

	$censored (array) – List of bad words to censor

	$replacement (string) – What to replace bad words with

	Returns:	Censored string

	Return type:	string

Enables you to censor words within a text string. The first parameter
will contain the original string. The second will contain an array of
words which you disallow. The third (optional) parameter can contain
a replacement value for the words. If not specified they are replaced
with pound signs: ####.

Example:

$disallowed = array('darn', 'shucks', 'golly', 'phooey');
$string = word_censor($string, $disallowed, 'Beep!');

	
highlight_code($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	String with code highlighted via HTML

	Return type:	string

Colorizes a string of code (PHP, HTML, etc.). Example:

$string = highlight_code($string);

The function uses PHP’s highlight_string() function, so the
colors used are the ones specified in your php.ini file.

	
highlight_phrase($str, $phrase[, $tag_open = '<mark>'[, $tag_close = '</mark>']])

	

	Parameters:	
	$str (string) – Input string

	$phrase (string) – Phrase to highlight

	$tag_open (string) – Opening tag used for the highlight

	$tag_close (string) – Closing tag for the highlight

	Returns:	String with a phrase highlighted via HTML

	Return type:	string

Will highlight a phrase within a text string. The first parameter will
contain the original string, the second will contain the phrase you wish
to highlight. The third and fourth parameters will contain the
opening/closing HTML tags you would like the phrase wrapped in.

Example:

$string = "Here is a nice text string about nothing in particular.";
echo highlight_phrase($string, "nice text", '', '');

The above code prints:

Here is a nice text string about nothing in particular.

Note

This function used to use the tag by default. Older browsers
might not support the new HTML5 mark tag, so it is recommended that you
insert the following CSS code into your stylesheet if you need to support
such browsers:

mark {
 background: #ff0;
 color: #000;
};

	
word_wrap($str[, $charlim = 76])

	

	Parameters:	
	$str (string) – Input string

	$charlim (int) – Character limit

	Returns:	Word-wrapped string

	Return type:	string

Wraps text at the specified character count while maintaining
complete words.

Example:

$string = "Here is a simple string of text that will help us demonstrate this function.";
echo word_wrap($string, 25);

// Would produce:
// Here is a simple string
// of text that will help us
// demonstrate this
// function.

	
ellipsize($str, $max_length[, $position = 1[, $ellipsis = '…']])

	

	Parameters:	
	$str (string) – Input string

	$max_length (int) – String length limit

	$position (mixed) – Position to split at (int or float)

	$ellipsis (string) – What to use as the ellipsis character

	Returns:	Ellipsized string

	Return type:	string

This function will strip tags from a string, split it at a defined
maximum length, and insert an ellipsis.

The first parameter is the string to ellipsize, the second is the number
of characters in the final string. The third parameter is where in the
string the ellipsis should appear from 0 - 1, left to right. For
example. a value of 1 will place the ellipsis at the right of the
string, .5 in the middle, and 0 at the left.

An optional forth parameter is the kind of ellipsis. By default,
… will be inserted.

Example:

$str = 'this_string_is_entirely_too_long_and_might_break_my_design.jpg';
echo ellipsize($str, 32, .5);

Produces:

this_string_is_e…ak_my_design.jpg

Typography Helper

The Typography Helper file contains functions that help your format text
in semantically relevant ways.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('typography');

Available Functions

The following functions are available:

	
auto_typography($str[, $reduce_linebreaks = FALSE])

	

	Parameters:	
	$str (string) – Input string

	$reduce_linebreaks (bool) – Whether to reduce multiple instances of double newlines to two

	Returns:	HTML-formatted typography-safe string

	Return type:	string

Formats text so that it is semantically and typographically correct
HTML.

This function is an alias for CI_Typography::auto_typography().
For more info, please see the Typography Library documentation.

Usage example:

$string = auto_typography($string);

Note

Typographic formatting can be processor intensive, particularly if
you have a lot of content being formatted. If you choose to use this
function you may want to consider caching your
pages.

	
nl2br_except_pre($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	String with HTML-formatted line breaks

	Return type:	string

Converts newlines to
 tags unless they appear within <pre> tags.
This function is identical to the native PHP nl2br() function,
except that it ignores <pre> tags.

Usage example:

$string = nl2br_except_pre($string);

	
entity_decode($str, $charset = NULL)

	

	Parameters:	
	$str (string) – Input string

	$charset (string) – Character set

	Returns:	String with decoded HTML entities

	Return type:	string

This function is an alias for CI_Security::entity_decode().
Fore more info, please see the Security Library documentation.

URL Helper

The URL Helper file contains functions that assist in working with URLs.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('url');

Available Functions

The following functions are available:

	
site_url([$uri = ''[, $protocol = NULL]])

	

	Parameters:	
	$uri (string) – URI string

	$protocol (string) – Protocol, e.g. ‘http’ or ‘https’

	Returns:	Site URL

	Return type:	string

Returns your site URL, as specified in your config file. The index.php
file (or whatever you have set as your site index_page in your config
file) will be added to the URL, as will any URI segments you pass to the
function, plus the url_suffix as set in your config file.

You are encouraged to use this function any time you need to generate a
local URL so that your pages become more portable in the event your URL
changes.

Segments can be optionally passed to the function as a string or an
array. Here is a string example:

echo site_url('news/local/123');

The above example would return something like:
http://example.com/index.php/news/local/123

Here is an example of segments passed as an array:

$segments = array('news', 'local', '123');
echo site_url($segments);

This function is an alias for CI_Config::site_url(). For more info,
please see the Config Library documentation.

	
base_url($uri = '', $protocol = NULL)

	

	Parameters:	
	$uri (string) – URI string

	$protocol (string) – Protocol, e.g. ‘http’ or ‘https’

	Returns:	Base URL

	Return type:	string

Returns your site base URL, as specified in your config file. Example:

echo base_url();

This function returns the same thing as site_url(), without
the index_page or url_suffix being appended.

Also like site_url(), you can supply segments as a string or
an array. Here is a string example:

echo base_url("blog/post/123");

The above example would return something like:
http://example.com/blog/post/123

This is useful because unlike site_url(), you can supply a
string to a file, such as an image or stylesheet. For example:

echo base_url("images/icons/edit.png");

This would give you something like:
http://example.com/images/icons/edit.png

This function is an alias for CI_Config::base_url(). For more info,
please see the Config Library documentation.

	
current_url()

	

	Returns:	The current URL

	Return type:	string

Returns the full URL (including segments) of the page being currently
viewed.

Note

Calling this function is the same as doing this:
|
| site_url(uri_string());

	
uri_string()

	

	Returns:	An URI string

	Return type:	string

Returns the URI segments of any page that contains this function.
For example, if your URL was this:

http://some-site.com/blog/comments/123

The function would return:

blog/comments/123

This function is an alias for CI_Config::uri_string(). For more info,
please see the Config Library documentation.

	
index_page()

	

	Returns:	‘index_page’ value

	Return type:	mixed

Returns your site index_page, as specified in your config file.
Example:

echo index_page();

	
anchor($uri = '', $title = '', $attributes = '')

	

	Parameters:	
	$uri (string) – URI string

	$title (string) – Anchor title

	$attributes (mixed) – HTML attributes

	Returns:	HTML hyperlink (anchor tag)

	Return type:	string

Creates a standard HTML anchor link based on your local site URL.

The first parameter can contain any segments you wish appended to the
URL. As with the site_url() function above, segments can
be a string or an array.

Note

If you are building links that are internal to your application
do not include the base URL (http://…). This will be added
automatically from the information specified in your config file.
Include only the URI segments you wish appended to the URL.

The second segment is the text you would like the link to say. If you
leave it blank, the URL will be used.

The third parameter can contain a list of attributes you would like
added to the link. The attributes can be a simple string or an
associative array.

Here are some examples:

echo anchor('news/local/123', 'My News', 'title="News title"');
// Prints: My News

echo anchor('news/local/123', 'My News', array('title' => 'The best news!'));
// Prints: My News

echo anchor('', 'Click here');
// Prints: Click Here

	
anchor_popup($uri = '', $title = '', $attributes = FALSE)

	

	Parameters:	
	$uri (string) – URI string

	$title (string) – Anchor title

	$attributes (mixed) – HTML attributes

	Returns:	Pop-up hyperlink

	Return type:	string

Nearly identical to the anchor() function except that it
opens the URL in a new window. You can specify JavaScript window
attributes in the third parameter to control how the window is opened.
If the third parameter is not set it will simply open a new window with
your own browser settings.

Here is an example with attributes:

$atts = array(
 'width' => 800,
 'height' => 600,
 'scrollbars' => 'yes',
 'status' => 'yes',
 'resizable' => 'yes',
 'screenx' => 0,
 'screeny' => 0,
 'window_name' => '_blank'
);

echo anchor_popup('news/local/123', 'Click Me!', $atts);

Note

The above attributes are the function defaults so you only need to
set the ones that are different from what you need. If you want the
function to use all of its defaults simply pass an empty array in the
third parameter:
|
| echo anchor_popup(‘news/local/123’, ‘Click Me!’, array());

Note

The window_name is not really an attribute, but an argument to
the JavaScript window.open() <http://www.w3schools.com/jsref/met_win_open.asp>
method, which accepts either a window name or a window target.

Note

Any other attribute than the listed above will be parsed as an
HTML attribute to the anchor tag.

	
mailto($email, $title = '', $attributes = '')

	

	Parameters:	
	$email (string) – E-mail address

	$title (string) – Anchor title

	$attributes (mixed) – HTML attributes

	Returns:	A “mail to” hyperlink

	Return type:	string

Creates a standard HTML e-mail link. Usage example:

echo mailto('me@my-site.com', 'Click Here to Contact Me');

As with the anchor() tab above, you can set attributes using the
third parameter:

$attributes = array('title' => 'Mail me');
echo mailto('me@my-site.com', 'Contact Me', $attributes);

	
safe_mailto($email, $title = '', $attributes = '')

	

	Parameters:	
	$email (string) – E-mail address

	$title (string) – Anchor title

	$attributes (mixed) – HTML attributes

	Returns:	A spam-safe “mail to” hyperlink

	Return type:	string

Identical to the mailto() function except it writes an obfuscated
version of the mailto tag using ordinal numbers written with JavaScript to
help prevent the e-mail address from being harvested by spam bots.

	
auto_link($str, $type = 'both', $popup = FALSE)

	

	Parameters:	
	$str (string) – Input string

	$type (string) – Link type (‘email’, ‘url’ or ‘both’)

	$popup (bool) – Whether to create popup links

	Returns:	Linkified string

	Return type:	string

Automatically turns URLs and e-mail addresses contained in a string into
links. Example:

$string = auto_link($string);

The second parameter determines whether URLs and e-mails are converted or
just one or the other. Default behavior is both if the parameter is not
specified. E-mail links are encoded as safe_mailto() as shown
above.

Converts only URLs:

$string = auto_link($string, 'url');

Converts only e-mail addresses:

$string = auto_link($string, 'email');

The third parameter determines whether links are shown in a new window.
The value can be TRUE or FALSE (boolean):

$string = auto_link($string, 'both', TRUE);

	
url_title($str, $separator = '-', $lowercase = FALSE)

	

	Parameters:	
	$str (string) – Input string

	$separator (string) – Word separator

	$lowercase (bool) – Whether to transform the output string to lower-case

	Returns:	URL-formatted string

	Return type:	string

Takes a string as input and creates a human-friendly URL string. This is
useful if, for example, you have a blog in which you’d like to use the
title of your entries in the URL. Example:

$title = "What's wrong with CSS?";
$url_title = url_title($title);
// Produces: Whats-wrong-with-CSS

The second parameter determines the word delimiter. By default dashes
are used. Preferred options are: - (dash) or _ (underscore)

Example:

$title = "What's wrong with CSS?";
$url_title = url_title($title, 'underscore');
// Produces: Whats_wrong_with_CSS

Note

Old usage of ‘dash’ and ‘underscore’ as the second parameter
is DEPRECATED.

The third parameter determines whether or not lowercase characters are
forced. By default they are not. Options are boolean TRUE/FALSE.

Example:

$title = "What's wrong with CSS?";
$url_title = url_title($title, 'underscore', TRUE);
// Produces: whats_wrong_with_css

	
prep_url($str = '')

	

	Parameters:	
	$str (string) – URL string

	Returns:	Protocol-prefixed URL string

	Return type:	string

This function will add http:// in the event that a protocol prefix
is missing from a URL.

Pass the URL string to the function like this:

$url = prep_url('example.com');

	
redirect($uri = '', $method = 'auto', $code = NULL)

	

	Parameters:	
	$uri (string) – URI string

	$method (string) – Redirect method (‘auto’, ‘location’ or ‘refresh’)

	$code (string) – HTTP Response code (usually 302 or 303)

	Return type:	void

Does a “header redirect” to the URI specified. If you specify the full
site URL that link will be built, but for local links simply providing
the URI segments to the controller you want to direct to will create the
link. The function will build the URL based on your config file values.

The optional second parameter allows you to force a particular redirection
method. The available methods are auto, location and refresh,
with location being faster but less reliable on IIS servers.
The default is auto, which will attempt to intelligently choose the
method based on the server environment.

The optional third parameter allows you to send a specific HTTP Response
Code - this could be used for example to create 301 redirects for search
engine purposes. The default Response Code is 302. The third parameter is
only available with location redirects, and not refresh. Examples:

if ($logged_in == FALSE)
{
 redirect('/login/form/');
}

// with 301 redirect
redirect('/article/13', 'location', 301);

Note

In order for this function to work it must be used before anything
is outputted to the browser since it utilizes server headers.

Note

For very fine grained control over headers, you should use the
Output Library set_header() method.

Note

To IIS users: if you hide the Server HTTP header, the auto
method won’t detect IIS, in that case it is advised you explicitly
use the refresh method.

Note

When the location method is used, an HTTP status code of 303
will automatically be selected when the page is currently accessed
via POST and HTTP/1.1 is used.

Important

This function will terminate script execution.

XML Helper

The XML Helper file contains functions that assist in working with XML
data.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code

$this->load->helper('xml');

Available Functions

The following functions are available:

	
xml_convert($str[, $protect_all = FALSE])

	

	Parameters:	
	$str (string) – the text string to convert

	$protect_all (bool) – Whether to protect all content that looks like a potential entity instead of just numbered entities, e.g. &foo;

	Returns:	XML-converted string

	Return type:	string

Takes a string as input and converts the following reserved XML
characters to entities:

	Ampersands: &

	Less than and greater than characters: < >

	Single and double quotes: ‘ “

	Dashes: -

This function ignores ampersands if they are part of existing numbered
character entities, e.g. {. Example:

$string = '<p>Here is a paragraph & an entity ({).</p>';
$string = xml_convert($string);
echo $string;

outputs:

<p>Here is a paragraph & an entity ({).</p>

Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:

	The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

	The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

	The contribution was provided directly to me by some other
person who certified (1), (2) or (3) and I have not modified
it.

	I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

Change Log

Version 3.1.11

Release Date: Sep 19, 2019

	General Changes
	Changed CI_Log to append PHP_EOL instead of \n at the end of log messages.

	Improved performance in Cache Library ‘redis’ driver with non-scalar variables.

	Altered the Session Library ‘files’ driver to log error and trigger a session start failure instead of throwing an Exception in case of unusable $config['sess_save_path'].

	Updated the Session and Cache libraries’ ‘redis’ driver to work with phpRedis 5.

Bug fixes for 3.1.11

	Fixed a bug (#5681) - Database Forge method modify_column() produced erroneous SQL for DEFAULT attribute changes under PostgreSQL, Firebird.

	Fixed a bug (#5692) - Database Forge didn’t handle column nullability with the ‘oci8’, ‘pdo/oci’ drivers.

	Fixed a bug (#5701) - Database driver ‘pdo/pgsql’ produced incorrect DSNs when constructing from a configuration array.

	Fixed a bug (#5708) - Session Library ‘redis’ driver too often failed with locking-related errors that could’ve been avoided.

	Fixed a bug (#5703) - Session Library triggered an E_WARNING message about changing session.save_path during an active session when it fails to obtain a lock.

	Fixed a bug where Session Library ‘database’ driver didn’t trigger a failure if it can’t obtain a lock.

	Fixed a bug (#5755) - Form Validation Library rule valid_url accepted digit-only domains due to a PHP bug.

	Fixed a bug (#5753) - Cache Library ‘redis’ driver methods increment(), decrement() ignored their $offset parameter.

	Fixed a bug (#5779) - Session Library ‘redis’ only attempted to validate session IDs in case the connection to Redis failed.

	Fixed a bug (#5774) - Database Results method custom_result_object() didn’t properly handle empty result sets, triggering E_WARNING messages on PHP 7.2+.

	Fixed a bug (#5788) - Database Results method field_data() triggered an E_NOTICE error with PDO when a field type is not recognized by PHP.

	Fixed a bug (#5796) - Query Builder method list_tables() triggered an SQL syntax error under MySQL when the database schema is a numeric string.

	Fixed a bug where Security Class would trigger an E_WARNING if CSRF inputs are arrays instead of strings.

Version 3.1.10

Release Date: Jan 16, 2019

	General Changes
	Added ‘ssl_verify’ support to the ‘pdo/mysql’ Database driver.

	Renamed Inflector Helper function is_countable() to word_is_countable() due to the former colliding with one introduced in PHP 7.3.0.

Bug fixes for 3.1.10

	Fixed a bug (#5526) - Session Library had a syntax error in its ‘memcached’ driver.

	Fixed a bug (#5542) - Database Forge method modify_column() always made fields NOT NULL when attempting to modify their nullable property under PostgreSQL.

	Fixed a bug (#5561) - Database Library didn’t allow SSL connection configuration with only the ‘ssl_verify’ option when using the ‘mysqli’ driver.

	Fixed a bug (#5545) - Session Library crashed due to a caching-related error with the ‘files’ driver.

	Fixed a bug (#5571) - XML-RPC Library had a typo that triggered an E_WARNING message on PHP 7.2.

	Fixed a bug (#5587) - Database Forge method create_table() generated an E_WARNING message.

	Fixed a bug (#5590) - Form Validation Library rule valid_base64 didn’t have a default error message.

	Fixed a bug (#5624) - Database Library methods list_fields(), field_exists() returned incorrect results after tables are modified.

	Fixed a bug (#5627) - Database driver ‘mysqli’ triggered an E_WARNING message if there’s no 'port' specified in the database configuration.

	Fixed a bug (#5651) - Database Caching could try to delete non-existent cache files due to a race condition.

	Fixed a bug (#5652) - CAPTCHA Helper function create_captcha() didn’t comply with CSS standards.

	Fixed a bug (#5605) - Form Validation Library didn’t nullify array inputs that are expected to be strings.

Version 3.1.9

Release Date: Jun 12, 2018

	Security

	Updated URL Helper function auto_link() to add rel="noopener" to generated links in order to prevent tab hijacking.

	Fixed a possible session fixation vulnerability where the Session Library enabled session.use_strict_mode but it didn’t actually do anything (thanks to Aamer Shah, Prasanna Kumar).

	General Changes

	Updated Query Builder method limit() to allow 0 values.

	Updated Email Library and Form Validation Library to discard the results of failed idn_to_ascii() calls while validating e-mail addresses.

Bug fixes for 3.1.9

	Fixed a regression (#5448) - Query Builder methods like(), or_like() (and siblings) didn’t apply dbprefix or identifier escaping.

	Fixed a regression (#5462) - Query Builder methods like(), or_like() (and siblings) produced incorrect SQL syntax when used with 'before' as the third parameter.

	Fixed a bug (#5516) - HTML Helper functions img(), link_tag() would output results with double slashes if a prefix slash was included in their path inputs.

Version 3.1.8

Release Date: Mar 22, 2018

	Security

	Updated Security Library method xss_clean() to also filter JavaScript tag functions.

	Fixed a bug where Security Library method xss_clean() didn’t check for parentheses around JavaScript’s document.

	General Changes

	Updated Email Library to always negotiate between TLS 1.0, 1.1, 1.2 when possible (PHP 5.6+) for SMTP connections.

	Updated Database Library method version() to exclude suffixes to the main version numbers with the ‘postgre’ driver.

Bug fixes for 3.1.8

	Fixed a bug where Form Validation Library, Email Library tried to use INTL_IDNA_VARIANT_UTS46 when it was undeclared.

	Fixed a bug where Query Builder methods where(), having() treated values passed to them as arbitrary SQL.

	Fixed a bug (#5423) - Database Library method insert_id() failed due to incorrect server version parsing with the ‘postgre’ driver.

	Fixed a bug (#5425) - XML-RPC Library produced an error message related to count() on PHP 7.2.

	Fixed a bug (#5434) - Image Manipulation Library attempted to chmod() while rendering images with the dynamic_output option.

	Fixed a bug (#5435) - Database Results method field_data() hid info about one field if limit() was previously used with the ‘oci8’ driver.

Version 3.1.7

Release Date: Jan 13, 2018

	General Changes
	Updated Form Validation Library rule valid_email to use INTL_IDNA_VARIANT_UTS46 for non-ASCII domain names.

	Updated Email Library to use INTL_IDNA_VARIANT_UTS46 for non-ASCII domain names.

	Updated Loader Library method model() to log both CI_Model class loading and individual models’ initialization.

	Updated Pagination Library to preserve previously set attributes while calling initialize().

	Updated Cache Library to automatically add items to cache on increment(), decrement() calls for missing keys.

	Deprecated usage of CAPTCHA Helper function create_captcha() with parameters other than $data.

Bug fixes for 3.1.7

	Fixed a regression (#5276) - Database Utilities method backup() generated incorrect INSERT statements with the ‘mysqli’ driver.

	Fixed a regression where Database Results method field_data() returned incorrect type names.

	Fixed a bug (#5278) - URL Helper function auto_link() didn’t detect trailing slashes in URLs.

	Fixed a regression (#5282) - Query Builder method count_all_results() breaks ORDER BY clauses for subsequent queries.

	Fixed a bug (#5279) - Query Builder didn’t account for already escaped identifiers while applying database name prefixes.

	Fixed a bug (#5331) - URL Helper function auto_link() converted e-mail addresses starting with ‘www.’ to both “url” and “email” links.

	Fixed a bug where $config['allow_get_array'] defaulted to FALSE if it didn’t exist in the config file.

	Fixed a bug (#5379) - Session Library would incorrectly fail to obtain a lock that it already has on PHP 7 with the ‘memcached’ driver.

Version 3.1.6

Release Date: Sep 25, 2017

	Security
	Fixed a potential object injection in Cache Library ‘apc’ driver when save() is used with $raw = TRUE (thanks to Tomas Bortoli).

	General Changes
	Deprecated Cache Library Library driver ‘apc’.

	Updated the Session Library ‘redis’, ‘memcached’ drivers to reduce the potential of a locking race conditions.

Bug fixes for 3.1.6

	Fixed a bug (#5164) - Loader Library method library() ignored requests to load libraries previously assigned to super-object properties named differently than the library name.

	Fixed a bug (#5168) - Query Builder method count_all_results() produced erroneous queries on Microsoft SQL Server when ORDER BY clauses are cached.

	Fixed a bug (#5128) - Profiler didn’t wrap $_SESSION and configuration arrays in <pre> tags.

	Fixed a bug (#5183) - Database Library method is_write_type() didn’t return TRUE for MERGE statements.

	Fixed a bug where Image Manipulation Library didn’t escape image source paths passed to NetPBM as shell arguments.

	Fixed a bug (#5236) - Query Builder methods limit(), offset() break SQL Server 2005, 2008 queries with "<tablename>".* in the SELECT clause.

	Fixed a bug (#5243) - Database Library method version() didn’t work with the ‘pdo/dblib’ driver.

	Fixed a bug (#5246) - Database transactions status wasn’t reset unless trans_complete() was called.

	Fixed a bug (#5260) - Database Utilities method backup() generated incorrect INSERT statements with the ‘mysqli’ driver.

	Fixed a bug where Database Results method field_data() didn’t parse field types with the ‘mysqli’ driver.

Version 3.1.5

Release Date: Jun 19, 2017

	Security
	Form Validation Library rule valid_email could be bypassed if idn_to_ascii() is available.

	General Changes
	Updated Form Helper function form_label() to accept HTML attributes as a string.

Bug fixes for 3.1.5

	Fixed a bug (#5070) - Email Library didn’t properly detect 7-bit encoding.

	Fixed a bug (#5084) - XML-RPC Library errored because of a variable name typo.

	Fixed a bug (#5108) - Inflector Helper function singular() didn’t properly handle ‘quizzes’.

	Fixed a regression (#5131) - private controller methods triggered PHP errors instead of a 404 response.

	Fixed a bug (#5150) - Database Forge method modify_column() triggered an error while renaming columns with the ‘oci8’, ‘pdo/oci’ drivers.

	Fixed a bug (#5155) - Query Builder method count_all_results() returned incorrect result for queries using LIMIT, OFFSET.

Version 3.1.4

Release Date: Mar 20, 2017

	Security
	Fixed a header injection vulnerability in common function set_status_header() under Apache (thanks to Guillermo Caminer from Flowgate [https://flowgate.net/]).

	Fixed byte-safety issues in Encrypt Library (DEPRECATED) when mbstring.func_overload is enabled.

	Fixed byte-safety issues in Encryption Library when mbstring.func_overload is enabled.

	Fixed byte-safety issues in compatibility functions password_hash(), hash_pbkdf2() when mbstring.func_overload is enabled.

	Updated Encrypt Library (DEPRECATED) to call mcrypt_create_iv() with MCRYPT_DEV_URANDOM.

	General Changes
	Updated the Image Manipulation Library to work-around an issue with some JPEGs when using GD.

Bug fixes for 3.1.4

	Fixed a regression (#4975) - Loader Library couldn’t handle objects passed as view variables.

	Fixed a bug (#4977) - Loader Library method helper() could accept any character as a filename extension separator.

	Fixed a regression where the Session Library would fail on a session_regenerate_id(TRUE) call with the ‘database’ driver.

	Fixed a bug (#4987) - Query Builder caching didn’t keep track of table aliases.

	Fixed a bug where Text Helper function ascii_to_entities() wasn’t byte-safe when mbstring.func_overload is enabled.

	Fixed a bug where CI_Log, CI_Output, CI_Email and CI_Zip didn’t handle strings in a byte-safe manner when mbstring.func_overload is enabled.

	Fixed a bug where Session Library didn’t read session data in a byte-safe manner when mbstring.func_overload is enabled.

	Fixed a bug (#4990) - Profiler didn’t close <pre> tags it generated.

	Fixed a bug (#4990) - Profiler didn’t HTML-escape quotes for $_SESSION variables.

	Fixed a bug where Input Library method set_cookie() didn’t allow its httponly and secure parameters to be overriden to FALSE.

	Fixed a bug (#5006) - common function get_mimes() didn’t load application/config/mimes.php if an environment specific config exists.

	Fixed a bug (#5006) - common function remove_invisible_characters() didn’t remove URL-encoded 0x7F.

	Fixed a bug (#4815) - Database Library stripped URL-encoded sequences while escaping strings with the ‘mssql’ driver.

	Fixed a bug (#5044) - HTML Helper function img() didn’t accept data: URI schemes for the image source.

	Fixed a bug (#5050) - Database Library tried to access an undefined property in a number of error handling cases.

	Fixed a bug (#5057) - Database driver ‘postgre’ didn’t actually apply extra options (such as ‘connect_timeout’) to its DSN.

Version 3.1.3

Release Date: Jan 09, 2017

	Security
	Fixed an XSS vulnerability in Security Library method xss_clean().

	Fixed a possible file inclusion vulnerability in Loader Library method vars().

	Fixed a possible remote code execution vulnerability in the Email Library when ‘mail’ or ‘sendmail’ are used (thanks to Paul Buonopane from NamePros [https://www.namepros.com/]).

	Added protection against timing side-channel attacks in Security Library method csrf_verify().

	Added protection against BREACH attacks targeting the CSRF token field generated by Form Helper function form_open().

	General Changes
	Deprecated $config['allow_get_array'].

	Deprecated $config['standardize_newlines'].

	Deprecated Date Helper function nice_date().

Bug fixes for 3.1.3

	Fixed a bug (#4886) - Database Library didn’t differentiate bind markers inside double-quoted strings in queries.

	Fixed a bug (#4890) - XML-RPC Library didn’t work on PHP 7.

	Fixed a regression (#4887) - File Uploading Library triggered fatal errors due to numerous PHP distribution channels (XAMPP and cPanel confirmed) explicitly disabling ext/fileinfo by default.

	Fixed a bug (#4679) - Input Library method ip_address() didn’t properly resolve $config['proxy_ips'] IPv6 addresses.

	Fixed a bug (#4902) - Image Manipulation Library processing via ImageMagick didn’t work.

	Fixed a bug (#4905) - Loader Library didn’t take into account possible user-provided directory paths when loading helpers.

	Fixed a bug (#4916) - Session Library with sess_match_ip enabled was unusable for IPv6 clients when using the ‘database’ driver on MySQL 5.7.5+.

	Fixed a bug (#4917) - Date Helper function nice_date() didn’t handle YYYYMMDD inputs properly.

	Fixed a bug (#4923) - Session Library could execute an erroneous SQL query with the ‘database’ driver, if the lock attempt times out.

	Fixed a bug (#4927) - Output Library method get_header() returned the first matching header, regardless of whether it would be replaced by a second set_header() call.

	Fixed a bug (#4844) - Email Library didn’t apply escapeshellarg() to the while passing the Sendmail -f parameter through popen().

	Fixed a bug (#4928) - the bootstrap file didn’t check if config/constants.php exists before trying to load it.

	Fixed a bug (#4937) - Image Manipulation Library method initialize() didn’t translate new_image inputs to absolute paths.

	Fixed a bug (#4941) - Query Builder method order_by() didn’t work with ‘RANDOM’ under the ‘pdo/sqlite’ driver.

	Fixed a regression (#4892) - Query Builder method update_batch() didn’t properly handle identifier escaping.

	Fixed a bug (#4953) - Database Forge method create_table() didn’t update an internal tables list cache if it exists but is empty.

	Fixed a bug (#4958) - Query Builder method count_all_results() didn’t take into account cached ORDER BY clauses.

	Fixed a bug (#4804) - Query Builder method insert_batch() could fail if the input array pointer was modified.

	Fixed a bug (#4962) - Database Force method alter_table() would fail with the ‘oci8’ driver.

	Fixed a bug (#4457) - Image Manipulation Library method get_image_properties() didn’t detect invalid images.

	Fixed a bug (#4765) - Email Library didn’t send the User-Agent header without a prior call to clear().

Version 3.1.2

Release Date: Oct 28, 2016

	Security
	Fixed a number of new vulnerabilities in Security Library method xss_clean().

	General Changes
	Allowed PHP 4-style constructors (Matching_name::Matching_name() methods) to be used as routes, if there’s a __construct() to override them.

Bug fixes for 3.1.2

	Fixed a regression (#4874) - Session Library didn’t take into account session.hash_bits_per_character when validating session IDs.

	Fixed a bug (#4871) - Query Builder method update_batch() didn’t properly handle identifier escaping.

	Fixed a bug (#4884) - Query Builder didn’t properly parse field names ending in ‘is’ when used inside WHERE and HAVING statements.

	Fixed a bug where CI_Log, CI_Output, CI_Email and CI_Zip didn’t handle strings in a byte-safe manner when mbstring.func_overload is enabled.

Version 3.1.1

Release Date: Oct 22, 2016

	Security
	Fixed a flaw in Security Library method entity_decode() (used by xss_clean()) that affects HTML 5 entities when using PHP 5.3.

	General Changes
	Added E_PARSE to the list of error levels detected by the shutdown handler.

	Updated Inflector Helper is_countable() with more words.

	Updated common function set_status_header() with new status codes from IETF RFCs
2817 [https://tools.ietf.org/html/rfc2817] (426)
and 6585 [https://tools.ietf.org/html/rfc6585] (428, 429, 431, 511).

Bug fixes for 3.1.1

	Fixed a bug (#4732) - Session Library triggered errors while writing data for a newly-created sessions with the ‘memcached’ driver.

	Fixed a regression (#4736) - Image Manipulation Library processing via ImageMagick didn’t work.

	Fixed a bug (#4737) - Query Builder didn’t add an OFFSET when LIMIT is zero or unused.

	Fixed a regression (#4739) - Email Library doesn’t properly separate attachment bodies from headers.

	Fixed a bug (#4754) - Unit Testing Library method result() didn’t translate res_datatype.

	Fixed a bug (#4759) - Form Validation, Trackback and XML-RPC libraries treated URI schemes in a case-sensitive manner.

	Fixed a bug (#4762) - Cache Library ‘file’ driver method get_metadata() checked TTL time against mtime instead of the cache item’s creation time.

	Fixed a bug where File Uploading Library generated error messages on PHP 7.1.

	Fixed a bug (#4780) - compatibility function hex2bin() didn’t reject inputs of type “resource”.

	Fixed a bug (#4787) - Form Validation Library method valid_email() triggered E_WARNING when input emails have empty domain names.

	Fixed a bug (#4805) - Database driver ‘mysqli’ didn’t use the MYSQLI_CLIENT_SSL_DONT_VERIFY_SERVER_CERT flag properly.

	Fixed a bug (#4808) - Database method is_write_type() only looked at the first line of a queries using RETURNING with the ‘postgre’, ‘pdo/pgsql’, ‘odbc’ and ‘pdo/odbc’ drivers.

	Fixed a bug where Query Builder method insert_batch() tried to execute an unsupported SQL query with the ‘ibase’ and ‘pdo/firebird’ drivers.

	Fixed a bug (#4809) - Database driver ‘pdo/mysql’ didn’t turn off AUTOCOMMIT when starting a transaction.

	Fixed a bug (#4822) - CAPTCHA Helper didn’t clear expired PNG images.

	Fixed a bug (#4823) - Session Library ‘files’ driver could enter an infinite loop if mbstring.func_overload is enabled.

	Fixed a bug (#4851) - Database Forge didn’t quote schema names passed to its create_database() method.

	Fixed a bug (#4863) - HTML Table Library method set_caption() was missing method chaining support.

	Fixed a bug (#4843) - XML-RPC Library client class didn’t set a read/write socket timeout.

	Fixed a bug (#4865) - uncaught exceptions didn’t set the HTTP Response status code to 500 unless display_errors was turned On.

	Fixed a bug (#4830) - Session Library didn’t take into account the new session INI settings in PHP 7.1.

Version 3.1.0

Release Date: July 26, 2016

	Security
	Fixed an SQL injection in the ‘odbc’ database driver.

	Updated set_realpath() Path Helper function to filter-out php:// wrapper inputs.

	Officially dropped any kind of support for PHP 5.2.x and anything under 5.3.7.

	General Changes
	Updated Image Manipulation Library to validate width and height configuration values.

	Updated Encryption Library to always prefer random_bytes() when it is available.

	Updated Session Library to log ‘debug’ messages when using fallbacks to session.save_path (php.ini) or ‘sess_use_database’, ‘sess_table_name’ settings.

	Added a ‘LONGTEXT’ to ‘STRING’ alias to Database Forge for the ‘cubrid’, ‘pdo/cubrid’ drivers.

	Added ‘TINYINT’, ‘MEDIUMINT’, ‘INT’ and ‘BIGINT’ aliases to ‘NUMBER’ to Database Forge for the ‘oci8’, ‘pdo/oci’ drivers.

	password_hash() compatibility function changes:
	Changed salt-generation logic to prefer random_bytes() when it is available.

	Changed salt-generation logic to prefer direct access to /dev/urandom over openssl_random_pseudo_bytes().

	Changed salt-generation logic to error if openssl_random_pseudo_bytes() sets its $crypto_strong flag to FALSE.

Bug fixes for 3.1.0

	Fixed a bug where Image Manipulation Library didn’t escape image source paths passed to ImageMagick as shell arguments.

	Fixed a bug (#861) - Database Forge method create_table() incorrectly accepts field width constraints for MSSQL/SQLSRV integer-type columns.

	Fixed a bug (#4562) - Cache Library didn’t check if Memcached::quit() is available before calling it.

	Fixed a bug (#4563) - Input Library method request_headers() ignores $xss_clean parameter value after first call.

	Fixed a bug (#4605) - Config Library method site_url() stripped trailing slashes from relative URIs passed to it.

	Fixed a bug (#4613) - Email Library failed to send multiple emails via SMTP due to “already authenticated” errors when keep-alive is enabled.

	Fixed a bug (#4633) - Form Validation Library ignored multiple “callback” rules for empty, non-required fields.

	Fixed a bug (#4637) - Database method error() returned FALSE with the ‘oci8’ driver if there was no error.

	Fixed a bug (#4647) - Query Builder method count_all_results() doesn’t take into account GROUP BY clauses while deciding whether to do a subquery or not.

	Fixed a bug where Session Library ‘redis’ driver didn’t properly detect if a connection is properly closed on PHP 5.x.

	Fixed a bug (#4583) - Email Library didn’t properly handle inline attachments in HTML emails.

	Fixed a bug where Database method db_select() didn’t clear metadata cached for the previously used database.

	Fixed a bug (#4675) - File Helper function delete_files() treated symbolic links as regular directories.

	Fixed a bug (#4674) - Database driver ‘dblib’ triggered E_WARNING messages while connecting.

	Fixed a bug (#4678) - Database Forge tried to use unsupported IF NOT EXISTS clause when creating tables on Oracle.

	Fixed a bug (#4691) - File Uploading Library method data() returns wrong ‘raw_name’ when the filename extension is also contained in the raw filename.

	Fixed a bug (#4679) - Input Library method ip_address() errors with a matching $config['proxy_ips'] IPv6 address.

	Fixed a bug (#4695) - User Agent Library didn’t load the config/user_agents.php file when there’s no User-Agent HTTP request header.

	Fixed a bug (#4713) - Query Builder methods insert_batch(), update_batch() could return wrong affected rows count.

	Fixed a bug (#4712) - Email Library doesn’t sent RSET to SMTP servers after a failure and while using keep-alive.

	Fixed a bug (#4724) - Common function is_https() compared the X-Forwarded-Proto HTTP header case-sensitively.

	Fixed a bug (#4725) - Common function remove_invisible_characters() searched case-sensitively for URL-encoded characters.

Version 3.0.6

Release Date: March 21, 2016

	General Changes
	Added a destructor to Cache Library ‘memcached’ driver to ensure that Memcache(d) connections are properly closed.

	Deprecated Form Validation Library method prep_for_form().

Bug fixes for 3.0.6

	Fixed a bug (#4516) - Form Validation Library always accepted empty array inputs.

	Fixed a bug where Session Library allowed accessing $_SESSION values as class properties but isset() didn’t work on them.

	Fixed a bug where Form Validation Library modified the $_POST array when the data being validated was actually provided via set_data().

	Fixed a bug (#4539) - Migration Library applied migrations before validating that all migrations within the requested version range are valid.

	Fixed a bug (#4539) - Migration Library triggered failures for migrations that are out of the requested version range.

Version 3.0.5

Release Date: March 11, 2016

	Core
	Changed Loader Library to allow $autoload['drivers'] assigning with custom property names.

	Changed Loader Library to ignore variables prefixed with ‘_ci_’ when loading views.

	General Changes
	Updated the Session Library to produce friendlier error messages on failures with drivers other than ‘files’.

	Query Builder
	Added a $batch_size parameter to the insert_batch() method (defaults to 100).

	Added a $batch_size parameter to the update_batch() method (defaults to 100).

Bug fixes for 3.0.5

	Fixed a bug (#4391) - Email Library method reply_to() didn’t apply Q-encoding.

	Fixed a bug (#4384) - Pagination Library ignored (possible) cur_page configuration value.

	Fixed a bug (#4395) - Query Builder method count_all_results() still fails if an ORDER BY condition is used.

	Fixed a bug (#4399) - Query Builder methods insert_batch(), update_batch() produced confusing error messages when called with no data and db_debug is enabled.

	Fixed a bug (#4401) - Query Builder breaks WHERE and HAVING conditions that use IN() with strings containing a closing parenthesis.

	Fixed a regression in Form Helper functions set_checkbox(), set_radio() where “checked” inputs aren’t recognized after a form submit.

	Fixed a bug (#4407) - Text Helper function word_censor() doesn’t work under PHP 7 if there’s no custom replacement provided.

	Fixed a bug (#4415) - Form Validation Library rule valid_url didn’t accept URLs with IPv6 addresses enclosed in square brackets under PHP 5 (upstream bug).

	Fixed a bug (#4427) - CAPTCHA Helper triggers an error if the provided character pool is too small.

	Fixed a bug (#4430) - File Uploading Library option file_ext_tolower didn’t work.

	Fixed a bug (#4431) - Query Builder method join() discarded opening parentheses.

	Fixed a bug (#4424) - Session Library triggered a PHP warning when writing a newly created session with the ‘redis’ driver.

	Fixed a bug (#4437) - Inflector Helper function humanize() didn’t escape its $separator parameter while using it in a regular expression.

	Fixed a bug where Session Library didn’t properly handle its locks’ statuses with the ‘memcached’ driver.

	Fixed a bug where Session Library triggered a PHP warning when writing a newly created session with the ‘memcached’ driver.

	Fixed a bug (#4449) - Query Builder method join() breaks conditions containing IS NULL, IS NOT NULL.

	Fixed a bug (#4491) - Session Library didn’t clean-up internal variables for emulated locks with the ‘redis’ driver.

	Fixed a bug where Session Library didn’t clean-up internal variables for emulated locks with the ‘memcached’ driver.

	Fixed a bug where Database transactions didn’t work with the ‘ibase’ driver.

	Fixed a bug (#4475) - Security Library method strip_image_tags() preserves only the first URL character from non-quoted src attributes.

	Fixed a bug where Profiler Library didn’t apply htmlspecialchars() to all displayed inputs.

	Fixed a bug (#4277) - Cache Library triggered fatal errors if accessing the Memcache(d) and/or Redis driver and they are not available on the system.

	Fixed a bug where Cache Library method is_supported() logged an error message when it returns FALSE for the APC and Wincache drivers.

Version 3.0.4

Release Date: January 13, 2016

	General Changes
	Updated Security Library method get_random_bytes() to use PHP 7’s random_bytes() function when possible.

	Updated Encryption Library method create_key() to use PHP 7’s random_bytes() function when possible.

	Database
	Added support for OFFSET-FETCH with Oracle 12c for the ‘oci8’ and ‘pdo/oci’ drivers.

	Added support for the new MYSQLI_CLIENT_SSL_DONT_VERIFY_SERVER_CERT constant from PHP 5.6.16 [https://secure.php.net/ChangeLog-5.php#5.6.16] for the ‘mysqli’ driver.

Bug fixes for 3.0.4

	Fixed a bug (#4212) - Query Builder method count_all_results() could fail if an ORDER BY condition is used.

	Fixed a bug where Form Helper functions set_checkbox(), set_radio() didn’t “uncheck” inputs on a submitted form if the default state is “checked”.

	Fixed a bug (#4217) - Config Library method base_url() didn’t use proper formatting for IPv6 when it falls back to $_SERVER['SERVER_ADDR'].

	Fixed a bug where CAPTCHA Helper entered an infinite loop while generating a random string.

	Fixed a bug (#4223) - Database method simple_query() blindly executes queries without checking if the connection was initialized properly.

	Fixed a bug (#4244) - Email Library could improperly use “unsafe” US-ASCII characters during Quoted-printable encoding.

	Fixed a bug (#4245) - Database Forge couldn’t properly handle SET and ENUM type fields with string values.

	Fixed a bug (#4283) - String Helper function alternator() couldn’t be called without arguments.

	Fixed a bug (#4306) - Database method version() didn’t work properly with the ‘mssql’ driver.

	Fixed a bug (#4039) - Session Library could generate multiple (redundant) warnings in case of a read failure with the ‘files’ driver, due to a bug in PHP.

	Fixed a bug where Session Library didn’t have proper error handling on PHP 5 (due to a PHP bug).

	Fixed a bug (#4312) - Form Validation Library didn’t provide error feedback for failed validation on empty requests.

	Fixed a bug where Database method version() returned banner text instead of only the version number with the ‘oci8’ and ‘pdo/oci’ drivers.

	Fixed a bug (#4331) - Database method error() didn’t really work for connection errors with the ‘mysqli’ driver.

	Fixed a bug (#4343) - Email Library failing with a “More than one ‘from’ person” message when using sendmail.

	Fixed a bug (#4350) - Loader Library method model() logic directly instantiated the CI_Model or MY_Model classes.

	Fixed a bug (#4337) - Database method query() didn’t return a result set for queries with the RETURNING statement on PostgreSQL.

	Fixed a bug (#4362) - Session Library doesn’t properly maintain its state after ID regeneration with the ‘redis’ and ‘memcached’ drivers on PHP 7.

	Fixed a bug (#4349) - Database drivers ‘mysql’, ‘mysqli’, ‘pdo/mysql’ discard other sql_mode flags when “stricton” is enabled.

	Fixed a bug (#4349) - Database drivers ‘mysql’, ‘mysqli’, ‘pdo/mysql’ don’t turn off STRICT_TRANS_TABLES on MySQL 5.7+ when “stricton” is disabled.

	Fixed a bug (#4374) - Session Library with the ‘database’ driver could be affected by userspace Query Builder conditions.

Version 3.0.3

Release Date: October 31, 2015

	Security
	Fixed an XSS attack vector in Security Library method xss_clean().

	Changed Config Library method base_url() to fallback to $_SERVER['SERVER_ADDR'] when $config['base_url'] is empty in order to avoid Host header injections.

	Changed CAPTCHA Helper to use the operating system’s PRNG when possible.

	Database
	Optimized Database Utility method csv_from_result() for speed with larger result sets.

	Added proper return values to Database Transactions method trans_start().

Bug fixes for 3.0.3

	Fixed a bug (#4170) - Database method insert_id() could return an identity from the wrong scope with the ‘sqlsrv’ driver.

	Fixed a bug (#4179) - Session Library doesn’t properly maintain its state after ID regeneration with the ‘database’ driver on PHP 7.

	Fixed a bug (#4173) - Database Forge method add_key() didn’t allow creation of non-PRIMARY composite keys after the “bugfix” for #3968.

	Fixed a bug (#4171) - Database Transactions didn’t work with nesting in methods trans_begin(), trans_commit(), trans_rollback().

	Fixed a bug where Database Transaction methods trans_begin(), trans_commit(), trans_rollback() ignored failures.

	Fixed a bug where all Database Transaction methods returned TRUE while transactions are actually disabled.

	Fixed a bug where common function html_escape() modified keys of its array inputs.

	Fixed a bug (#4192) - Email Library wouldn’t always have proper Quoted-printable encoding due to a bug in PHP’s own mb_mime_encodeheader() function.

Version 3.0.2

Release Date: October 8, 2015

	Security
	Fixed a number of XSS attack vectors in Security Library method xss_clean() (thanks to Frans Rosén from Detectify [https://detectify.com/]).

	General Changes
	Updated the application/config/constants.php file to check if constants aren’t already defined before doing that.

	Changed Loader Library method model() to only apply ucfirst() and not strtolower() to the requested class name.

	Changed Config Library methods base_url(), site_url() to allow protocol-relative URLs by passing an empty string as the protocol.

Bug fixes for 3.0.2

	Fixed a bug (#2284) - Database method protect_identifiers() breaks when Query Builder isn’t enabled.

	Fixed a bug (#4052) - Routing with anonymous functions didn’t work for routes that don’t use regular expressions.

	Fixed a bug (#4056) - Input Library method get_request_header() could not return a value unless request_headers() was called beforehand.

	Fixed a bug where the Database Class entered an endless loop if it fails to connect with the ‘sqlsrv’ driver.

	Fixed a bug (#4065) - Database method protect_identifiers() treats a traling space as an alias separator if the input doesn’t contain ‘ AS ‘.

	Fixed a bug (#4066) - Cache Library couldn’t fallback to a backup driver if the primary one is Memcache(d) or Redis.

	Fixed a bug (#4073) - Email Library method send() could return TRUE in case of an actual failure when an SMTP command fails.

	Fixed a bug (#4086) - Query Builder didn’t apply dbprefix to LIKE conditions if the pattern included spaces.

	Fixed a bug (#4091) - Cache Library ‘file’ driver could be tricked into accepting empty cache item IDs.

	Fixed a bug (#4093) - Query Builder modified string values containing ‘AND’, ‘OR’ while compiling WHERE conditions.

	Fixed a bug (#4096) - Query Builder didn’t apply dbprefix when compiling BETWEEN conditions.

	Fixed a bug (#4105) - Form Validation Library didn’t allow pipe characters inside “bracket parameters” when using a string ruleset.

	Fixed a bug (#4109) - Routing to default_controller didn’t work when enable_query_strings is set to TRUE.

	Fixed a bug (#4044) - Cache Library ‘redis’ driver didn’t catch RedisException that could be thrown during authentication.

	Fixed a bug (#4120) - Database method error() didn’t return error info when called after query() with the ‘mssql’ driver.

	Fixed a bug (#4116) - Pagination Library set the wrong page number on the “data-ci-pagination-page” attribute in generated links.

	Fixed a bug where Pagination Library added the ‘rel=”start”’ attribute to the first displayed link even if it’s not actually linking the first page.

	Fixed a bug (#4137) - Error Handling breaks for the new Error exceptions under PHP 7.

	Fixed a bug (#4126) - Form Validation Library method reset_validation() discarded validation rules from config files.

Version 3.0.1

Release Date: August 7, 2015

	Core
	Added DoS mitigation to hash_pbkdf2() compatibility function.

	Database
	Added list_fields() support for SQLite (‘sqlite3’ and ‘pdo_sqlite’ drivers).

	Added SSL connection support for the ‘mysqli’ and ‘pdo_mysql’ drivers.

	Libraries
	File Uploading Library changes:
	Changed method set_error() to accept a custom log level (defaults to ‘error’).

	Errors “no_file_selected”, “file_partial”, “stopped_by_extension”, “no_file_types”, “invalid_filetype”, “bad_filename” are now logged at the ‘debug’ level.

	Errors “file_exceeds_limit”, “file_exceeds_form_limit”, “invalid_filesize”, “invalid_dimensions” are now logged at the ‘info’ level.

	Added ‘is_resource’ to the available expectations in Unit Testing Library.

	Helpers
	Added Unicode support to URL Helper function url_title().

	Added support for passing the “extra” parameter as an array to all Form Helper functions that use it.

	Core
	Added support for defining a list of specific query parameters in $config['cache_query_string'] for the Output Library.

	Added class existence and inheritance checks to CI_Loader::model() in order to ease debugging in case of name collisions.

Bug fixes for 3.0.1

	Fixed a bug (#3733) - Autoloading of libraries with aliases didn’t work, although it was advertised to.

	Fixed a bug (#3744) - Redis Caching driver didn’t handle authentication failures properly.

	Fixed a bug (#3761) - URL Helper function anchor() didn’t work with array inputs.

	Fixed a bug (#3773) - db_select() didn’t work for MySQL with the PDO Database driver.

	Fixed a bug (#3771) - Form Validation Library was looking for a ‘form_validation_’ prefix when trying to translate field name labels.

	Fixed a bug (#3787) - FTP Library method delete_dir() failed when the target has subdirectories.

	Fixed a bug (#3801) - Output Library method _display_cache() incorrectly looked for the last modified time of a directory instead of the cache file.

	Fixed a bug (#3816) - Form Validation Library treated empty string values as non-existing ones.

	Fixed a bug (#3823) - Session Library drivers Redis and Memcached didn’t properly handle locks that are blocking the request for more than 30 seconds.

	Fixed a bug (#3846) - Image Manipulation Library method image_mirror_gd() didn’t properly initialize its variables.

	Fixed a bug (#3854) - field_data() didn’t work properly with the Oracle (OCI8) database driver.

	Fixed a bug in the Database Utility Class method csv_from_result() didn’t work with a whitespace CSV delimiter.

	Fixed a bug (#3890) - Input Library method get_request_header() treated header names as case-sensitive.

	Fixed a bug (#3903) - Form Validation Library ignored “unnamed” closure validation rules.

	Fixed a bug (#3904) - Form Validation Library ignored “named” callback rules when the field is empty and there’s no ‘required’ rule.

	Fixed a bug (#3922) - Email and XML-RPC libraries could enter an infinite loop due to PHP bug #39598 [https://bugs.php.net/bug.php?id=39598].

	Fixed a bug (#3913) - Cache Library didn’t work with the direct $this->cache->$driver_name->method() syntax with Redis and Memcache(d).

	Fixed a bug (#3932) - Query Builder didn’t properly compile WHERE and HAVING conditions for field names that end with “and”, “or”.

	Fixed a bug in Query Builder where delete() didn’t properly work on multiple tables with a WHERE condition previously set via where().

	Fixed a bug (#3952) - Database method list_fields() didn’t work with SQLite3.

	Fixed a bug (#3955) - Cache Library methods increment() and decrement() ignored the ‘key_prefix’ setting.

	Fixed a bug (#3963) - Unit Testing Library wrongly tried to translate filenames, line numbers and notes values in test results.

	Fixed a bug (#3965) - File Uploading Library ignored the “encrypt_name” setting when “overwrite” is enabled.

	Fixed a bug (#3968) - Database Forge method add_key() didn’t treat array inputs as composite keys unless it’s a PRIMARY KEY.

	Fixed a bug (#3715) - Pagination Library could generate broken link when a protocol-relative base URL is used.

	Fixed a bug (#3828) - Output Library method delete_cache() couldn’t delete index page caches.

	Fixed a bug (#3704) - Database method stored_procedure() in the ‘oci8’ driver didn’t properly bind parameters.

	Fixed a bug (#3778) - Download Helper function force_download() incorrectly sent a Pragma response header.

	Fixed a bug (#3752) - $routing['directory'] overrides were not properly handled and always resulted in a 404 “Not Found” error.

	Fixed a bug (#3279) - Query Builder methods update() and get_compiled_update() did double escaping on the table name if it was provided via from().

	Fixed a bug (#3991) - $config['rewrite_short_tags'] never worked due to function_exists('eval') always returning FALSE.

	Fixed a bug where the File Uploading Library library will not properly configure its maximum file size unless the input value is of type integer.

	Fixed a bug (#4000) - Pagination Library didn’t enable “rel” attributes by default if no attributes-related config options were used.

	Fixed a bug (#4004) - URI Class didn’t properly parse the request URI if it contains a colon followed by a digit.

	Fixed a bug in Query Builder where the $escape parameter for some methods only affected field names.

	Fixed a bug (#4012) - Query Builder methods where_in(), or_where_in(), where_not_in(), or_where_not_in() didn’t take into account previously cached WHERE conditions when query cache is in use.

	Fixed a bug (#4015) - Email Library method set_header() didn’t support method chaining, although it was advertised.

	Fixed a bug (#4027) - Routing with HTTP verbs only worked if the route request method was declared in all-lowercase letters.

	Fixed a bug (#4026) - Database Transactions always rollback if any previous query() call fails.

	Fixed a bug (#4023) - String Helper function increment_string() didn’t escape its $separator parameter.

Version 3.0.0

Release Date: March 30, 2015

	License
	CodeIgniter has been relicensed with the MIT License [http://opensource.org/licenses/MIT], eliminating its old proprietary licensing.

	General Changes
	PHP 5.1.6 is no longer supported. CodeIgniter now requires PHP 5.2.4 and recommends PHP 5.4+ or newer to be used.

	Changed filenaming convention (class file names now must be Ucfirst and everything else in lowercase).

	Changed the default database driver to ‘mysqli’ (the old ‘mysql’ driver is DEPRECATED).

	$_SERVER['CI_ENV'] can now be set to control the ENVIRONMENT constant.

	Added an optional backtrace to php-error template.

	Added Android to the list of user agents.

	Added Windows 7, Windows 8, Windows 8.1, Android, Blackberry, iOS and PlayStation 3 to the list of user platforms.

	Added Fennec (Firefox for mobile) to the list of mobile user agents.

	Ability to log certain error types, not all under a threshold.

	Added support for pem, p10, p12, p7a, p7c, p7m, p7r, p7s, crt, crl, der, kdb, rsa, cer, sst, csr Certs to mimes.php.

	Added support for pgp, gpg, zsh and cdr files to mimes.php.

	Added support for 3gp, 3g2, mp4, wmv, f4v, vlc Video files to mimes.php.

	Added support for m4a, aac, m4u, xspf, au, ac3, flac, ogg, wma Audio files to mimes.php.

	Added support for kmz and kml (Google Earth) files to mimes.php.

	Added support for ics Calendar files to mimes.php.

	Added support for rar, jar and 7zip archives to mimes.php.

	Updated support for xml (‘application/xml’) and xsl (‘application/xml’, ‘text/xsl’) files in mimes.php.

	Updated support for doc files in mimes.php.

	Updated support for docx files in mimes.php.

	Updated support for php files in mimes.php.

	Updated support for zip files in mimes.php.

	Updated support for csv files in mimes.php.

	Added Romanian, Greek, Vietnamese and Cyrilic characters in application/config/foreign_characters.php.

	Changed logger to only chmod when file is first created.

	Removed previously deprecated SHA1 Library.

	Removed previously deprecated use of $autoload['core'] in application/config/autoload.php.
Only entries in $autoload['libraries'] are auto-loaded now.

	Removed previously deprecated EXT constant.

	Updated all classes to be written in PHP 5 style, with visibility declarations and no var usage for properties.

	Added an Exception handler.

	Moved error templates to application/views/errors/ and made the path configurable via $config['error_views_path'].

	Added support non-HTML error templates for CLI applications.

	Moved the Log class to application/core/

	Global config files are loaded first, then environment ones. Environment config keys overwrite base ones, allowing to only set the keys we want changed per environment.

	Changed detection of $view_folder so that if it’s not found in the current path, it will now also be searched for under the application folder.

	Path constants BASEPATH, APPPATH and VIEWPATH are now (internally) defined as absolute paths.

	Updated email validation methods to use filter_var() instead of PCRE.

	Changed environment defaults to report all errors in development and only fatal ones in testing, production but only display them in development.

	Updated ip_address database field lengths from 16 to 45 for supporting IPv6 address on Trackback Library and Captcha Helper.

	Removed cheatsheets and quick_reference PDFs from the documentation.

	Added availability checks where usage of dangerous functions like eval() and exec() is required.

	Added support for changing the file extension of log files using $config['log_file_extension'].

	Added support for turning newline standardization on/off via $config['standardize_newlines'] and set it to FALSE by default.

	Added configuration setting $config['composer_autoload'] to enable loading of a Composer [https://getcomposer.org] auto-loader.

	Removed the automatic conversion of ‘programmatic characters’ to HTML entities from the URI Library.

	Changed log messages that say a class or file was loaded to “info” level instead of “debug”, so that they don’t pollute log files when $config['log_threshold'] is set to 2 (debug).

	Helpers
	Date Helper changes include:
	Added an optional third parameter to timespan() that constrains the number of time units displayed.

	Added an optional parameter to timezone_menu() that allows more attributes to be added to the generated select tag.

	Added function date_range() that generates a list of dates between a specified period.

	Deprecated standard_date(), which now just uses the native date() with DateTime constants [http://php.net/manual/en/class.datetime.php#datetime.constants.types].

	Changed now() to work with all timezone strings supported by PHP.

	Changed days_in_month() to use the native cal_days_in_month() PHP function, if available.

	URL Helper changes include:
	Deprecated separator options dash and underscore for function url_title() (they are only aliases for ‘-‘ and ‘_’ respectively).

	url_title() will now trim extra dashes from beginning and end.

	anchor_popup() will now fill the href attribute with the URL and its JS code will return FALSE instead.

	Added JS window name support to the anchor_popup() function.

	Added support for menubar attribute to the anchor_popup().

	Added support (auto-detection) for HTTP/1.1 response codes 303, 307 in redirect().

	Changed redirect() to choose the refresh method only on IIS servers, instead of all servers on Windows (when auto is used).

	Changed anchor(), anchor_popup(), and redirect() to support protocol-relative URLs (e.g. //ellislab.com/codeigniter).

	HTML Helper changes include:
	Added more doctypes.

	Changed application and environment config files to be loaded in a cascade-like manner.

	Changed doctype() to cache and only load once the doctypes array.

	Deprecated functions nbs() and br(), which are just aliases for the native str_repeat() with and
 respectively.

	Inflector Helper changes include:
	Changed humanize() to allow passing an input separator as its second parameter.

	Changed humanize() and underscore() to utilize mbstring [http://php.net/mbstring], if available.

	Changed plural() and singular() to avoid double pluralization and support more words.

	Download Helper changes include:
	Added an optional third parameter to force_download() that enables/disables sending the actual file MIME type in the Content-Type header (disabled by default).

	Added a work-around in force_download() for a bug Android <= 2.1, where the filename extension needs to be in uppercase.

	Added support for reading from an existing file path by passing NULL as the second parameter to force_download() (useful for large files and/or safely transmitting binary data).

	Form Helper changes include:
	form_dropdown() will now also take an array for unity with other form helpers.

	form_prep() is now DEPRECATED and only acts as an alias for common function html_escape().

	set_value() will now also accept a third argument, allowing to turn off HTML escaping of the value.

	Security Helper changes include:
	do_hash() now uses PHP’s native hash() function (supporting more algorithms) and is deprecated.

	strip_image_tags() is now an alias for the same method in the Security Library.

	Smiley Helper changes include:
	Deprecated the whole helper as too specific for CodeIgniter.

	Removed previously deprecated function js_insert_smiley().

	Changed application and environment config files to be loaded in a cascade-like manner.

	The smileys array is now cached and loaded only once.

	File Helper changes include:
	set_realpath() can now also handle file paths as opposed to just directories.

	Added an optional paramater to delete_files() to enable it to skip deleting files such as .htaccess and index.html.

	Deprecated function read_file() - it’s just an alias for PHP’s native file_get_contents().

	String Helper changes include:
	Deprecated function repeater() - it’s just an alias for PHP’s native str_repeat().

	Deprecated function trim_slashes() - it’s just an alias for PHP’s native trim() (with a slash as its second argument).

	Deprecated randomization type options unique and encrypt for funcion random_string() (they are only aliases for md5 and sha1 respectively).

	CAPTCHA Helper changes include:
	Added word_length and pool options to allow customization of the generated word.

	Added colors configuration to allow customization for the background, border, text and grid colors.

	Added filename to the returned array elements.

	Updated to use imagepng() in case that imagejpeg() isn’t available.

	Added font_size option to allow customization of font size.

	Added img_id option to set id attribute of captcha image.

	Text Helper changes include:
	Changed the default tag for use in highlight_phrase() to <mark> (formerly).

	Changed character_limiter(), word_wrap() and ellipsize() to utilize mbstring [http://php.net/mbstring] or iconv [http://php.net/iconv], if available.

	Directory Helper directory_map() will now append DIRECTORY_SEPARATOR to directory names in the returned array.

	Array Helper element() and elements() now return NULL instead of FALSE when the required elements don’t exist.

	Language Helper lang() now accepts an optional list of additional HTML attributes.

	Deprecated the Email Helper as its valid_email(), send_email() functions are now only aliases for PHP native functions filter_var() and mail() respectively.

	Database
	DEPRECATED the ‘mysql’, ‘sqlite’, ‘mssql’ and ‘pdo/dblib’ (also known as ‘pdo/mssql’ or ‘pdo/sybase’) drivers.

	Added dsn configuration setting for drivers that support DSN strings (PDO, PostgreSQL, Oracle, ODBC, CUBRID).

	Added schema configuration setting (defaults to public) for drivers that might need it (currently used by PostgreSQL and ODBC).

	Added save_queries configuration setting to application/config/database.php (defaults to TRUE).

	Removed autoinit configuration setting as it doesn’t make sense to instantiate the database class but not connect to the database.

	Added subdrivers support (currently only used by PDO).

	Added an optional database name parameter to db_select().

	Removed protect_identifiers() and renamed internal method _protect_identifiers() to it instead - it was just an alias.

	Renamed internal method _escape_identifiers() to escape_identifiers().

	Updated escape_identifiers() to accept an array of fields as well as strings.

	MySQL and MySQLi drivers now require at least MySQL version 5.1.

	Added a $persistent parameter to db_connect() and changed db_pconnect() to be an alias for db_connect(TRUE).

	db_set_charset() now only requires one parameter (collation was only needed due to legacy support for MySQL versions prior to 5.1).

	db_select() will now always (if required by the driver) be called by db_connect() instead of only when initializing.

	Replaced the _error_message() and _error_number() methods with error(), which returns an array containing the last database error code and message.

	Improved version() implementation so that drivers that have a native function to get the version number don’t have to be defined in the core DB_driver class.

	Added capability for packages to hold config/database.php config files.

	Added MySQL client compression support.

	Added encrypted connections support (for mysql, sqlsrv and PDO with sqlsrv).

	Removed Loader Class from Database error tracing to better find the likely culprit.

	Added support for SQLite3 database driver.

	Added Interbase/Firebird database support via the ibase driver.

	Added ODBC support for create_database(), drop_database() and drop_table() in Database Forge.

	Added support to binding arrays as IN() sets in query().

	Query Builder changes include:
	Renamed the Active Record class to Query Builder to remove confusion with the Active Record design pattern.

	Added the ability to insert objects with insert_batch().

	Added new methods that return the SQL string of queries without executing them: get_compiled_select(), get_compiled_insert(), get_compiled_update(), get_compiled_delete().

	Added an optional parameter that allows to disable escaping (useful for custom fields) for methods join(), order_by(), where_in(), or_where_in(), where_not_in(), or_where_not_in(), insert(), insert_batch().

	Added support for join() with multiple conditions.

	Added support for USING in join().

	Added support for EXISTS in where().

	Added seed values support for random ordering with order_by(seed, 'RANDOM').

	Changed limit() to ignore NULL values instead of always casting to integer.

	Changed offset() to ignore empty values instead of always casting to integer.

	Methods insert_batch() and update_batch() now return an integer representing the number of rows affected by them.

	Methods where(), or_where(), having() and or_having() now convert trailing = and <>, != SQL operators to IS NULL and IS NOT NULL respectively when the supplied comparison value is NULL.

	Added method chaining support to reset_query(), start_cache(), stop_cache() and flush_cache().

	Added an optional second parameter to count_all_results() to disable resetting of QB values.

	Database Results changes include:
	Added a constructor to the DB_result class and moved all driver-specific properties and logic out of the base DB_driver class to allow better abstraction.

	Added method unbuffered_row() for fetching a row without prefetching the whole result (consume less memory).

	Renamed former method _data_seek() to data_seek() and made it public.

	Improved support for the MySQLi driver, including:
	OOP style usage of the PHP extension is now used, instead of the procedural aliases.

	Server version checking is now done via mysqli::$server_info instead of running an SQL query.

	Added persistent connections support for PHP >= 5.3.

	Added support for configuring socket pipe connections.

	Added support for backup() in Database Utilities.

	Changed methods trans_begin(), trans_commit() and trans_rollback() to use the PHP API instead of sending queries.

	Improved support of the PDO driver, including:
	Added support for create_database(), drop_database() and drop_table() in Database Forge.

	Added support for list_fields() in Database Results.

	Subdrivers are now isolated from each other instead of being in one large class.

	Improved support of the PostgreSQL driver, including:
	pg_version() is now used to get the database version number, when possible.

	Added db_set_charset() support.

	Added support for optimize_table() in Database Utilities (rebuilds table indexes).

	Added boolean data type support in escape().

	Added update_batch() support.

	Removed limit() and order_by() support for UPDATE and DELETE queries as PostgreSQL does not support those features.

	Added a work-around for dead persistent connections to be re-created after a database restart.

	Changed db_connect() to include the (new) schema value into Postgre’s search_path session variable.

	pg_escape_literal() is now used for escaping strings, if available.

	Improved support of the CUBRID driver, including:
	Added DSN string support.

	Added persistent connections support.

	Improved list_databases() in Database Utility (until now only the currently used database was returned).

	Improved support of the MSSQL and SQLSRV drivers, including:
	Added random ordering support.

	Added support for optimize_table() in Database Utility.

	Added escaping with QUOTE_IDENTIFIER setting detection.

	Added port handling support for UNIX-based systems (MSSQL driver).

	Added OFFSET support for SQL Server 2005 and above.

	Added db_set_charset() support (MSSQL driver).

	Added a scrollable property to enable configuration of the cursor to use (SQLSRV driver).

	Added support and auto-detection for the SQLSRV_CURSOR_CLIENT_BUFFERED scrollable cursor flag (SQLSRV driver).

	Changed default behavior to not use SQLSRV_CURSOR_STATIC due to performance issues (SQLSRV driver).

	Improved support of the Oracle (OCI8) driver, including:
	Added DSN string support (Easy Connect and TNS).

	Added support for drop_table() in Database Forge.

	Added support for list_databases() in Database Utilities.

	Generally improved for speed and cleaned up all of its components.

	num_rows() is now only called explicitly by the developer and no longer re-executes statements.

	Improved support of the SQLite driver, including:
	Added support for replace() in Query Builder.

	Added support for drop_table() in Database Forge.

	Database Forge changes include:
	Added an optional second parameter to drop_table() that allows adding the IF EXISTS condition, which is no longer the default.

	Added support for passing a custom database object to the loader.

	Added support for passing custom table attributes (such as ENGINE for MySQL) to create_table().

	Added support for usage of the FIRST clause in add_column() for MySQL and CUBRID.

	Added partial support for field comments (MySQL, PostgreSQL, Oracle).

	Deprecated add_column()’s third method. AFTER clause should now be added to the field definition array instead.

	Overall improved support for all of the drivers.

	Database Utility changes include:
	Added support for passing a custom database object to the loader.

	Modified the class to no longer extend Database Forge, which has been a deprecated behavior for awhile.

	Overall improved support for all of the drivers.

	Added foreign_key_checks option to MySQL/MySQLi backup, allowing statement to disable/re-enable foreign key checks to be inserted into the backup output.

	Libraries
	Added a new Encryption Library to replace the old, largely insecure Encrypt Library.

	Encrypt Library changes include:
	Deprecated the library in favor of the new Encryption Library.

	Added support for hashing algorithms other than SHA1 and MD5.

	Removed previously deprecated sha1() method.

	Session Library changes include:
	Completely re-written the library to use self-contained drivers via $config['sess_driver'].

	Added ‘files’, ‘database’, ‘redis’ and ‘memcached’ drivers (using ‘files’ by default).

	Added $config['sess_save_path'] setting to specify where the session data is stored, depending on the driver.

	Dropped support for storing session data in cookies (which renders $config['sess_encrypt_cookie'] useless and is therefore also removed).

	Dropped official support for storing session data in databases other than MySQL and PostgreSQL.

	Changed table structure for the ‘database’ driver.

	Added a new tempdata feature that allows setting userdata items with expiration time (mark_as_temp(), tempdata(), set_tempdata(), unset_tempdata()).

	Changed method keep_flashdata() to also accept an array of keys.

	Changed methods userdata(), flashdata() to return an array of all userdata/flashdata when no parameter is passed.

	Deprecated method all_userdata() - it is now just an alias for userdata() with no parameters.

	Added method has_userdata() that verifies the existence of a userdata item.

	Added debug level log messages for key events in the session validation process.

	Dropped support for the sess_match_useragent option.

	File Uploading Library changes include:
	Added method chaining support.

	Added support for using array notation in file field names.

	Added max_filename_increment and file_ext_tolower configuration settings.

	Added min_width and min_height configuration settings for images.

	Added mod_mime_fix configuration setting to disable suffixing multiple file extensions with an underscore.

	Added the possibility pass allowed_types as an array.

	Added an $index parameter to the method data().

	Added a $reset parameter to method initialize().

	Removed method clean_file_name() and its usage in favor of Security Library’s sanitize_filename().

	Removed method mimes_types().

	Changed CI_Upload::_prep_filename() to simply replace all (but the last) dots in the filename with underscores, instead of suffixing them.

	Calendar Library changes include:
	Added method chaining support.

	Added configuration to generate days of other months instead of blank cells.

	Added auto-configuration for next_prev_url if it is empty and show_prev_next is set to TRUE.

	Added support for templating via an array in addition to the encoded string.

	Changed method get_total_days() to be an alias for Date Helper days_in_month().

	Cart Library changes include:
	Deprecated the library as too specific for CodeIgniter.

	Added method remove() to remove a cart item, updating with quantity of 0 seemed like a hack but has remained to retain compatibility.

	Added method get_item() to enable retrieving data for a single cart item.

	Added unicode support for product names.

	Added support for disabling product name strictness via the $product_name_safe property.

	Changed insert() method to auto-increment quantity for an item when inserted twice instead of resetting it.

	Changed update() method to support updating all properties attached to an item and not to require ‘qty’.

	Image Manipulation Library changes include:
	The initialize() method now only sets existing class properties.

	Added support for 3-length hex color values for wm_font_color and wm_shadow_color properties, as well as validation for them.

	Class properties wm_font_color, wm_shadow_color and wm_use_drop_shadow are now protected, to avoid breaking the text_watermark() method if they are set manually after initialization.

	If property maintain_ratio is set to TRUE, image_reproportion() now doesn’t need both width and height to be specified.

	Property maintain_ratio is now taken into account when resizing images using ImageMagick library.

	Added support for maintaining transparency for PNG images when watermarking.

	Added a file_permissions setting.

	Form Validation Library changes include:
	Added method error_array() to return all error messages as an array.

	Added method set_data() to set an alternative data array to be validated instead of the default $_POST.

	Added method reset_validation() which resets internal validation variables in case of multiple validation routines.

	Added support for setting error delimiters in the config file via $config['error_prefix'] and $config['error_suffix'].

	Internal method _execute() now considers input data to be invalid if a specified rule is not found.

	Removed method is_numeric() as it exists as a native PHP function and _execute() will find and use that (the is_numeric rule itself is deprecated since 1.6.1).

	Native PHP functions used as rules can now accept an additional parameter, other than the data itself.

	Updated method set_rules() to accept an array of rules as well as a string.

	Fields that have empty rules set no longer run through validation (and therefore are not considered erroneous).

	Added rule differs to check if the value of a field differs from the value of another field.

	Added rule valid_url.

	Added rule in_list to check if the value of a field is within a given list.

	Added support for named parameters in error messages.

	Language line keys must now be prefixed with form_validation_.

	Added rule alpha_numeric_spaces.

	Added support for custom error messages per field rule.

	Added support for callable rules when they are passed as an array.

	Added support for non-ASCII domains in valid_email rule, depending on the Intl extension.

	Changed the debug message about an error message not being set to include the rule name it is about.

	Caching Library changes include:
	Added Wincache driver.

	Added Redis driver.

	Added a key_prefix option for cache IDs.

	Updated driver is_supported() methods to log at the “debug” level.

	Added option to store raw values instead of CI-formatted ones (APC, Memcache).

	Added atomic increment/decrement feature via increment(), decrement().

	E-mail Library changes include:
	Added a custom filename parameter to attach() as $this->email->attach($filename, $disposition, $newname).

	Added possibility to send attachment as buffer string in attach() as $this->email->attach($buffer, $disposition, $newname, $mime).

	Added possibility to attach remote files by passing a URL.

	Added method attachment_cid() to enable embedding inline attachments into HTML.

	Added dsn (delivery status notification) option.

	Renamed method _set_header() to set_header() and made it public to enable adding custom headers.

	Successfully sent emails will automatically clear the parameters.

	Added a return_path parameter to the from() method.

	Removed the second parameter (character limit) from internal method _prep_quoted_printable() as it is never used.

	Internal method _prep_quoted_printable() will now utilize the native quoted_printable_encode(), imap_8bit() functions (if available) when CRLF is set to “rn”.

	Default charset now relies on the global $config['charset'] setting.

	Removed unused protected method _get_ip() (Input Library’s ip_address() should be used anyway).

	Internal method _prep_q_encoding() now utilizes PHP’s mbstring and iconv extensions (when available) and no longer has a second ($from) argument.

	Added an optional parameter to print_debugger() to allow specifying which parts of the message should be printed (‘headers’, ‘subject’, ‘body’).

	Added SMTP keepalive option to avoid opening the connection for each send() call. Accessible as $smtp_keepalive.

	Public method set_header() now filters the input by removing all “\r” and “\n” characters.

	Added support for non-ASCII domains in valid_email(), depending on the Intl extension.

	Pagination Library changes include:
	Deprecated usage of the “anchor_class” setting (use the new “attributes” setting instead).

	Added method chaining support to initialize() method.

	Added support for the anchor “rel” attribute.

	Added support for setting custom attributes.

	Added support for language translations of the first_link, next_link, prev_link and last_link values.

	Added support for $config['num_links'] = 0 configuration.

	Added $config['reuse_query_string'] to allow automatic repopulation of query string arguments, combined with normal URI segments.

	Added $config['use_global_url_suffix'] to allow overriding the library ‘suffix’ value with that of the global $config['url_suffix'] setting.

	Removed the default from a number of the configuration variables.

	Profiler Library changes include:
	Database object names are now being displayed.

	The sum of all queries running times in seconds is now being displayed.

	Added support for displaying the HTTP DNT (“Do Not Track”) header.

	Added support for displaying $_FILES.

	Migration Library changes include:
	Added support for timestamp-based migrations (enabled by default).

	Added $config['migration_type'] to allow switching between sequential and timestamp migrations.

	XML-RPC Library changes include:
	Added the ability to use a proxy.

	Added Basic HTTP authentication support.

	User Agent Library changes include:
	Added check to detect if robots are pretending to be mobile clients (helps with e.g. Google indexing mobile website versions).

	Added method parse() to allow parsing a custom user-agent string, different from the current visitor’s.

	HTML Table Library changes include:
	Added method chaining support.

	Added support for setting table class defaults in a config file.

	Zip Library changes include:
	Method read_file() can now also alter the original file path/name while adding files to an archive.

	Added support for changing the compression level.

	Trackback Library method receive() will now utilize iconv() if it is available but mb_convert_encoding() is not.

	Core
	Routing changes include:
	Added support for multiple levels of controller directories.

	Added support for per-directory default_controller and 404_override classes.

	Added possibility to route requests using HTTP verbs.

	Added possibility to route requests using callbacks.

	Added a new reserved route (translate_uri_dashes) to allow usage of dashes in the controller and method URI segments.

	Deprecated methods fetch_directory(), fetch_class() and fetch_method() in favor of their respective public properties.

	Removed method _set_overrides() and moved its logic to the class constructor.

	URI Library changes include:
	Added conditional PCRE UTF-8 support to the “invalid URI characters” check and removed the preg_quote() call from it to allow more flexibility.

	Renamed method _filter_uri() to filter_uri().

	Changed method filter_uri() to accept by reference and removed its return value.

	Changed private methods to protected so that MY_URI can override them.

	Renamed internal method _parse_cli_args() to _parse_argv().

	Renamed internal method _detect_uri() to _parse_request_uri().

	Changed _parse_request_uri() to accept absolute URIs for compatibility with HTTP/1.1 as per RFC2616 <http://www.ietf.org/rfc/rfc2616.txt>.

	Added protected method _parse_query_string() to URI paths in the the QUERY_STRING value, like _parse_request_uri() does.

	Changed URI string detection logic to always default to REQUEST_URI unless configured otherwise or under CLI.

	Removed methods _remove_url_suffix(), _explode_segments() and moved their logic into _set_uri_string().

	Removed method _fetch_uri_string() and moved its logic into the class constructor.

	Removed method _reindex_segments().

	Loader Library changes include:
	Added method chaining support.

	Added method get_vars() to the Loader to retrieve all variables loaded with $this->load->vars().

	_ci_autoloader() is now a protected method.

	Added autoloading of drivers with $autoload['drivers'].

	$config['rewrite_short_tags'] now has no effect when using PHP 5.4 as <?= will always be available.

	Changed method config() to return whatever CI_Config::load() returns instead of always being void.

	Added support for library and model aliasing on autoload.

	Changed method is_loaded() to ask for the (case sensitive) library name instead of its instance name.

	Removed $_base_classes property and unified all class data in $_ci_classes instead.

	Added method clear_vars() to allow clearing the cached variables for views.

	Input Library changes include:
	Deprecated the $config['global_xss_filtering'] setting.

	Added method() to retrieve $_SERVER['REQUEST_METHOD'].

	Added support for arrays and network addresses (e.g. 192.168.1.1/24) for use with the proxy_ips setting.

	Added method input_stream() to aid in using php://input stream data such as one passed via PUT, DELETE and PATCH requests.

	Changed method valid_ip() to use PHP’s native filter_var() function.

	Changed internal method _sanitize_globals() to skip enforcing reversal of register_globals in PHP 5.4+, where this functionality no longer exists.

	Changed methods get(), post(), get_post(), cookie(), server(), user_agent() to return NULL instead of FALSE when no value is found.

	Changed default value of the $xss_clean parameter to NULL for all methods that utilize it, the default value is now determined by the $config['global_xss_filtering'] setting.

	Added method post_get() and changed get_post() to search in GET data first. Both methods’ names now properly match their GET/POST data search priorities.

	Changed method _fetch_from_array() to parse array notation in field name.

	Changed method _fetch_from_array() to allow retrieving multiple fields at once.

	Added an option for _clean_input_keys() to return FALSE instead of terminating the whole script.

	Deprecated the is_cli_request() method, it is now an alias for the new is_cli() common function.

	Added an $xss_clean parameter to method user_agent() and removed the $user_agent property.

	Added property $raw_input_stream to access php://input data.

	Common functions changes include:
	Added function get_mimes() to return the application/config/mimes.php array.

	Added support for HTTP code 303 (“See Other”) in set_status_header().

	Removed redundant conditional to determine HTTP server protocol in set_status_header().

	Renamed _exception_handler() to _error_handler() and replaced it with a real exception handler.

	Changed _error_handler() to respect php.ini display_errors setting.

	Added function is_https() to check if a secure connection is used.

	Added function is_cli() to replace the CI_Input::is_cli_request() method.

	Added function function_usable() to work around a bug in Suhosin <http://www.hardened-php.net/suhosin/>.

	Removed the third ($php_error) argument from function log_message().

	Changed internal function load_class() to accept a constructor parameter instead of (previously unused) class name prefix.

	Removed default parameter value of is_php().

	Added a second argument $double_encode to html_escape().

	Changed function config_item() to return NULL instead of FALSE when no value is found.

	Changed function set_status_header() to return immediately when run under CLI.

	Output Library changes include:
	Added a second argument to method set_content_type() that allows setting the document charset as well.

	Added methods get_content_type() and get_header().

	Added method delete_cache().

	Added configuration option $config['cache_query_string'] to enable taking the query string into account when caching.

	Changed caching behavior to compress the output before storing it, if $config['compress_output'] is enabled.

	Config Library changes include:
	Changed site_url() method to accept an array as well.

	Removed internal method _assign_to_config() and moved its implementation to CodeIgniter.php instead.

	item() now returns NULL instead of FALSE when the required config item doesn’t exist.

	Added an optional second parameter to both base_url() and site_url() that allows enforcing of a protocol different than the one in the base_url configuration setting.

	Added HTTP “Host” header character validation to prevent cache poisoning attacks when base_url auto-detection is used.

	Security Library changes include:
	Added $config['csrf_regeneration'], which makes CSRF token regeneration optional.

	Added $config['csrf_exclude_uris'], allowing for exclusion of URIs from the CSRF protection (regular expressions are supported).

	Added method strip_image_tags().

	Added method get_random_bytes() and switched CSRF & XSS token generation to use it.

	Modified method sanitize_filename() to read a public $filename_bad_chars property for getting the invalid characters list.

	Return status code of 403 instead of a 500 if CSRF protection is enabled but a token is missing from a request.

	Language Library changes include:
	Changed method load() to filter the language name with ctype_alpha().

	Changed method load() to also accept an array of language files.

	Added an optional second parameter to method line() to disable error logging for line keys that were not found.

	Language files are now loaded in a cascading style with the one in system/ always loaded and overridden afterwards, if another one is found.

	Hooks Library changes include:
	Added support for closure hooks (or anything that is_callable() returns TRUE for).

	Renamed method _call_hook() to call_hook().

	Class instances are now stored in order to maintain their state.

	UTF-8 Library changes include:
	UTF8_ENABLED now requires only one of Multibyte String [http://php.net/mbstring] or iconv [http://php.net/iconv] to be available instead of both.

	Changed method clean_string() to utilize mb_convert_encoding() if it is available.

	Renamed method _is_ascii() to is_ascii() and made it public.

	Log Library changes include:
	Added a $config['log_file_permissions'] setting.

	Changed the library constructor to try to create the log_path directory if it doesn’t exist.

	Added support for microseconds (“u” date format character) in $config['log_date_format'].

	Added compatibility layers for:
	Multibyte String [http://php.net/mbstring] (limited support).

	Hash [http://php.net/hash] (hash_equals(), hash_pbkdf2()).

	Password Hashing [http://php.net/password].

	Standard Functions ``array_column()`, array_replace(), array_replace_recursive(), hex2bin(), quoted_printable_encode().

	Removed CI_CORE boolean constant from CodeIgniter.php (no longer Reactor and Core versions).

	Added support for HTTP-Only cookies with new config option cookie_httponly (default FALSE).

	$config['time_reference'] now supports all timezone strings supported by PHP.

	Fatal PHP errors are now also passed to _error_handler(), so they can be logged.

Bug fixes for 3.0

	Fixed a bug where unlink() raised an error if cache file did not exist when you try to delete it.

	Fixed a bug (#181) - a typo in the form validation language file.

	Fixed a bug (#159, #163) - Query Builder nested transactions didn’t work properly due to $_trans_depth not being incremented.

	Fixed a bug (#737, #75) - Pagination anchor class was not set properly when using initialize method.

	Fixed a bug (#419) - URL Helper auto_link() didn’t recognize URLs that come after a word boundary.

	Fixed a bug (#724) - Form Validation Library rule is_unique didn’t check if a database connection exists.

	Fixed a bug (#647) - Zip Library internal method _get_mod_time() didn’t suppress possible “stat failed” errors generated by filemtime().

	Fixed a bug (#157, #174) - Image Manipulation Library method clear() didn’t completely clear properties.

	Fixed a bug where Database Forge method create_table() with PostgreSQL database could lead to fetching the whole table.

	Fixed a bug (#795) - Form Helper form_open() didn’t add the default form method and accept-charset when an empty array is passed to it.

	Fixed a bug (#797) - Date Helper timespan() was using incorrect seconds for year and month.

	Fixed a bug in Cart Library method contents() where if called without a TRUE (or equal) parameter, it would fail due to a typo.

	Fixed a bug (#406) - SQLSRV DB driver not returning resource on db_pconnect().

	Fixed a bug in Image Manipulation Library method gd_loaded() where it was possible for the script execution to end or a PHP E_WARNING message to be emitted.

	Fixed a bug in the Pagination library where when use_page_numbers=TRUE previous link and page 1 link did not have the same url.

	Fixed a bug (#561) - errors in XML-RPC Library were not properly escaped.

	Fixed a bug (#904) - Loader Library method initialize() caused a PHP Fatal error to be triggered if error level E_STRICT is used.

	Fixed a hosting edge case where an empty $_SERVER['HTTPS'] variable would evaluate to ‘on’.

	Fixed a bug (#154) - Session Library method sess_update() caused the session to be destroyed on pages where multiple AJAX requests were executed at once.

	Fixed a possible bug in Input Libary method is_ajax_request() where some clients might not send the X-Requested-With HTTP header value exactly as ‘XmlHttpRequest’.

	Fixed a bug (#1039) - Database Utilities internal method _backup() method failed for the ‘mysql’ driver due to a table name not being escaped.

	Fixed a bug (#1070) - CI_DB_driver::initialize() didn’t set a character set if a database is not selected.

	Fixed a bug (#177) - Form Validation Library method set_value() didn’t set the default value if POST data is NULL.

	Fixed a bug (#68, #414) - :Oracle’s escape_str() didn’t properly escape LIKE wild characters.

	Fixed a bug (#81) - ODBC’s list_fields() and field_data() methods skipped the first column due to odbc_field_*() functions’ index starting at 1 instead of 0.

	Fixed a bug (#129) - ODBC’s num_rows() method returned -1 in some cases, due to not all subdrivers supporting the odbc_num_rows() function.

	Fixed a bug (#153) - E_NOTICE being generated by getimagesize() in the File Uploading Library.

	Fixed a bug (#611) - SQLSRV’s error handling methods used to issue warnings when there’s no actual error.

	Fixed a bug (#1036) - is_write_type() method in the Database Library didn’t return TRUE for RENAME queries.

	Fixed a bug in PDO’s _version() method where it used to return the client version as opposed to the server one.

	Fixed a bug in PDO’s insert_id() method where it could’ve failed if it’s used with Postgre versions prior to 8.1.

	Fixed a bug in CUBRID’s affected_rows() method where a connection resource was passed to cubrid_affected_rows() instead of a result.

	Fixed a bug (#638) - db_set_charset() ignored its arguments and always used the configured charset instead.

	Fixed a bug (#413) - Oracle’s error handling methods used to only return connection-related errors.

	Fixed a bug (#1101) - Database Result method field_data() for ‘mysql’, ‘mysqli’ drivers was implemented as if it was handling a DESCRIBE result instead of the actual result set.

	Fixed a bug in Oracle’s Database Forge method _create_table() where it failed with AUTO_INCREMENT as it’s not supported.

	Fixed a bug (#1080) - when using the SMTP protocol, Email Library method send() was returning TRUE even if the connection/authentication against the server failed.

	Fixed a bug (#306) - ODBC’s insert_id() method was calling non-existent function odbc_insert_id(), which resulted in a fatal error.

	Fixed a bug in Oracle’s Database Result implementation where the cursor ID passed to it was always NULL.

	Fixed a bug (#64) - Regular expression in DB_query_builder.php failed to handle queries containing SQL bracket delimiters in the JOIN condition.

	Fixed a bug in the Session Library where a PHP E_NOTICE error was triggered by _unserialize() due to results from databases such as MSSQL and Oracle being space-padded on the right.

	Fixed a bug (#501) - Form Validation Library method set_rules() depended on count($_POST) instead of actually checking if the request method ‘POST’ before aborting.

	Fixed a bug (#136) - PostgreSQL and MySQL’s escape_str() method didn’t properly escape LIKE wild characters.

	Fixed a bug in Loader Library method library() where some PHP versions wouldn’t execute the class constructor.

	Fixed a bug (#88) - An unexisting property was used for configuration of the Memcache cache driver.

	Fixed a bug (#14) - Database Forge method create_database() didn’t utilize the configured database character set.

	Fixed a bug (#23, #1238) - Database Caching method delete_all() used to delete .htaccess and index.html files, which is a potential security risk.

	Fixed a bug in Trackback Library method validate_url() where it didn’t actually do anything, due to input not being passed by reference.

	Fixed a bug (#11, #183, #863) - Form Validation Library method _execute() silently continued to the next rule, if a rule method/function is not found.

	Fixed a bug (#122) - routed URI string was being reported incorrectly in sub-directories.

	Fixed a bug (#1241) - Zip Library method read_dir() wasn’t compatible with Windows.

	Fixed a bug (#306) - ODBC driver didn’t have an _insert_batch() method, which resulted in fatal error being triggered when insert_batch() is used with it.

	Fixed a bug in MSSQL and SQLSrv’s _truncate() where the TABLE keyword was missing.

	Fixed a bug in PDO’s trans_commit() method where it failed due to an erroneous property name.

	Fixed a bug (#798) - Query Builder method update() used to ignore LIKE conditions that were set with like().

	Fixed a bug in Oracle’s and MSSQL’s delete() methods where an erroneous SQL statement was generated when used with limit().

	Fixed a bug in SQLSRV’s delete() method where like() and limit() conditions were ignored.

	Fixed a bug (#1265) - Database connections were always closed, regardless of the ‘pconnect’ option value.

	Fixed a bug (#128) - Language Library did not correctly keep track of loaded language files.

	Fixed a bug (#1349) - File Uploading Library method get_extension() returned the original filename when it didn’t have an actual extension.

	Fixed a bug (#1273) - Query Builder method set_update_batch() generated an E_NOTICE message.

	Fixed a bug (#44, #110) - File Uploading Library method clean_file_name() didn’t clear ‘!’ and ‘#’ characters.

	Fixed a bug (#121) - Database Results method row() returned an array when there’s no actual result to be returned.

	Fixed a bug (#319) - SQLSRV’s affected_rows() method failed due to a scrollable cursor being created for write-type queries.

	Fixed a bug (#356) - Database driver ‘postgre’ didn’t have an _update_batch() method, which resulted in fatal error being triggered when update_batch() is used with it.

	Fixed a bug (#784, #862) - Database Forge method create_table() failed on SQLSRV/MSSQL when used with ‘IF NOT EXISTS’.

	Fixed a bug (#1419) - Driver Library had a static variable that was causing an error.

	Fixed a bug (#1411) - the Email Library used its own short list of MIMEs instead the one from config/mimes.php.

	Fixed a bug where php.ini setting magic_quotes_runtime wasn’t turned off for PHP 5.3 (where it is indeed deprecated, but not non-existent).

	Fixed a bug (#666) - Output Library method set_content_type() didn’t set the document charset.

	Fixed a bug (#784, #861) - Database Forge method create_table() used to accept constraints for MSSQL/SQLSRV integer-type columns.

	Fixed a bug (#706) - SQLSRV/MSSSQL Database drivers didn’t escape field names.

	Fixed a bug (#1452) - Query Builder method protect_identifiers() didn’t properly detect identifiers with spaces in their names.

	Fixed a bug where Query Builder method protect_identifiers() ignored its extra arguments when the value passed to it is an array.

	Fixed a bug where Query Builder internal method _has_operator() didn’t detect BETWEEN.

	Fixed a bug where Query Builder method join() failed with identifiers containing dashes.

	Fixed a bug (#1264) - Database Forge and Database Utilities didn’t update/reset the databases and tables list cache when a table or a database is created, dropped or renamed.

	Fixed a bug (#7) - Query Builder method join() only escaped one set of conditions.

	Fixed a bug (#1321) - CI_Exceptions couldn’t find the errors/ directory in some cases.

	Fixed a bug (#1202) - Encrypt Library encode_from_legacy() didn’t set back the encrypt mode on failure.

	Fixed a bug (#145) - Database Class method compile_binds() failed when the bind marker was present in a literal string within the query.

	Fixed a bug in Query Builder method protect_identifiers() where if passed along with the field names, operators got escaped as well.

	Fixed a bug (#10) - URI Library internal method _detect_uri() failed with paths containing a colon.

	Fixed a bug (#1387) - Query Builder method from() didn’t escape table aliases.

	Fixed a bug (#520) - Date Helper function :php:func:nice_date() failed when the optional second parameter is not passed.

	Fixed a bug (#318) - Profiling Library setting query_toggle_count was not settable as described in the manual.

	Fixed a bug (#938) - Config Library method site_url() added a question mark to the URL string when query strings are enabled even if it already existed.

	Fixed a bug (#999) - Config Library method site_url() always appended $config['url_suffix'] to the end of the URL string, regardless of whether a query string exists in it.

	Fixed a bug where URL Helper function anchor_popup() ignored the attributes argument if it is not an array.

	Fixed a bug (#1328) - Form Validation Library didn’t properly check the type of the form fields before processing them.

	Fixed a bug (#79) - Form Validation Library didn’t properly validate array fields that use associative keys or have custom indexes.

	Fixed a bug (#427) - Form Validation Library method strip_image_tags() was an alias to a non-existent method.

	Fixed a bug (#1545) - Query Builder method limit() wasn’t executed properly under Oracle.

	Fixed a bug (#1551) - Date Helper function standard_date() didn’t properly format W3C and ATOM standard dates.

	Fixed a bug where Query Builder method join() escaped literal values as if they were fields.

	Fixed a bug (#135) - PHP Error logging was impossible without the errors being displayed.

	Fixed a bug (#1613) - Form Helper functions form_multiselect(), form_dropdown() didn’t properly handle empty array option groups.

	Fixed a bug (#1605) - Pagination Library produced incorrect previous and next link values.

	Fixed a bug in SQLSRV’s affected_rows() method where an erroneous function name was used.

	Fixed a bug (#1000) - Change syntax of $view_file to $_ci_view_file to prevent being overwritten by application.

	Fixed a bug (#1757) - Directory Helper function directory_map() was skipping files and directories named ‘0’.

	Fixed a bug (#1789) - Database Library method escape_str() escaped quote characters in LIKE conditions twice under MySQL.

	Fixed a bug (#395) - Unit Testing Library method result() didn’t properly check array result columns when called from report().

	Fixed a bug (#1692) - Database Class method display_error() didn’t properly trace the possible error source on Windows systems.

	Fixed a bug (#1745) - Database Class method is_write_type() didn’t return TRUE for LOAD queries.

	Fixed a bug (#1765) - Database Class didn’t properly detect connection errors for the ‘mysqli’ driver.

	Fixed a bug (#1257) - Query Builder used to (unnecessarily) group FROM clause contents, which breaks certain queries and is invalid for some databases.

	Fixed a bug (#1709) - Email headers were broken when using long email subjects and rn as CRLF.

	Fixed a bug where MB_ENABLED constant was only declared if UTF8_ENABLED was set to TRUE.

	Fixed a bug where the Session Library accepted cookies with last_activity values being in the future.

	Fixed a bug (#1897) - Email Library triggered PHP E_WARNING errors when mail protocol used and to() is never called.

	Fixed a bug (#1409) - Email Library didn’t properly handle multibyte characters when applying Q-encoding to headers.

	Fixed a bug where Email Library ignored its wordwrap setting while handling alternative messages.

	Fixed a bug (#1476, #1909) - Pagination Library didn’t take into account actual routing when determining the current page.

	Fixed a bug (#1766) - Query Builder didn’t always take into account the dbprefix setting.

	Fixed a bug (#779) - URI Class didn’t always trim slashes from the uri_string as shown in the documentation.

	Fixed a bug (#134) - Database Caching method delete_cache() didn’t work in some cases due to cachedir not being initialized properly.

	Fixed a bug (#191) - Loader Library ignored attempts for (re)loading databases to get_instance()->db even when the old database connection is dead.

	Fixed a bug (#1255) - User Agent Library method is_referral() only checked if $_SERVER['HTTP_REFERER'] exists.

	Fixed a bug (#1146) - Download Helper function force_download() incorrectly sent Cache-Control directives pre-check and post-check to Internet Explorer.

	Fixed a bug (#1811) - URI Library didn’t properly cache segments for uri_to_assoc() and ruri_to_assoc().

	Fixed a bug (#1506) - Form Helpers set empty name attributes.

	Fixed a bug (#59) - Query Builder method count_all_results() ignored the DISTINCT clause.

	Fixed a bug (#1624) - Form Validation Library rule matches didn’t property handle array field names.

	Fixed a bug (#1630) - Form Helper function set_value() didn’t escape HTML entities.

	Fixed a bug (#142) - Form Helper function form_dropdown() didn’t escape HTML entities in option values.

	Fixed a bug (#50) - Session Library unnecessarily stripped slashed from serialized data, making it impossible to read objects in a namespace.

	Fixed a bug (#658) - Routing wildcard :any didn’t work as advertised and matched multiple URI segments instead of all characters within a single segment.

	Fixed a bug (#1938) - Email Library removed multiple spaces inside a pre-formatted plain text message.

	Fixed a bug (#122) - URI Library method ruri_string() didn’t include a directory if one is used.

	Fixed a bug - Routing Library didn’t properly handle default_controller in a subdirectory when a method is also specified.

	Fixed a bug (#953) - post_controller_constructor hook wasn’t called with a 404_override.

	Fixed a bug (#1220) - Profiler Library didn’t display information for database objects that are instantiated inside models.

	Fixed a bug (#1978) - Directory Helper function directory_map()’s return array didn’t make a distinction between directories and file indexes when a directory with a numeric name is present.

	Fixed a bug (#777) - Loader Library didn’t look for helper extensions in added package paths.

	Fixed a bug (#18) - APC Cache driver didn’t (un)serialize data, resulting in failure to store objects.

	Fixed a bug (#188) - Unit Testing Library filled up logs with error messages for non-existing language keys.

	Fixed a bug (#113) - Form Validation Library didn’t properly handle empty fields that were specified as an array.

	Fixed a bug (#2061) - Routing Class didn’t properly sanitize directory, controller and function triggers with enable_query_strings set to TRUE.

	Fixed a bug - SQLSRV didn’t support escape_like_str() or escaping an array of values.

	Fixed a bug - Database Results method list_fields() didn’t reset its field pointer for the ‘mysql’, ‘mysqli’ and ‘mssql’ drivers.

	Fixed a bug (#2211) - Migration Library extensions couldn’t execute CI_Migration::__construct().

	Fixed a bug (#2255) - Email Library didn’t apply smtp_timeout to socket reads and writes.

	Fixed a bug (#2239) - Email Library improperly handled the Subject when used with bcc_batch_mode resulting in E_WARNING messages and an empty Subject.

	Fixed a bug (#2234) - Query Builder didn’t reset JOIN cache for write-type queries.

	Fixed a bug (#2298) - Database Results method next_row() kept returning the last row, allowing for infinite loops.

	Fixed a bug (#2236, #2639) - Form Helper functions set_value(), set_select(), set_radio(), set_checkbox() didn’t parse array notation for keys if the rule was not present in the Form Validation Library.

	Fixed a bug (#2353) - Query Builder erroneously prefixed literal strings with dbprefix.

	Fixed a bug (#78) - Cart Library didn’t allow non-English letters in product names.

	Fixed a bug (#77) - Database Class didn’t properly handle the transaction “test mode” flag.

	Fixed a bug (#2380) - URI Routing method fetch_method() returned ‘index’ if the requested method name matches its controller name.

	Fixed a bug (#2388) - Email Library used to ignore attachment errors, resulting in broken emails being sent.

	Fixed a bug (#2498) - Form Validation Library rule valid_base64 only checked characters instead of actual validity.

	Fixed a bug (#2425) - OCI8 database driver method stored_procedure() didn’t log an error unless db_debug was set to TRUE.

	Fixed a bug (#2490) - Database Class method query() returning boolean instead of a result object for PostgreSQL-specific INSERT INTO … RETURNING statements.

	Fixed a bug (#249) - Cache Library didn’t properly handle Memcache(d) configurations with missing options.

	Fixed a bug (#180) - config_item() didn’t take into account run-time configuration changes.

	Fixed a bug (#2551) - Loader Library method library() didn’t properly check if a class that is being loaded already exists.

	Fixed a bug (#2560) - Form Helper function form_open() set the ‘method=”post”’ attribute only if the passed attributes equaled an empty string.

	Fixed a bug (#2585) - Query Builder methods min(), max(), avg(), sum() didn’t escape field names.

	Fixed a bug (#2590) - Common function log_message() didn’t actually cache the CI_Log class instance.

	Fixed a bug (#2609) - Common function get_config() optional argument was only effective on first function call. Also, it can now add items, in addition to updating existing items.

	Fixed a bug in the ‘postgre’ database driver where the connection ID wasn’t passed to pg_escape_string().

	Fixed a bug (#33) - Script execution was terminated when an invalid cookie key was encountered.

	Fixed a bug (#2691) - nested database transactions could end in a deadlock when an error is encountered with db_debug set to TRUE.

	Fixed a bug (#2515) - _exception_handler() used to send the 200 “OK” HTTP status code and didn’t stop script exection even on fatal errors.

	Fixed a bug - Redis Caching driver didn’t handle connection failures properly.

	Fixed a bug (#2756) - Database Class executed the MySQL-specific SET SESSION sql_mode query for all drivers when the ‘stricton’ option is set.

	Fixed a bug (#2579) - Query Builder “no escape” functionality didn’t work properly with query cache.

	Fixed a bug (#2237) - Parser Library failed if the same tag pair is used more than once within a template.

	Fixed a bug (#2143) - Form Validation Library didn’t check for rule groups named in a controller/method manner when trying to load from a config file.

	Fixed a bug (#2762) - Hooks Class didn’t properly check if the called class/function exists.

	Fixed a bug (#148) - Input Library internal method _clean_input_data() assumed that it data is URL-encoded, stripping certain character sequences from it.

	Fixed a bug (#346) - with $config['global_xss_filtering'] turned on, the $_GET, $_POST, $_COOKIE and $_SERVER superglobals were overwritten during initialization time, resulting in XSS filtering being either performed twice or there was no possible way to get the original data, even though options for this do exist.

	Fixed an edge case (#555) - User Agent Library reported an incorrect version Opera 10+ due to a non-standard user-agent string.

	Fixed a bug (#133) - Text Helper ascii_to_entities() stripped the last character if it happens to be in the extended ASCII group.

	Fixed a bug (#2822) - fwrite() was used incorrectly throughout the whole framework, allowing incomplete writes when writing to a network stream and possibly a few other edge cases.

	Fixed a bug where User Agent Library methods accept_charset() and accept_lang() didn’t properly parse HTTP headers that contain spaces.

	Fixed a bug where default_controller was called instad of triggering a 404 error if the current route is in a controller directory.

	Fixed a bug (#2737) - XML-RPC Library used objects as array keys, which triggered E_NOTICE messages.

	Fixed a bug (#2771) - Security Library method xss_clean() didn’t take into account HTML5 entities.

	Fixed a bug (#2856) - ODBC method affected_rows() passed an incorrect value to odbc_num_rows().

	Fixed a bug (#43) Image Manipulation Library method text_watermark() didn’t properly determine watermark placement.

	Fixed a bug where HTML Table Library ignored its auto_heading setting if headings were not already set.

	Fixed a bug (#2364) - Pagination Library appended the query string (if used) multiple times when there are successive calls to create_links() with no initialize() in between them.

	Partially fixed a bug (#261) - UTF-8 class method clean_string() generating log messages and/or not producing the desired result due to an upstream bug in iconv.

	Fixed a bug where CI_Xmlrpcs::parseRequest() could fail if $HTTP_RAW_POST_DATA is not populated.

	Fixed a bug in Zip Library internal method _get_mod_time() where it was not parsing result returned by filemtime().

	Fixed a bug (#3161) - Cache Library methods increment(), decrement() didn’t auto-create non-existent items when using redis and/or file storage.

	Fixed a bug (#3189) - Parser Library used double replacement on key->value pairs, exposing a potential template injection vulnerability.

	Fixed a bug (#3573) - Email Library violated RFC5321 [https://tools.ietf.org/rfc/rfc5321.txt] by sending ‘localhost.localdomain’ as a hostname.

	Fixed a bug (#3572) - CI_Security::_remove_evil_attributes() failed for large-sized inputs due to pcre.backtrack_limit and didn’t properly match HTML tags.

Version 2.2.3

Release Date: July 14, 2015

	Security
	Removed a fallback to mysql_escape_string() in the ‘mysql’ database driver (escape_str() method) when there’s no active database connection.

Version 2.2.2

Release Date: April 15, 2015

	General Changes
	Added HTTP “Host” header character validation to prevent cache poisoning attacks when base_url auto-detection is used.

	Added FSCommand and seekSegmentTime to the “evil attributes” list in CI_Security::xss_clean().

Bug fixes for 2.2.2

	Fixed a bug (#3665) - CI_Security::entity_decode() triggered warnings under some circumstances.

Version 2.2.1

Release Date: January 22, 2015

	General Changes
	Improved security in xss_clean().

	Updated timezones in Date Helper.

Bug fixes for 2.2.1

	Fixed a bug (#3094) - Internal method CI_Input::_clean_input_data() breaks encrypted session cookies.

	Fixed a bug (#2268) - Security Library method xss_clean() didn’t properly match JavaScript events.

	Fixed a bug (#3309) - Security Library method xss_clean() used an overly-invasive pattern to strip JS event handlers.

	Fixed a bug (#2771) - Security Library method xss_clean() didn’t take into account HTML5 entities.

	Fixed a bug (#73) - Security Library method sanitize_filename() could be tricked by an XSS attack.

	Fixed a bug (#2681) - Security Library method entity_decode() used the PREG_REPLACE_EVAL flag, which is deprecated since PHP 5.5.

	Fixed a bug (#3302) - Internal function get_config() triggered an E_NOTICE message on PHP 5.6.

	Fixed a bug (#2508) - Config Library didn’t properly detect if the current request is via HTTPS.

	Fixed a bug (#3314) - SQLSRV Database driver’s method count_all() didn’t escape the supplied table name.

	Fixed a bug (#3404) - MySQLi Database driver’s method escape_str() had a wrong fallback to mysql_escape_string() when there was no active connection.

	Fixed a bug in the Session Library where session ID regeneration occurred during AJAX requests.

Version 2.2.0

Release Date: June 2, 2014

	General Changes
	Security: Encrypt Library method xor_encode() has been removed. The Encrypt Class now requires the Mcrypt extension to be installed.

	Security: The Session Library now uses HMAC authentication instead of a simple MD5 checksum.

Bug fixes for 2.2.0

	Fixed an edge case (#2583) in the Email Library where Suhosin <http://www.hardened-php.net/suhosin/> blocked messages sent via mail() due to trailing newspaces in headers.

	Fixed a bug (#696) - make oci_execute() calls inside num_rows() non-committing, since they are only there to reset which row is next in line for oci_fetch calls and thus don’t need to be committed.

	Fixed a bug (#2689) - Database Force methods create_table(), drop_table() and rename_table() produced broken SQL for tge ‘sqlsrv’ driver.

	Fixed a bug (#2427) - PDO Database driver didn’t properly check for query failures.

	Fixed a bug in the Session Library where authentication was not performed for encrypted cookies.

Version 2.1.4

Release Date: July 8, 2013

	General Changes
	Improved security in xss_clean().

Bug fixes for 2.1.4

	Fixed a bug (#1936) - Migration Library method latest() had a typo when retrieving language values.

	Fixed a bug (#2021) - Migration Library configuration file was mistakenly using Windows style line feeds.

	Fixed a bug (#1273) - E_NOTICE being generated by Query Builder’s set_update_batch() method.

	Fixed a bug (#2337) - Email Library method print_debugger() didn’t apply htmlspecialchars() to headers.

Version 2.1.3

Release Date: October 8, 2012

	Core
	Common function is_loaded() now returns a reference.

Bug fixes for 2.1.3

	Fixed a bug (#1543) - File-based Caching method get_metadata() used a non-existent array key to look for the TTL value.

	Fixed a bug (#1314) - Session Library method sess_destroy() didn’t destroy the userdata array.

	Fixed a bug (#804) - Profiler library was trying to handle objects as strings in some cases, resulting in E_WARNING messages being issued by htmlspecialchars().

	Fixed a bug (#1699) - Migration Library ignored the $config['migration_path'] setting.

	Fixed a bug (#227) - Input Library allowed unconditional spoofing of HTTP clients’ IP addresses through the HTTP_CLIENT_IP header.

	Fixed a bug (#907) - Input Library ignored HTTP_X_CLUSTER_CLIENT_IP and HTTP_X_CLIENT_IP headers when checking for proxies.

	Fixed a bug (#940) - csrf_verify() used to set the CSRF cookie while processing a POST request with no actual POST data, which resulted in validating a request that should be considered invalid.

	Fixed a bug (#499) - Security Library where a CSRF cookie was created even if $config['csrf_protection'] is set to FALSE.

	Fixed a bug (#1715) - Input Library triggered csrf_verify() on CLI requests.

	Fixed a bug (#751) - Query Builder didn’t properly handle cached field escaping overrides.

	Fixed a bug (#2004) - Query Builder didn’t properly merge cached calls with non-cache ones.

Version 2.1.2

Release Date: June 29, 2012

	General Changes
	Improved security in xss_clean().

Version 2.1.1

Release Date: June 12, 2012

	General Changes
	Fixed support for docx, xlsx files in mimes.php.

	Libraries
	Further improved MIME type detection in the File Uploading Library.

	Added support for IPv6 to the Input Library.

	Added support for the IP format parameter to the Form Validation Library.

	Helpers
	url_title() performance and output improved. You can now use any string as the word delimiter, but ‘dash’ and ‘underscore’ are still supported.

Bug fixes for 2.1.1

	Fixed a bug (#697) - A wrong array key was used in the File Uploading Library to check for mime-types.

	Fixed a bug - form_open() compared $action against site_url() instead of base_url().

	Fixed a bug - CI_Upload::_file_mime_type() could’ve failed if mime_content_type() is used for the detection and returns FALSE.

	Fixed a bug (#538) - Windows paths were ignored when using the Image Manipulation Library to create a new file.

	Fixed a bug - When database caching was enabled, $this->db->query() checked the cache before binding variables which resulted in cached queries never being found.

	Fixed a bug - CSRF cookie value was allowed to be any (non-empty) string before being written to the output, making code injection a risk.

	Fixed a bug (#726) - PDO put a ‘dbname’ argument in its connection string regardless of the database platform in use, which made it impossible to use SQLite.

	Fixed a bug - CI_DB_pdo_driver::num_rows() was not returning properly value with SELECT queries, cause it was relying on PDOStatement::rowCount().

	Fixed a bug (#1059) - CI_Image_lib::clear() was not correctly clearing all necessary object properties, namely width and height.

Version 2.1.0

Release Date: November 14, 2011

	General Changes
	Callback validation rules can now accept parameters like any other
validation rule.

	Added html_escape() to Common
functions to escape HTML output
for preventing XSS.

	Helpers
	Added increment_string() to String
Helper to turn “foo” into “foo-1”
or “foo-1” into “foo-2”.

	Altered form helper - made action on form_open_multipart helper
function call optional. Fixes (#65)

	url_title() will now trim extra dashes from beginning and end.

	Improved speed of String Helper’s random_string() method

	Database
	Added a CUBRID [http://www.cubrid.org/] driver to the Database
Driver. Thanks to the CUBRID team for
supplying this patch.

	Added a PDO driver to the Database Driver.

	Typecast limit and offset in the Database
Driver to integers to avoid possible
injection.

	Added additional option ‘none’ for the optional third argument for
$this->db->like() in the Database
Driver.

	Added $this->db->insert_batch() support to the OCI8 (Oracle) driver.

	Added failover if the main connections in the config should fail

	Libraries
	Changed $this->cart->insert() in the Cart
Library to return the Row ID if a single
item was inserted successfully.

	Added support to set an optional parameter in your callback rules
of validation using the Form Validation
Library.

	Added a Migration library to assist with applying
incremental updates to your database schema.

	Driver children can be located in any package path.

	Added max_filename_increment config setting for Upload library.

	Added is_unique to the Form Validation library.

	Added $config[‘use_page_numbers’] to the Pagination library, which enables real page numbers in the URI.

	Added TLS and SSL Encryption for SMTP.

	Core
	Changed private functions in CI_URI to protected so MY_URI can
override them.

	Removed CI_CORE boolean constant from CodeIgniter.php (no longer Reactor and Core versions).

Bug fixes for 2.1.0

	Fixed #378 Robots identified as regular browsers by the User Agent
class.

	If a config class was loaded first then a library with the same name
is loaded, the config would be ignored.

	Fixed a bug (Reactor #19) where 1) the 404_override route was being
ignored in some cases, and 2) auto-loaded libraries were not
available to the 404_override controller when a controller existed
but the requested method did not.

	Fixed a bug (Reactor #89) where MySQL export would fail if the table
had hyphens or other non alphanumeric/underscore characters.

	Fixed a bug (#105) that stopped query errors from being logged unless database debugging was enabled

	Fixed a bug (#160) - Removed unneeded array copy in the file cache
driver.

	Fixed a bug (#150) - field_data() now correctly returns column
length.

	Fixed a bug (#8) - load_class() now looks for core classes in
APPPATH first, allowing them to be replaced.

	Fixed a bug (#24) - ODBC database driver called incorrect parent in __construct().

	Fixed a bug (#85) - OCI8 (Oracle) database escape_str() function did not escape correct.

	Fixed a bug (#344) - Using schema found in Saving Session Data to a Database, system would throw error “user_data does not have a default value” when deleting then creating a session.

	Fixed a bug (#112) - OCI8 (Oracle) driver didn’t pass the configured database character set when connecting.

	Fixed a bug (#182) - OCI8 (Oracle) driver used to re-execute the statement whenever num_rows() is called.

	Fixed a bug (#82) - WHERE clause field names in the DB update_string() method were not escaped, resulting in failed queries in some cases.

	Fixed a bug (#89) - Fix a variable type mismatch in DB display_error() where an array is expected, but a string could be set instead.

	Fixed a bug (#467) - Suppress warnings generated from get_magic_quotes_gpc() (deprecated in PHP 5.4)

	Fixed a bug (#484) - First time _csrf_set_hash() is called, hash is never set to the cookie (in Security.php).

	Fixed a bug (#60) - Added _file_mime_type() method to the File Uploading Library in order to fix a possible MIME-type injection.

	Fixed a bug (#537) - Support for all wav type in browser.

	Fixed a bug (#576) - Using ini_get() function to detect if apc is enabled or not.

	Fixed invalid date time format in Date helper and XMLRPC library.

	Fixed a bug (#200) - MySQL queries would be malformed after calling db->count_all() then db->get().

Version 2.0.3

Release Date: August 20, 2011

	Security

	An improvement was made to the MySQL and MySQLi drivers to prevent
exposing a potential vector for SQL injection on sites using
multi-byte character sets in the database client connection.
An incompatibility in PHP versions < 5.2.3 and MySQL < 5.0.7 with
mysql_set_charset() creates a situation where using multi-byte
character sets on these environments may potentially expose a SQL
injection attack vector. Latin-1, UTF-8, and other “low ASCII”
character sets are unaffected on all environments.

If you are running or considering running a multi-byte character
set for your database connection, please pay close attention to
the server environment you are deploying on to ensure you are not
vulnerable.

	General Changes

	Fixed a bug where there was a misspelling within a code comment in
the index.php file.

	Added Session Class userdata to the output profiler. Additionally,
added a show/hide toggle on HTTP Headers, Session Data and Config
Variables.

	Removed internal usage of the EXT constant.

	Visual updates to the welcome_message view file and default error
templates. Thanks to danijelb [https://bitbucket.org/danijelb]
for the pull request.

	Added insert_batch() function to the PostgreSQL database driver.
Thanks to epallerols for the patch.

	Added “application/x-csv” to mimes.php.

	Fixed a bug where Email library
attachments with a “.” in the name would using invalid MIME-types.

	Helpers

	Added an optional third parameter to heading() which allows adding
html attributes to the rendered heading tag.

	form_open() now only adds a hidden (Cross-site Reference Forgery)
protection field when the form’s action is internal and is set to
the post method. (Reactor #165)

	Re-worked plural() and singular() functions in the Inflector
helper to support considerably
more words.

	Libraries

	Altered Session to use a longer match against the user_agent
string. See upgrade notes if using database sessions.

	Added $this->db->set_dbprefix() to the Database
Driver.

	Changed $this->cart->insert() in the Cart
Library to return the Row ID if a single
item was inserted successfully.

	Added $this->load->get_var() to the Loader
library to retrieve global vars set with
$this->load->view() and $this->load->vars().

	Changed $this->db->having() to insert quotes using escape() rather
than escape_str().

Bug fixes for 2.0.3

	Added ENVIRONMENT to reserved constants. (Reactor #196)

	Changed server check to ensure SCRIPT_NAME is defined. (Reactor #57)

	Removed APPPATH.’third_party’ from the packages autoloader to negate
needless file stats if no packages exist or if the developer does not
load any other packages by default.

	Fixed a bug (Reactor #231) where Sessions Library database table
example SQL did not contain an index on last_activity. See Upgrade
Notes.

	Fixed a bug (Reactor #229) where the Sessions Library example SQL in
the documentation contained incorrect SQL.

	Fixed a bug (Core #340) where when passing in the second parameter to
$this->db->select(), column names in subsequent queries would not be
properly escaped.

	Fixed issue #199 - Attributes passed as string does not include a
space between it and the opening tag.

	Fixed a bug where the method $this->cart->total_items() from Cart
Library now returns the sum of the quantity
of all items in the cart instead of your total count.

	Fixed a bug where not setting ‘null’ when adding fields in db_forge
for mysql and mysqli drivers would default to NULL instead of NOT
NULL as the docs suggest.

	Fixed a bug where using $this->db->select_max(),
$this->db->select_min(), etc could throw notices. Thanks to w43l for
the patch.

	Replace checks for STDIN with php_sapi_name() == ‘cli’ which on the
whole is more reliable. This should get parameters in crontab
working.

Version 2.0.2

Release Date: April 7, 2011
Hg Tag: v2.0.2

	General changes
	The Security library was moved to
the core and is now loaded automatically. Please remove your
loading calls.

	The CI_SHA class is now deprecated. All supported versions of PHP
provide a sha1() function.

	constants.php will now be loaded from the environment folder if
available.

	Added language key error logging

	Made Environment Support optional. Comment out or delete the
constant to stop environment checks.

	Added Environment Support for Hooks.

	Added CI_ Prefix to the Cache driver.

	Added CLI usage documentation.

	Helpers
	Removed the previously deprecated dohash() from the Security
helper; use do_hash() instead.

	Changed the ‘plural’ function so that it doesn’t ruin the
captalization of your string. It also take into consideration
acronyms which are all caps.

	Database
	$this->db->count_all_results() will now return an integer
instead of a string.

Bug fixes for 2.0.2

	Fixed a bug (Reactor #145) where the Output Library had
parse_exec_vars set to protected.

	Fixed a bug (Reactor #80) where is_really_writable would create an
empty file when on Windows or with safe_mode enabled.

	Fixed various bugs with User Guide.

	Added is_cli_request() method to documentation for Input
class.

	Added form_validation_lang entries for decimal, less_than and
greater_than.

	Fixed issue #153 Escape Str Bug in MSSQL driver.

	Fixed issue #172 Google Chrome 11 posts incorrectly when action is empty.

Version 2.0.1

Release Date: March 15, 2011
Hg Tag: v2.0.1

	General changes
	Added $config[‘cookie_secure’] to the config file to allow
requiring a secure (HTTPS) in order to set cookies.

	Added the constant CI_CORE to help differentiate between Core:
TRUE and Reactor: FALSE.

	Added an ENVIRONMENT constant in index.php, which affects PHP
error reporting settings, and optionally, which configuration
files are loaded (see below). Read more on the Handling
Environments page.

	Added support for
environment-specific
configuration files.

	Libraries
	Added decimal, less_than and greater_than rules to the Form
validation Class.

	Input Class methods post() and get()
will now return a full array if the first argument is not
provided.

	Secure cookies can now be made with the set_cookie() helper and
Input Class method.

	Added set_content_type() to Output
Class to set the output Content-Type
HTTP header based on a MIME Type or a config/mimes.php array key.

	Output Class will now support method
chaining.

	Helpers
	Changed the logic for form_open() in Form
helper. If no value is passed it will
submit to the current URL.

Bug fixes for 2.0.1

	CLI requests can now be run from any folder, not just when CD’ed next
to index.php.

	Fixed issue #41: Added audio/mp3 mime type to mp3.

	Fixed a bug (Core #329) where the file caching driver referenced the
incorrect cache directory.

	Fixed a bug (Reactor #69) where the SHA1 library was named
incorrectly.

Version 2.0.0

Release Date: January 28, 2011
Hg Tag: v2.0.0

	General changes
	PHP 4 support is removed. CodeIgniter now requires PHP 5.1.6.

	Scaffolding, having been deprecated for a number of versions, has
been removed.

	Plugins have been removed, in favor of Helpers. The CAPTCHA plugin
has been converted to a Helper and
documented. The JavaScript
calendar plugin was removed due to the ready availability of great
JavaScript calendars, particularly with jQuery.

	Added new special Library type:
Drivers.

	Added full query-string support. See the config file for details.

	Moved the application folder outside of the system folder.

	Moved system/cache and system/logs directories to the application
directory.

	Added routing overrides to the main index.php file, enabling the
normal routing to be overridden on a per “index” file basis.

	Added the ability to set config values (or override config values)
directly from data set in the main index.php file. This allows a
single application to be used with multiple front controllers,
each having its own config values.

	Added $config[‘directory_trigger’] to the config file so that a
controller sub-directory can be specified when running _GET
strings instead of URI segments.

	Added ability to set “Package” paths - specific paths where the
Loader and Config classes should try to look first for a requested
file. This allows distribution of sub-applications with their own
libraries, models, config files, etc. in a single “package”
directory. See the Loader class
documentation for more details.

	In-development code is now hosted at BitBucket .

	Removed the deprecated Validation Class.

	Added CI_ Prefix to all core classes.

	Package paths can now be set in application/config/autoload.php.

	Upload library file_name can
now be set without an extension, the extension will be taken from
the uploaded file instead of the given name.

	In Database Forge the name can be omitted
from $this->dbforge->modify_column()’s 2nd param if you aren’t
changing the name.

	$config[‘base_url’] is now empty by default and will guess what
it should be.

	Enabled full Command Line Interface compatibility with
config[‘uri_protocol’] = ‘CLI’;.

	Libraries
	Added a Cache driver with APC,
memcached, and file-based support.

	Added $prefix, $suffix and $first_url properties to Pagination
library.

	Added the ability to suppress first, previous, next, last, and
page links by setting their values to FALSE in the Pagination
library.

	Added Security library, which now
contains the xss_clean function, filename_security function and
other security related functions.

	Added CSRF (Cross-site Reference Forgery) protection to the
Security library.

	Added $parse_exec_vars property to Output library.

	Added ability to enable / disable individual sections of the
Profiler

	Added a wildcard option $config[‘allowed_types’] = ‘*’ to the
File Uploading Class.

	Added an ‘object’ config variable to the XML-RPC Server library so
that one can specify the object to look for requested methods,
instead of assuming it is in the $CI superobject.

	Added “is_object” into the list of unit tests capable of being
run.

	Table library will generate an empty cell with a blank string, or
NULL value.

	Added ability to set tag attributes for individual cells in the
Table library

	Added a parse_string() method to the Parser
Class.

	Added HTTP headers and Config information to the
Profiler output.

	Added Chrome and Flock to the list of detectable browsers by
browser() in the User Agent Class.

	The Unit Test Class now has an
optional “notes” field available to it, and allows for discrete
display of test result items using
$this->unit->set_test_items().

	Added a $xss_clean class variable to the XMLRPC library, enabling
control over the use of the Security library’s xss_clean()
method.

	Added a download() method to the FTP
library

	Changed do_xss_clean() to return FALSE if the uploaded file
fails XSS checks.

	Added stripslashes() and trim()ing of double quotes from $_FILES
type value to standardize input in Upload library.

	Added a second parameter (boolean) to
$this->zip->read_dir(‘/path/to/directory’, FALSE) to remove the
preceding trail of empty folders when creating a Zip archive. This
example would contain a zip with “directory” and all of its
contents.

	Added ability in the Image Library to handle PNG transparency for
resize operations when using the GD lib.

	Modified the Session class to prevent use if no encryption key is
set in the config file.

	Added a new config item to the Session class
sess_expire_on_close to allow sessions to auto-expire when the
browser window is closed.

	Improved performance of the Encryption library on servers where
Mcrypt is available.

	Changed the default encryption mode in the Encryption library to
CBC.

	Added an encode_from_legacy() method to provide a way to
transition encrypted data from CodeIgniter 1.x to CodeIgniter 2.x.
Please see the upgrade
instructions for details.

	Altered Form_Validation library to allow for method chaining on
set_rules(), set_message() and set_error_delimiters()
functions.

	Altered Email Library to allow for method chaining.

	Added request_headers(), get_request_header() and
is_ajax_request() to the input class.

	Altered User agent library so that
is_browser(), is_mobile() and is_robot() can optionally check
for a specific browser or mobile device.

	Altered Input library so that post() and
get() will return all POST and GET items (respectively) if there
are no parameters passed in.

	Database
	database configuration.

	Added autoinit value to database
configuration.

	Added stricton value to database
configuration.

	Added database_exists() to the Database Utilities
Class.

	Semantic change to db->version() function to allow a list of
exceptions for databases with functions to return version string
instead of specially formed SQL queries. Currently this list only
includes Oracle and SQLite.

	Fixed a bug where driver specific table identifier protection
could lead to malformed queries in the field_data() functions.

	Fixed a bug where an undefined class variable was referenced in
database drivers.

	Modified the database errors to show the filename and line number
of the problematic query.

	Removed the following deprecated functions: orwhere, orlike,
groupby, orhaving, orderby, getwhere.

	Removed deprecated _drop_database() and _create_database()
functions from the db utility drivers.

	Improved dbforge create_table() function for the Postgres driver.

	Helpers
	Added convert_accented_characters() function to text
helper.

	Added accept-charset to the list of inserted attributes of
form_open() in the Form Helper.

	Deprecated the dohash() function in favour of do_hash() for
naming consistency.

	Non-backwards compatible change made to get_dir_file_info() in
the File Helper. No longer recurses
by default so as to encourage responsible use (this function can
cause server performance issues when used without caution).

	Modified the second parameter of directory_map() in the
Directory Helper to accept an
integer to specify recursion depth.

	Modified delete_files() in the File
Helper to return FALSE on failure.

	Added an optional second parameter to byte_format() in the
Number Helper to allow for decimal
precision.

	Added alpha, and sha1 string types to random_string() in the
String Helper.

	Modified prep_url() so as to not prepend http:// if the supplied
string already has a scheme.

	Modified get_file_info in the file helper, changing filectime()
to filemtime() for dates.

	Modified smiley_js() to add optional third parameter to return
only the javascript with no script tags.

	The img() function of the HTML
helper will now generate an empty
string as an alt attribute if one is not provided.

	If CSRF is enabled in the application config file, form_open()
will automatically insert it as a hidden field.

	Added sanitize_filename() into the Security
helper.

	Added ellipsize() to the Text
Helper

	Added elements() to the Array
Helper

	Other Changes
	Added an optional second parameter to show_404() to disable
logging.

	Updated loader to automatically apply the sub-class prefix as an
option when loading classes. Class names can be prefixed with the
standard “CI_” or the same prefix as the subclass prefix, or no
prefix at all.

	Increased randomness with is_really_writable() to avoid file
collisions when hundreds or thousands of requests occur at once.

	Switched some DIR_WRITE_MODE constant uses to FILE_WRITE_MODE
where files and not directories are being operated on.

	get_mime_by_extension() is now case insensitive.

	Added “default” to the list Reserved
Names.

	Added ‘application/x-msdownload’ for .exe files and
‘application/x-gzip-compressed’ for .tgz files to
config/mimes.php.

	Updated the output library to no longer compress output or send
content-length headers if the server runs with
zlib.output_compression enabled.

	Eliminated a call to is_really_writable() on each request unless
it is really needed (Output caching)

	Documented append_output() in the Output
Class.

	Documented a second argument in the decode() function for the
Encrypt Class.

	Documented db->close().

	Updated the router to support a default route with any number of
segments.

	Moved _remove_invisible_characters() function from the
Security Library to common
functions.

	Added audio/mpeg3 as a valid mime type for MP3.

Bug fixes for 2.0.0

	Fixed a bug where you could not change the User-Agent when sending
email.

	Fixed a bug where the Output class would send incorrect cached output
for controllers implementing their own _output() method.

	Fixed a bug where a failed query would not have a saved query
execution time causing errors in the Profiler

	Fixed a bug that was writing log entries when multiple identical
helpers and plugins were loaded.

	Fixed assorted user guide typos or examples (#10693, #8951, #7825,
#8660, #7883, #6771, #10656).

	Fixed a language key in the profiler: “profiler_no_memory_usage”
to “profiler_no_memory”.

	Fixed an error in the Zip library that didn’t allow downloading on
PHP 4 servers.

	Fixed a bug in the Form Validation library where fields passed as
rule parameters were not being translated (#9132)

	Modified inflector helper to properly pluralize words that end in
‘ch’ or ‘sh’

	Fixed a bug in xss_clean() that was not allowing hyphens in query
strings of submitted URLs.

	Fixed bugs in get_dir_file_info() and get_file_info() in the
File Helper with recursion, and file paths on Windows.

	Fixed a bug where Active Record override parameter would not let you
disable Active Record if it was enabled in your database config file.

	Fixed a bug in reduce_double_slashes() in the String Helper to
properly remove duplicate leading slashes (#7585)

	Fixed a bug in values_parsing() of the XML-RPC library which
prevented NULL variables typed as ‘string’ from being handled
properly.

	Fixed a bug were form_open_multipart() didn’t accept string
attribute arguments (#10930).

	Fixed a bug (#10470) where get_mime_by_extension() was case
sensitive.

	Fixed a bug where some error messages for the SQLite and Oracle
drivers would not display.

	Fixed a bug where files created with the Zip Library would result in
file creation dates of 1980.

	Fixed a bug in the Session library that would result in PHP error
when attempting to store values with objects.

	Fixed a bug where extending the Controller class would result in a
fatal PHP error.

	Fixed a PHP Strict Standards Error in the index.php file.

	Fixed a bug where getimagesize() was being needlessly checked on
non-image files in is_allowed_type().

	Fixed a bug in the Encryption library where an empty key was not
triggering an error.

	Fixed a bug in the Email library where CC and BCC recipients were not
reset when using the clear() method (#109).

	Fixed a bug in the URL Helper where prep_url() could cause a PHP
error on PHP versions < 5.1.2.

	Added a log message in core/output if the cache directory config
value was not found.

	Fixed a bug where multiple libraries could not be loaded by passing
an array to load->library()

	Fixed a bug in the html helper where too much white space was
rendered between the src and alt tags in the img() function.

	Fixed a bug in the profilers _compile_queries() function.

	Fixed a bug in the date helper where the DATE_ISO8601 variable was
returning an incorrectly formatted date string.

Version 1.7.2

Release Date: September 11, 2009
Hg Tag: v1.7.2

	Libraries
	Added a new Cart Class.

	Added the ability to pass $config[‘file_name’] for the File
Uploading Class and rename the
uploaded file.

	Changed order of listed user-agents so Safari would more
accurately report itself. (#6844)

	Database
	Switched from using gettype() in escape() to is_* methods, since
future PHP versions might change its output.

	Updated all database drivers to handle arrays in escape_str()

	Added escape_like_str() method for escaping strings to be used
in LIKE conditions

	Updated Active Record to utilize the new LIKE escaping mechanism.

	Added reconnect() method to DB drivers to try to keep alive /
reestablish a connection after a long idle.

	Modified MSSQL driver to use mssql_get_last_message() for error
messages.

	Helpers
	Added form_multiselect() to the Form
helper.

	Modified form_hidden() in the Form
helper to accept multi-dimensional
arrays.

	Modified form_prep() in the Form
helper to keep track of prepped
fields to avoid multiple prep/mutation from subsequent calls which
can occur when using Form Validation and form helper functions to
output form fields.

	Modified directory_map() in the Directory
helper to allow the inclusion of
hidden files, and to return FALSE on failure to read directory.

	Modified the Smiley helper to work
with multiple fields and insert the smiley at the last known
cursor position.

	General
	Compatible with PHP 5.3.0.

	Modified show_error() to allow sending
of HTTP server response codes.

	Modified show_404() to send 404 status
code, removing non-CGI compatible header() statement from
error_404.php template.

	Added set_status_header() to the Common
functions to allow use when the
Output class is unavailable.

	Added is_php() to Common
functions to facilitate PHP
version comparisons.

	Added 2 CodeIgniter “cheatsheets” (thanks to DesignFellow.com for
this contribution).

Bug fixes for 1.7.2

	Fixed assorted user guide typos or examples (#6743, #7214, #7516,
#7287, #7852, #8224, #8324, #8349).

	Fixed a bug in the Form Validation library where multiple callbacks
weren’t working (#6110)

	doctype helper default value was missing a “1”.

	Fixed a bug in the language class when outputting an error for an
unfound file.

	Fixed a bug in the Calendar library where the shortname was output
for “May”.

	Fixed a bug with ORIG_PATH_INFO that was allowing URIs of just a
slash through.

	Fixed a fatal error in the Oracle and ODBC drivers (#6752)

	Fixed a bug where xml_from_result() was checking for a nonexistent
method.

	Fixed a bug where Database Forge’s add_column and modify_column
were not looping through when sent multiple fields.

	Fixed a bug where the File Helper was using ‘/’ instead of the
DIRECTORY_SEPARATOR constant.

	Fixed a bug to prevent PHP errors when attempting to use sendmail on
servers that have manually disabled the PHP popen() function.

	Fixed a bug that would cause PHP errors in XML-RPC data if the PHP
data type did not match the specified XML-RPC type.

	Fixed a bug in the XML-RPC class with parsing dateTime.iso8601 data
types.

	Fixed a case sensitive string replacement in xss_clean()

	Fixed a bug in form_textarea() where form data was not prepped
correctly.

	Fixed a bug in form_prep() causing it to not preserve entities in
the user’s original input when called back into a form element

	Fixed a bug in _protect_identifiers() where the swap prefix
($swap_pre) was not being observed.

	Fixed a bug where the 400 status header sent with the ‘disallowed URI
characters’ was not compatible with CGI environments.

	Fixed a bug in the typography class where heading tags could have
paragraph tags inserted when using auto_typography().

Version 1.7.1

Release Date: February 10, 2009
Hg Tag: 1.7.1

	Libraries
	Fixed an arbitrary script execution security flaw (#6068) in the
Form Validation library (thanks to hkk)

	Changed default current page indicator in the Pagination library
to use instead of

	A “HTTP/1.1 400 Bad Request” header is now sent when disallowed
characters are encountered.

	Added <big>, <small>, <q>, and <tt> to the Typography parser’s
inline elements.

	Added more accurate error reporting for the Email library when
using sendmail.

	Removed a strict type check from the rotate() function of the
Image Manipulation Class.

	Added enhanced error checking in file saving in the Image library
when using the GD lib.

	Added an additional newline between multipart email headers and
the MIME message text for better compatibility with a variety of
MUAs.

	Made modest improvements to efficiency and accuracy of
explode_name() in the Image lib.

	Database
	Added where_in to the list of expected arguments received by
delete().

	Helpers
	Added the ability to have optgroups in form_dropdown() within the
form helper.

	Added a doctype() function to the HTML
helper.

	Added ability to force lowercase for url_title() in the URL
helper.

	Changed the default “type” of form_button() to “button” from
“submit” in the form helper.

	Changed redirect() in the URL helper to allow redirections to URLs
outside of the CI site.

	Updated get_cookie() to try to fetch the cookie using the global
cookie prefix if the requested cookie name doesn’t exist.

	Other Changes
	Improved security in xss_clean() to help prevent attacks
targeting Internet Explorer.

	Added ‘application/msexcel’ to config/mimes.php for .xls files.

	Added ‘proxy_ips’ config item to whitelist reverse proxy servers
from which to trust the HTTP_X_FORWARDED_FOR header to to
determine the visitor’s IP address.

	Improved accuracy of Upload::is_allowed_filetype() for images
(#6715)

Bug fixes for 1.7.1

	Database
	Fixed a bug when doing ‘random’ on order_by() (#5706).

	Fixed a bug where adding a primary key through Forge could fail
(#5731).

	Fixed a bug when using DB cache on multiple databases (#5737).

	Fixed a bug where TRUNCATE was not considered a “write” query
(#6619).

	Fixed a bug where csv_from_result() was checking for a
nonexistent method.

	Fixed a bug _protect_identifiers() where it was improperly
removing all pipe symbols from items

	Fixed assorted user guide typos or examples (#5998, #6093, #6259,
#6339, #6432, #6521).

	Fixed a bug in the MySQLi driver when no port is specified

	Fixed a bug (#5702), in which the field label was not being fetched
properly, when “matching” one field to another.

	Fixed a bug in which identifers were not being escaped properly when
reserved characters were used.

	Fixed a bug with the regular expression used to protect submitted
paragraph tags in auto typography.

	Fixed a bug where double dashes within tag attributes were being
converted to em dash entities.

	Fixed a bug where double spaces within tag attributes were being
converted to non-breaking space entities.

	Fixed some accuracy issues with curly quotes in
Typography::format_characters()

	Changed a few docblock comments to reflect actual return values.

	Fixed a bug with high ascii characters in subject and from email
headers.

	Fixed a bug in xss_clean() where whitespace following a validated
character entity would not be preserved.

	Fixed a bug where HTML comments and <pre> tags were being parsed in
Typography::auto_typography().

	Fixed a bug with non-breaking space cleanup in
Typography::auto_typography().

	Fixed a bug in database escaping where a compound statement (ie:
SUM()) wasn’t handled correctly with database prefixes.

	Fixed a bug when an opening quote is preceded by a paragraph tag and
immediately followed by another tag.

	Fixed a bug in the Text Helper affecting some locales where
word_censor() would not work on words beginning or ending with an
accented character.

	Fixed a bug in the Text Helper character limiter where the provided
limit intersects the last word of the string.

	Fixed a bug (#6342) with plural() in the Inflection helper with words
ending in “y”.

	Fixed bug (#6517) where Routed URI segments returned by
URI::rsegment() method were incorrect for the default controller.

	Fixed a bug (#6706) in the Security Helper where xss_clean() was
using a deprecated second argument.

	Fixed a bug in the URL helper url_title() function where trailing
periods were allowed at the end of a URL.

	Fixed a bug (#6669) in the Email class when CRLF’s are used for the
newline character with headers when used with the “mail” protocol.

	Fixed a bug (#6500) where URI::A_filter_uri() was exit()ing an
error instead of using show_error().

	Fixed a bug (#6592) in the File Helper where get_dir_file_info()
where recursion was not occurring properly.

	Tweaked Typography::auto_typography() for some edge-cases.

Version 1.7

Release Date: October 23, 2008
Hg Tag: 1.7.0

	Libraries
	Added a new Form Validation
Class. It simplifies setting
rules and field names, supports arrays as field names, allows
groups of validation rules to be saved in a config file, and adds
some helper functions for use in view files. Please note that
the old Validation class is now deprecated. We will leave it in
the library folder for some time so that existing applications
that use it will not break, but you are encouraged to migrate to
the new version.

	Updated the Sessions class so that
any custom data being saved gets stored to a database rather than
the session cookie (assuming you are using a database to store
session data), permitting much more data to be saved.

	Added the ability to store libraries in subdirectories within
either the main “libraries” or the local application “libraries”
folder. Please see the Loader class for
more info.

	Added the ability to assign library objects to your own variable
names when you use $this->load->library(). Please see the Loader
class for more info.

	Added controller class/method info to Profiler
class and support for multiple database
connections.

	Improved the “auto typography” feature and moved it out of the
helper into its own Typography
Class.

	Improved performance and accuracy of xss_clean(), including
reduction of false positives on image/file tests.

	Improved Parser class to allow
multiple calls to the parse() function. The output of each is
appended in the output.

	Added max_filename option to set a file name length limit in the
File Upload Class.

	Added set_status_header() function to Output
class.

	Modified Pagination class to only
output the “First” link when the link for page one would not be
shown.

	Added support for mb_strlen in the Form
Validation class so that
multi-byte languages will calculate string lengths properly.

	Database
	Improved Active Record class to allow full path column and table
names: hostname.database.table.column. Also improved the alias
handling.

	Improved how table and column names are escaped and prefixed. It
now honors full path names when adding prefixes and escaping.

	Added Active Record caching feature to “update” and “delete”
functions.

	Added removal of non-printing control characters in escape_str()
of DB drivers that do not have native PHP escaping mechanisms
(mssql, oci8, odbc), to avoid potential SQL errors, and possible
sources of SQL injection.

	Added port support to MySQL, MySQLi, and MS SQL database drivers.

	Added driver name variable in each DB driver, based on bug report
#4436.

	Helpers
	Added several new “setting” functions to the Form
helper that allow POST data to be
retrieved and set into forms. These are intended to be used on
their own, or with the new Form Validation
Class.

	Added current_url() and uri_segments() to URL
helper.

	Altered auto_link() in the URL
helper so that email addresses with
“+” included will be linked.

	Added meta() function to HTML
helper.

	Improved accuracy of calculations in Number
helper.

	Removed added newlines (“\n”) from most form and html helper
functions.

	Tightened up validation in the Date
helper function human_to_unix(),
and eliminated the POSIX regex.

	Updated Date helper to match the
world’s current time zones and offsets.

	Modified url_title() in the URL
helper to remove characters and digits
that are part of character entities, to allow dashes, underscores,
and periods regardless of the $separator, and to allow uppercase
characters.

	Added support for arbitrary attributes in anchor_popup() of the
URL helper.

	Other Changes
	Added PHP Style Guide to docs.

	Added sanitization in xss_clean() for a deprecated HTML tag that
could be abused in user input in Internet Explorer.

	Added a few openxml document mime types, and an additional mobile
agent to mimes.php and user_agents.php respectively.

	Added a file lock check during caching, before trying to write to
the file.

	Modified Cookie key cleaning to unset a few troublesome key names
that can be present in certain environments, preventing CI from
halting execution.

	Changed the output of the profiler to use style attribute rather
than clear, and added the id “codeigniter_profiler” to the
container div.

Bug fixes for 1.7.0

	Fixed bug in xss_clean() that could remove some desirable tag
attributes.

	Fixed assorted user guide typos or examples (#4807, #4812, #4840,
#4862, #4864, #4899, #4930, #5006, #5071, #5158, #5229, #5254,
#5351).

	Fixed an edit from 1.6.3 that made the $robots array in
user_agents.php go poof.

	Fixed a bug in the Email library with
quoted-printable encoding improperly encoding space and tab
characters.

	Modified XSS sanitization to no longer add semicolons after &[single
letter], such as in M&M’s, B&B, etc.

	Modified XSS sanitization to no longer strip XHTML image tags of
closing slashes.

	Fixed a bug in the Session class when database sessions are used
where upon session update all userdata would be errantly written to
the session cookie.

	Fixed a bug (#4536) in backups with the MySQL driver where some
legacy code was causing certain characters to be double escaped.

	Fixed a routing bug (#4661) that occurred when the default route
pointed to a subfolder.

	Fixed the spelling of “Dhaka” in the timezone_menu() function of the
Date helper.

	Fixed the spelling of “raspberry” in config/smileys.php.

	Fixed incorrect parenthesis in form_open() function (#5135).

	Fixed a bug that was ignoring case when comparing controller methods
(#4560).

	Fixed a bug (#4615) that was not setting SMTP authorization settings
when using the initialize function.

	Fixed a bug in highlight_code() in the Text
helper that would leave a stray
in certain cases.

	Fixed Oracle bug (#3306) that was preventing multiple queries in one
action.

	Fixed ODBC bug that was ignoring connection params due to its use of
a constructor.

	Fixed a DB driver bug with num_rows() that would cause an error with
the Oracle driver.

	Fixed MS SQL bug (#4915). Added brackets around database name in MS
SQL driver when selecting the database, in the event that reserved
characters are used in the name.

	Fixed a DB caching bug (4718) in which the path was incorrect when no
URI segments were present.

	Fixed Image_lib class bug #4562. A path was not defined for NetPBM.

	Fixed Image_lib class bug #4532. When cropping an image with
identical height/width settings on output, a copy is made.

	Fixed DB_driver bug (4900), in which a database error was not being
logged correctly.

	Fixed DB backup bug in which field names were not being escaped.

	Fixed a DB Active Record caching bug in which multiple calls to
cached data were not being honored.

	Fixed a bug in the Session class that was disallowing slashes in the
serialized array.

	Fixed a Form Validation bug in which the “isset” error message was
being trigged by the “required” rule.

	Fixed a spelling error in a Loader error message.

	Fixed a bug (5050) with IP validation with empty segments.

	Fixed a bug in which the parser was being greedy if multiple
identical sets of tags were encountered.

Version 1.6.3

Release Date: June 26, 2008
Hg Tag: v1.6.3

Version 1.6.3 is a security and maintenance release and is recommended
for all users.

	Database
	Modified MySQL/MySQLi Forge class to give explicit names to keys

	Added ability to set multiple column non-primary keys to the
Forge class

	Added ability to set additional database config values in DSN
connections via the query string.

	Libraries
	Set the mime type check in the Upload
class to reference the global
mimes variable.

	Added support for query strings to the Pagination
class, automatically detected or
explicitly declared.

	Added get_post() to the Input class.

	Documented get() in the Input class.

	Added the ability to automatically output language items as form
labels in the Language class.

	Helpers
	Added a Language helper.

	Added a Number helper.

	Form helper refactored to allow
form_open() and form_fieldset() to accept arrays or strings as
arguments.

	Other changes
	Improved security in xss_clean().

	Removed an unused Router reference in _display_cache().

	Added ability to use xss_clean() to test
images for XSS, useful for upload
security.

	Considerably expanded list of mobile user-agents in
config/user_agents.php.

	Charset information in the userguide has been moved above title
for internationalization purposes (#4614).

	Added “Using Associative Arrays In a Request Parameter” example to
the XMLRPC userguide page.

	Removed maxlength and size as automatically added attributes of
form_input() in the form helper.

	Documented the language file use of byte_format() in the number
helper.

Bug fixes for 1.6.3

	Added a language key for valid_emails in validation_lang.php.

	Amended fixes for bug (#3419) with parsing DSN database connections.

	Moved the _has_operator() function (#4535) into DB_driver from
DB_active_rec.

	Fixed a syntax error in upload_lang.php.

	Fixed a bug (#4542) with a regular expression in the Image library.

	Fixed a bug (#4561) where orhaving() wasn’t properly passing values.

	Removed some unused variables from the code (#4563).

	Fixed a bug where having() was not adding an = into the statement
(#4568).

	Fixed assorted user guide typos or examples (#4574, #4706).

	Added quoted-printable headers to Email class when the multi-part
override is used.

	Fixed a double opening <p> tag in the index pages of each system
directory.

Version 1.6.2

Release Date: May 13, 2008
Hg Tag: 1.6.2

	Active Record
	Added the ability to prevent escaping in having() clauses.

	Added rename_table() into DBForge.

	Fixed a bug that wasn’t allowing escaping to be turned off if the
value of a query was NULL.

	DB Forge is now assigned to any models that exist after loading
(#3457).

	Database
	Added Strict Mode to database
transactions.

	Escape behaviour in where() clauses has changed; values in those
with the “FALSE” argument are no longer escaped (ie: quoted).

	Config
	Added ‘application/vnd.ms-powerpoint’ to list of mime types.

	Added ‘audio/mpg’ to list of mime types.

	Added new user-modifiable file constants.php containing file mode
and fopen constants.

	Added the ability to set CRLF settings via config in the
Email class.

	Libraries
	Added increased security for filename handling in the Upload
library.

	Added increased security for sessions for client-side data
tampering.

	The MySQLi forge class is now in sync with MySQL forge.

	Added the ability to set CRLF settings via config in the
Email class.

	Unit Testing results are now
colour coded, and a change was made to the default template of
results.

	Added a valid_emails rule to the Validation class.

	The Zip class now exits within download().

	The Zip class has undergone a substantial
re-write for speed and clarity (thanks stanleyxu for the hard work
and code contribution in bug report #3425!)

	Helpers
	Added a Compatibility
Helper for using some common
PHP 5 functions safely in applications that might run on PHP 4
servers (thanks Seppo for the hard work and code contribution!)

	Added form_button() in the Form
helper.

	Changed the radio() and checkbox() functions to default to not
checked by default.

	Added the ability to include an optional HTTP Response Code in the
redirect() function of the URL
Helper.

	Modified img() in the HTML Helper to
remove an unneeded space (#4208).

	Modified anchor() in the URL helper
to no longer add a default title= attribute (#4209).

	The Download helper now exits
within force_download().

	Added get_dir_file_info(), get_file_info(), and
get_mime_by_extension() to the File
Helper.

	Added symbolic_permissions() and octal_permissions() to the
File helper.

	Plugins
	Modified captcha generation to first look for the function
imagecreatetruecolor, and fallback to imagecreate if it isn’t
available (#4226).

	Other Changes
	Added ability for xss_clean() to accept
arrays.

	Removed closing PHP tags from all PHP files to avoid accidental
output and potential ‘cannot modify headers’ errors.

	Removed “scripts” from the auto-load search path. Scripts were
deprecated in Version 1.4.1 (September 21, 2006). If you still
need to use them for legacy reasons, they must now be manually
loaded in each Controller.

	Added a Reserved Names page to
the userguide, and migrated reserved controller names into it.

	Added a Common Functions page
to the userguide for globally available functions.

	Improved security and performance of xss_clean().

Bugfixes for 1.6.2

	Fixed a bug where SET queries were not being handled as “write”
queries.

	Fixed a bug (#3191) with ORIG_PATH_INFO URI parsing.

	Fixed a bug in DB Forge, when inserting an id field (#3456).

	Fixed a bug in the table library that could cause identically
constructed rows to be dropped (#3459).

	Fixed DB Driver and MySQLi result driver checking for resources
instead of objects (#3461).

	Fixed an AR_caching error where it wasn’t tracking table aliases
(#3463).

	Fixed a bug in AR compiling, where select statements with arguments
got incorrectly escaped (#3478).

	Fixed an incorrect documentation of $this->load->language (#3520).

	Fixed bugs (#3523, #4350) in get_filenames() with recursion and
problems with Windows when $include_path is used.

	Fixed a bug (#4153) in the XML-RPC class preventing dateTime.iso8601
from being used.

	Fixed an AR bug with or_where_not_in() (#4171).

	Fixed a bug with xss_clean() that would
add semicolons to GET URI variable strings.

	Fixed a bug (#4206) in the Directory Helper where the directory
resource was not being closed, and minor improvements.

	Fixed a bug in the FTP library where delete_dir() was not working
recursively (#4215).

	Fixed a Validation bug when set_rules() is used with a non-array
field name and rule (#4220).

	Fixed a bug (#4223) where DB caching would not work for returned DB
objects or multiple DB connections.

	Fixed a bug in the Upload library that might output the same error
twice (#4390).

	Fixed an AR bug when joining with a table alias and table prefix
(#4400).

	Fixed a bug in the DB class testing the $params argument.

	Fixed a bug in the Table library where the integer 0 in cell data
would be displayed as a blank cell.

	Fixed a bug in link_tag() of the URL
helper where a key was passed instead of
a value.

	Fixed a bug in DB_result::row() that prevented it from returning
individual fields with MySQL NULL values.

	Fixed a bug where SMTP emails were not having dot transformation
performed on lines that begin with a dot.

	Fixed a bug in display_error() in the DB driver that was
instantiating new Language and Exception objects, and not using the
error heading.

	Fixed a bug (#4413) where a URI containing slashes only e.g.
‘http://example.com/index.php?//’ would result in PHP errors

	Fixed an array to string conversion error in the Validation library
(#4425)

	Fixed bug (#4451, #4299, #4339) where failed transactions will not
rollback when debug mode is enabled.

	Fixed a bug (#4506) with overlay_watermark() in the Image library
preventing support for PNG-24s with alpha transparency

	Fixed assorted user guide typos (#3453, #4364, #4379, #4399, #4408,
#4412, #4448, #4488).

Version 1.6.1

Release Date: February 12, 2008
Hg Tag: 1.6.1

	Active Record
	Added Active Record
Caching.

	Made Active Record fully database-prefix aware.

	Database drivers
	Added support for setting client character set and collation for
MySQLi.

	Core Changes
	Modified xss_clean() to be more intelligent with its handling of
URL encoded strings.

	Added $_SERVER, $_FILES, $_ENV, and $_SESSION to sanitization
of globals.

	Added a Path Helper.

	Simplified _reindex_segments() in the URI class.

	Escaped the ‘-‘ in the default ‘permitted_uri_chars’ config
item, to prevent errors if developers just try to add additional
characters to the end of the default expression.

	Modified method calling to controllers to show a 404 when a
private or protected method is accessed via a URL.

	Modified framework initiated 404s to log the controller and method
for invalid requests.

	Helpers
	Modified get_filenames() in the File Helper to return FALSE if
the $source_dir is not readable.

Bugfixes for 1.6.1

	Deprecated is_numeric as a validation rule. Use of numeric and
integer are preferred.

	Fixed bug (#3379) in DBForge with SQLite for table creation.

	Made Active Record fully database prefix aware (#3384).

	Fixed a bug where DBForge was outputting invalid SQL in Postgres by
adding brackets around the tables in FROM.

	Changed the behaviour of Active Record’s update() to make the WHERE
clause optional (#3395).

	Fixed a bug (#3396) where certain POST variables would cause a PHP
warning.

	Fixed a bug in query binding (#3402).

	Changed order of SQL keywords in the Profiler $highlight array so OR
would not be highlighted before ORDER BY.

	Fixed a bug (#3404) where the MySQLi driver was testing if
$this->conn_id was a resource instead of an object.

	Fixed a bug (#3419) connecting to a database via a DSN string.

	Fixed a bug (#3445) where the routed segment array was not re-indexed
to begin with 1 when the default controller is used.

	Fixed assorted user guide typos.

Version 1.6.0

Release Date: January 30, 2008

	DBForge
	Added DBForge to the database tools.

	Moved create_database() and drop_database() into
DBForge.

	Added add_field(), add_key(), create_table(), drop_table(),
add_column(), drop_column(), modify_column() into
DBForge.

	Active Record
	Added protect_identifiers() in Active
Record.

	All AR queries are backticked if appropriate to the database.

	Added where_in(), or_where_in(), where_not_in(),
or_where_not_in(), not_like() and or_not_like() to Active
Record.

	Added support for limit() into update() and delete() statements in
Active Record.

	Added empty_table() and truncate_table() to Active
Record.

	Added the ability to pass an array of tables to the delete()
statement in Active Record.

	Added count_all_results() function to Active
Record.

	Added select_max(), select_min(), select_avg() and
select_sum() to Active Record.

	Added the ability to use aliases with joins in Active
Record.

	Added a third parameter to Active Record’s like() clause to
control where the wildcard goes.

	Added a third parameter to set() in Active
Record that withholds escaping
data.

	Changed the behaviour of variables submitted to the where() clause
with no values to auto set “IS NULL”

	Other Database Related
	MySQL driver now requires MySQL 4.1+

	Added $this->DB->save_queries variable to DB driver, enabling
queries to get saved or not. Previously they were always saved.

	Added $this->db->dbprefix() to manually add database prefixes.

	Added ‘random’ as an order_by() option , and removed “rand()” as
a listed option as it was MySQL only.

	Added a check for NULL fields in the MySQL database backup
utility.

	Added “constrain_by_prefix” parameter to db->list_table()
function. If set to TRUE it will limit the result to only table
names with the current prefix.

	Deprecated from Active Record; getwhere() for get_where();
groupby() for group_by(); havingor() for having_or(); orderby()
for order_by; orwhere() for or_where(); and orlike() for
or_like().

	Modified csv_from_result() to output CSV data more in the spirit
of basic rules of RFC 4180.

	Added ‘char_set’ and ‘dbcollat’ database configuration settings,
to explicitly set the client communication properly.

	Removed ‘active_r’ configuration setting and replaced with a
global $active_record setting, which is more in harmony with the
global nature of the behavior (#1834).

	Core changes
	Added ability to load multiple views, whose content will be
appended to the output in the order loaded.

	Added the ability to auto-load
Models.

	Reorganized the URI and Routes classes for better clarity.

	Added Compat.php to allow function overrides for older versions of
PHP or PHP environments missing certain extensions / libraries

	Added memory usage, GET, URI string data, and individual query
execution time to Profiler output.

	Deprecated Scaffolding.

	Added is_really_writable() to Common.php to provide a
cross-platform reliable method of testing file/folder writability.

	Libraries
	Changed the load protocol of Models to allow for extension.

	Strengthened the Encryption library to help protect against man in
the middle attacks when MCRYPT_MODE_CBC mode is used.

	Added Flashdata variables, session_id regeneration and
configurable session update times to the Session
class.

	Removed ‘last_visit’ from the Session class.

	Added a language entry for valid_ip validation error.

	Modified prep_for_form() in the Validation class to accept
arrays, adding support for POST array validation (via callbacks
only)

	Added an “integer” rule into the Validation library.

	Added valid_base64() to the Validation library.

	Documented clear() in the Image
Processing library.

	Changed the behaviour of custom callbacks so that they no longer
trigger the “required” rule.

	Modified Upload class $_FILES error messages to be more precise.

	Moved the safe mode and auth checks for the Email library into the
constructor.

	Modified variable names in _ci_load() method of Loader class to
avoid conflicts with view variables.

	Added a few additional mime type variations for CSV.

	Enabled the ‘system’ methods for the XML-RPC Server library,
except for ‘system.multicall’ which is still disabled.

	Helpers & Plugins
	Added link_tag() to the HTML
helper.

	Added img() to the HTML helper.

	Added ability to “extend” Helpers.

	Added an email helper into core
helpers.

	Added strip_quotes() function to string
helper.

	Added reduce_multiples() function to string
helper.

	Added quotes_to_entities() function to string
helper.

	Added form_fieldset(), form_fieldset_close(), form_label(),
and form_reset() function to form
helper.

	Added support for external urls in form_open().

	Removed support for db_backup in MySQLi due to incompatible
functions.

	Javascript Calendar plugin now uses the months and days from the
calendar language file, instead of hard-coded values,
internationalizing it.

	Documentation Changes
	Added Writing Documentation section
for the community to use in writing their own documentation.

	Added titles to all user manual pages.

	Added attributes into <html> of userguide for valid html.

	Added Zip Encoding Class
to the table of contents of the userguide.

	Moved part of the userguide menu javascript to an external file.

	Documented distinct() in Active
Record.

	Documented the timezones() function in the Date
Helper.

	Documented unset_userdata in the Session
class.

	Documented 2 config options to the Database
configuration page.

Bug fixes for Version 1.6.0

	Fixed a bug (#1813) preventing using $CI->db in the same application
with returned database objects.

	Fixed a bug (#1842) where the $this->uri->rsegments array would not
include the ‘index’ method if routed to the controller without an
implicit method.

	Fixed a bug (#1872) where word_limiter() was not retaining
whitespace.

	Fixed a bug (#1890) in csv_from_result() where content that
included the delimiter would break the file.

	Fixed a bug (#2542)in the clean_email() method of the Email class to
allow for non-numeric / non-sequential array keys.

	Fixed a bug (#2545) in _html_entity_decode_callback() when
‘global_xss_filtering’ is enabled.

	Fixed a bug (#2668) in the parser class
where numeric data was ignored.

	Fixed a bug (#2679) where the “previous” pagination link would get
drawn on the first page.

	Fixed a bug (#2702) in _object_to_array that broke some types of
inserts and updates.

	Fixed a bug (#2732) in the SQLite driver for PHP 4.

	Fixed a bug (#2754) in Pagination to scan for non-positive
num_links.

	Fixed a bug (#2762) in the Session
library where user agent matching would
fail on user agents ending with a space.

	Fixed a bug (#2784) $field_names[] vs $Ffield_names[] in postgres
and sqlite drivers.

	Fixed a bug (#2810) in the typography helper causing extraneous
paragraph tags when string contains tags.

	Fixed a bug (#2849) where arguments passed to a subfolder controller
method would be incorrectly shifted, dropping the 3rd segment value.

	Fixed a bug (#2858) which referenced a wrong variable in the Image
class.

	Fixed a bug (#2875)when loading plugin files as _plugin. and not
_pi.

	Fixed a bug (#2912) in get_filenames() in the File
Helper where the array wasn’t cleared
after each call.

	Fixed a bug (#2974) in highlight_phrase() that caused an error with
slashes.

	Fixed a bug (#3003) in the Encryption Library to support modes other
than MCRYPT_MODE_ECB

	Fixed a bug (#3015) in the User Agent
library where more than 2 languages
where not reported with languages().

	Fixed a bug (#3017) in the Email library
where some timezones were calculated incorrectly.

	Fixed a bug (#3024) in which master_dim wasn’t getting reset by
clear() in the Image library.

	Fixed a bug (#3156) in Text Helper highlight_code() causing PHP tags
to be handled incorrectly.

	Fixed a bug (#3166) that prevented num_rows from working in Oracle.

	Fixed a bug (#3175) preventing certain libraries from working
properly when autoloaded in PHP 4.

	Fixed a bug (#3267) in the Typography Helper where unordered list was
listed “un.

	Fixed a bug (#3268) where the Router could leave ‘/’ as the path.

	Fixed a bug (#3279) where the Email class was sending the wrong
Content-Transfer-Encoding for some character sets.

	Fixed a bug (#3284) where the rsegment array would not be set
properly if the requested URI contained more segments than the routed
URI.

	Removed extraneous load of $CFG in _display_cache() of the Output
class (#3285).

	Removed an extraneous call to loading models (#3286).

	Fixed a bug (#3310) with sanitization of globals in the Input class
that could unset CI’s global variables.

	Fixed a bug (#3314) which would cause the top level path to be
deleted in delete_files() of the File helper.

	Fixed a bug (#3328) where the smiley helper might return an undefined
variable.

	Fixed a bug (#3330) in the FTP class where a comparison wasn’t
getting made.

	Removed an unused parameter from Profiler (#3332).

	Fixed a bug in database driver where num_rows property wasn’t
getting updated.

	Fixed a bug in the upload
library when allowed_files
wasn’t defined.

	Fixed a bug in word_wrap() of the Text Helper that incorrectly
referenced an object.

	Fixed a bug in Validation where valid_ip() wasn’t called properly.

	Fixed a bug in Validation where individual error messages for
checkboxes wasn’t supported.

	Fixed a bug in captcha calling an invalid PHP function.

	Fixed a bug in the cookie helper “set_cookie” function. It was not
honoring the config settings.

	Fixed a bug that was making validation callbacks required even when
not set as such.

	Fixed a bug in the XML-RPC library so if a type is specified, a more
intelligent decision is made as to the default type.

	Fixed an example of comma-separated emails in the email library
documentation.

	Fixed an example in the Calendar library for Showing Next/Previous
Month Links.

	Fixed a typo in the database language file.

	Fixed a typo in the image language file “suppor” to “support”.

	Fixed an example for XML RPC.

	Fixed an example of accept_charset() in the User Agent
Library.

	Fixed a typo in the docblock comments that had CodeIgniter spelled
CodeIgnitor.

	Fixed a typo in the String Helper
(uniquid changed to uniqid).

	Fixed typos in the email Language class
(email_attachment_unredable, email_filed_smtp_login), and FTP
Class (ftp_unable_to_remame).

	Added a stripslashes() into the Upload Library.

	Fixed a series of grammatical and spelling errors in the language
files.

	Fixed assorted user guide typos.

Version 1.5.4

Release Date: July 12, 2007

	Added custom Language files to the
autoload options.

	Added stripslashes() to the _clean_input_data() function in the
Input class when magic quotes is on so
that data will always be un-slashed within the framework.

	Added array to string into the profiler.

	Added some additional mime types in application/config/mimes.php.

	Added filename_security() method to Input
library.

	Added some additional arguments to the Inflection
helper singular() to compensate
for words ending in “s”. Also added a force parameter to pluralize().

	Added $config[‘charset’] to the config file. Default value is
‘UTF-8’, used in some string handling functions.

	Fixed MSSQL insert_id().

	Fixed a logic error in the DB trans_status() function. It was
incorrectly returning TRUE on failure and FALSE on success.

	Fixed a bug that was allowing multiple load attempts on extended
classes.

	Fixed a bug in the bootstrap file that was incorrectly attempting to
discern the full server path even when it was explicity set by the
user.

	Fixed a bug in the escape_str() function in the MySQL driver.

	Fixed a typo in the Calendar library

	Fixed a typo in rpcs.php library

	Fixed a bug in the Zip library, providing
PC Zip file compatibility with Mac OS X

	Fixed a bug in router that was ignoring the scaffolding route for
optimization

	Fixed an IP validation bug.

	Fixed a bug in display of POST keys in the
Profiler output

	Fixed a bug in display of queries with characters that would be
interpreted as HTML in the Profiler
output

	Fixed a bug in display of Email class print debugger with characters
that would be interpreted as HTML in the debugging output

	Fixed a bug in the Content-Transfer-Encoding of HTML emails with the
quoted-printable MIME type

	Fixed a bug where one could unset certain PHP superglobals by setting
them via GET or POST data

	Fixed an undefined function error in the insert_id() function of the
PostgreSQL driver

	Fixed various doc typos.

	Documented two functions from the String
helper that were missing from the
user guide: trim_slashes() and reduce_double_slashes().

	Docs now validate to XHTML 1 transitional

	Updated the XSS Filtering to take into account the IE expression()
ability and improved certain deletions to prevent possible exploits

	Modified the Router so that when Query Strings are Enabled, the
controller trigger and function trigger values are sanitized for
filename include security.

	Modified the is_image() method in the Upload library to take into
account Windows IE 6/7 eccentricities when dealing with MIMEs

	Modified XSS Cleaning routine to be more performance friendly and
compatible with PHP 5.2’s new PCRE backtrack and recursion limits.

	Modified the URL Helper to type cast
the $title as a string in case a numeric value is supplied

	Modified Form Helper form_dropdown() to type cast the keys and
values of the options array as strings, allowing numeric values to be
properly set as ‘selected’

	Deprecated the use if is_numeric() in various places since it allows
periods. Due to compatibility problems with ctype_digit(), making it
unreliable in some installations, the following regular expression
was used instead: preg_match(“/[^0-9]/”, $n)

	Deprecated: APPVER has been deprecated and replaced with CI_VERSION
for clarity.

Version 1.5.3

Release Date: April 15, 2007

	Added array to string into the profiler

	Code Igniter references updated to CodeIgniter

	pMachine references updated to EllisLab

	Fixed a bug in the repeater function of string
helper.

	Fixed a bug in ODBC driver

	Fixed a bug in result_array() that was returning an empty array when
no result is produced.

	Fixed a bug in the redirect function of the url
helper.

	Fixed an undefined variable in Loader

	Fixed a version bug in the Postgres driver

	Fixed a bug in the textarea function of the form helper for use with
strings

	Fixed doc typos.

Version 1.5.2

Release Date: February 13, 2007

	Added subversion information
to the downloads page.

	Added support for captions in the Table
Library

	Fixed a bug in the
download_helper that was causing
Internet Explorer to load rather than download

	Fixed a bug in the Active Record Join function that was not taking
table prefixes into consideration.

	Removed unescaped variables in error messages of Input and Router
classes

	Fixed a bug in the Loader that was causing errors on Libraries loaded
twice. A debug message is now silently made in the log.

	Fixed a bug in the form helper that
gave textarea a value attribute

	Fixed a bug in the Image Library that
was ignoring resizing the same size image

	Fixed some doc typos.

Version 1.5.1

Release Date: November 23, 2006

	Added support for submitting arrays of libraries in the
$this->load->library function.

	Added support for naming custom library files in lower or uppercase.

	Fixed a bug related to output buffering.

	Fixed a bug in the active record class that was not resetting query
data after a completed query.

	Fixed a bug that was suppressing errors in controllers.

	Fixed a problem that can cause a loop to occur when the config file
is missing.

	Fixed a bug that occurred when multiple models were loaded with the
third parameter set to TRUE.

	Fixed an oversight that was not unsetting globals properly in the
input sanitize function.

	Fixed some bugs in the Oracle DB driver.

	Fixed an incorrectly named variable in the MySQLi result driver.

	Fixed some doc typos.

Version 1.5.0.1

Release Date: October 31, 2006

	Fixed a problem in which duplicate attempts to load helpers and
classes were not being stopped.

	Fixed a bug in the word_wrap() helper function.

	Fixed an invalid color Hex number in the Profiler class.

	Fixed a corrupted image in the user guide.

Version 1.5.0

Release Date: October 30, 2006

	Added DB utility class, permitting DB
backups, CVS or XML files from DB results, and various other
functions.

	Added Database Caching Class.

	Added transaction support to the
database classes.

	Added Profiler Class which generates a
report of Benchmark execution times, queries, and POST data at the
bottom of your pages.

	Added User Agent Library which
allows browsers, robots, and mobile devises to be identified.

	Added HTML Table Class , enabling tables
to be generated from arrays or database results.

	Added Zip Encoding Library.

	Added FTP Library.

	Added the ability to extend
libraries and extend core
classes, in addition to being able to
replace them.

	Added support for storing models within
sub-folders.

	Added Download Helper.

	Added simple_query() function to the
database classes

	Added standard_date() function to
the Date Helper.

	Added $query->free_result() to database
class.

	Added $query->list_fields() function to
database class

	Added $this->db->platform() function

	Added new File Helper:
get_filenames()

	Added new helper: Smiley Helper

	Added support for and lists in the HTML
Helper

	Added the ability to rewrite short
tags on-the-fly, converting them
to standard PHP statements, for those servers that do not support
short tags. This allows the cleaner syntax to be used regardless of
whether it’s supported by the server.

	Added the ability to rename or relocate the “application”
folder.

	Added more thorough initialization in the upload class so that all
class variables are reset.

	Added “is_numeric” to validation, which uses the native PHP
is_numeric function.

	Improved the URI handler to make it more reliable when the
$config[‘uri_protocol’] item is set to AUTO.

	Moved most of the functions in the Controller class into the Loader
class, allowing fewer reserved function names for controllers when
running under PHP 5.

	Updated the DB Result class to return an empty array when
$query->result() doesn’t produce a result.

	Updated the input->cookie() and input->post() functions in Input
Class to permit arrays contained cookies
that are arrays to be run through the XSS filter.

	Documented three functions from the Validation
class that were missing from the user
guide: set_select(), set_radio(), and set_checkbox().

	Fixed a bug in the Email class related to SMTP Helo data.

	Fixed a bug in the word wrapping helper and function in the email
class.

	Fixed a bug in the validation class.

	Fixed a bug in the typography helper that was incorrectly wrapping
block level elements in paragraph tags.

	Fixed a problem in the form_prep() function that was double encoding
entities.

	Fixed a bug that affects some versions of PHP when output buffering
is nested.

	Fixed a bug that caused CI to stop working when the PHP magic
__get() or __set() functions were used within models or
controllers.

	Fixed a pagination bug that was permitting negative values in the
URL.

	Fixed an oversight in which the Loader class was not allowed to be
extended.

	Changed _get_config() to get_config() since the function is not a
private one.

	Deprecated “init” folder. Initialization happens automatically
now. Please see documentation.

	Deprecated $this->db->field_names() USE
$this->db->list_fields()

	Deprecated the $config[‘log_errors’] item from the config.php
file. Instead, $config[‘log_threshold’] can be set to “0” to turn it
off.

Version 1.4.1

Release Date: September 21, 2006

	Added a new feature that passes URI segments directly to your
function calls as parameters. See the
Controllers page for more info.

	Added support for a function named _output(), which when used in
your controllers will received the final rendered output from the
output class. More info in the Controllers
page.

	Added several new functions in the URI
Class to let you retrieve and manipulate URI
segments that have been re-routed using the URI
Routing feature. Previously, the URI class did not
permit you to access any re-routed URI segments, but now it does.

	Added $this->output->set_header()
function, which allows you to set server headers.

	Updated plugins, helpers, and language classes to allow your
application folder to contain its own plugins, helpers, and language
folders. Previously they were always treated as global for your
entire installation. If your application folder contains any of these
resources they will be used instead the global ones.

	Added Inflector helper.

	Added element() function in the array
helper.

	Added RAND() to active record orderby() function.

	Added delete_cookie() and get_cookie() to Cookie
helper, even though the input class
has a cookie fetching function.

	Added Oracle database driver (still undergoing testing so it might
have some bugs).

	Added the ability to combine pseudo-variables and php variables in
the template parser class.

	Added output compression option to the config file.

	Removed the is_numeric test from the db->escape() function.

	Fixed a MySQLi bug that was causing error messages not to contain
proper error data.

	Fixed a bug in the email class which was causing it to ignore
explicitly set alternative headers.

	Fixed a bug that was causing a PHP error when the Exceptions class
was called within the get_config() function since it was causing
problems.

	Fixed an oversight in the cookie helper in which the config file
cookie settings were not being honored.

	Fixed an oversight in the upload class. An item mentioned in the 1.4
changelog was missing.

	Added some code to allow email attachments to be reset when sending
batches of email.

	Deprecated the application/scripts folder. It will continue to work
for legacy users, but it is recommended that you create your own
libraries or
models instead. It was originally added
before CI had user libraries or models, but it’s not needed anymore.

	Deprecated the $autoload[‘core’] item from the autoload.php file.
Instead, please now use: $autoload[‘libraries’]

	Deprecated the following database functions:
$this->db->smart_escape_str() and $this->db->fields().

Version 1.4.0

Release Date: September 17, 2006

	Added Hooks feature, enabling you to tap
into and modify the inner workings of the framework without hacking
the core files.

	Added the ability to organize controller files into
sub-folders. Kudos to Marco for
suggesting this (and the next two) feature.

	Added regular expressions support for routing
rules.

	Added the ability to remap function
calls within your controllers.

	Added the ability to replace core system
classes with your own classes.

	Added support for % character in URL.

	Added the ability to supply full URLs using the
anchor() helper function.

	Added mode parameter to file_write()
helper.

	Added support for changing the port number in the Postgres
driver.

	Moved the list of “allowed URI characters” out of the Router class
and into the config file.

	Moved the MIME type array out of the Upload class and into its own
file in the application/config/ folder.

	Updated the Upload class to allow the upload field name to be set
when calling do_upload().

	Updated the Config Library to be able to
load config files silently, and to be able to assign config files to
their own index (to avoid collisions if you use multiple config
files).

	Updated the URI Protocol code to allow more options so that URLs will
work more reliably in different environments.

	Updated the form_open() helper to allow the GET method to be used.

	Updated the MySQLi execute() function with some code to help prevent
lost connection errors.

	Updated the SQLite Driver to check for object support before
attempting to return results as objects. If unsupported it returns an
array.

	Updated the Models loader function to allow multiple loads of the
same model.

	Updated the MS SQL driver so that single quotes are escaped.

	Updated the Postgres and ODBC drivers for better compatibility.

	Removed a strtolower() call that was changing URL segments to lower
case.

	Removed some references that were interfering with PHP 4.4.1
compatibility.

	Removed backticks from Postgres class since these are not needed.

	Renamed display() to _display() in the Output class to make it clear
that it’s a private function.

	Deprecated the hash() function due to a naming conflict with a native
PHP function with the same name. Please use dohash() instead.

	Fixed an bug that was preventing the input class from unsetting GET
variables.

	Fixed a router bug that was making it too greedy when matching end
segments.

	Fixed a bug that was preventing multiple discrete database calls.

	Fixed a bug in which loading a language file was producing a “file
contains no data” message.

	Fixed a session bug caused by the XSS Filtering feature inadvertently
changing the case of certain words.

	Fixed some missing prefixes when using the database prefix feature.

	Fixed a typo in the Calendar class (cal_november).

	Fixed a bug in the form_checkbox() helper.

	Fixed a bug that was allowing the second segment of the URI to be
identical to the class name.

	Fixed an evaluation bug in the database initialization function.

	Fixed a minor bug in one of the error messages in the language class.

	Fixed a bug in the date helper timespan function.

	Fixed an undefined variable in the DB Driver class.

	Fixed a bug in which dollar signs used as binding replacement values
in the DB class would be treated as RegEx back-references.

	Fixed a bug in the set_hash() function which was preventing MD5 from
being used.

	Fixed a couple bugs in the Unit Testing class.

	Fixed an incorrectly named variable in the Validation class.

	Fixed an incorrectly named variable in the URI class.

	Fixed a bug in the config class that was preventing the base URL from
being called properly.

	Fixed a bug in the validation class that was not permitting callbacks
if the form field was empty.

	Fixed a problem that was preventing scaffolding from working properly
with MySQLi.

	Fixed some MS SQL bugs.

	Fixed some doc typos.

Version 1.3.3

Release Date: June 1, 2006

	Models do not connect automatically to the database as of this
version. More info here.

	Updated the Sessions class to utilize the active record class when
running session related queries. Previously the queries assumed MySQL
syntax.

	Updated alternator() function to re-initialize when called with no
arguments, allowing multiple calls.

	Fixed a bug in the active record “having” function.

	Fixed a problem in the validation class which was making checkboxes
be ignored when required.

	Fixed a bug in the word_limiter() helper function. It was cutting
off the fist word.

	Fixed a bug in the xss_clean function due to a PHP bug that affects
some versions of html_entity_decode.

	Fixed a validation bug that was preventing rules from being set twice
in one controller.

	Fixed a calendar bug that was not letting it use dynamically loaded
languages.

	Fixed a bug in the active record class when using WHERE clauses with
LIKE

	Fixed a bug in the hash() security helper.

	Fixed some typos.

Version 1.3.2

Release Date: April 17, 2006

	Changed the behavior of the validation class such that if a
“required” rule is NOT explicitly stated for a field then all other
tests get ignored.

	Fixed a bug in the Controller class that was causing it to look in
the local “init” folder instead of the main system one.

	Fixed a bug in the init_pagination file. The $config item was not
being set correctly.

	Fixed a bug in the auto typography helper that was causing
inconsistent behavior.

	Fixed a couple bugs in the Model class.

	Fixed some documentation typos and errata.

Version 1.3.1

Release Date: April 11, 2006

	Added a Unit Testing Library.

	Added the ability to pass objects to the insert() and
update() database functions. This feature enables you to (among
other things) use your Model class
variables to run queries with. See the Models page for details.

	Added the ability to pass objects to the view loading
function: $this->load->view(‘my_view’,
$object);

	Added getwhere function to Active Record
class.

	Added count_all function to Active Record
class.

	Added language file for scaffolding and fixed a scaffolding bug that
occurs when there are no rows in the specified table.

	Added $this->db->last_query(), which
allows you to view your last query that was run.

	Added a new mime type to the upload class for better compatibility.

	Changed how cache files are read to prevent PHP errors if the cache
file contains an XML tag, which PHP wants to interpret as a short
tag.

	Fixed a bug in a couple of the active record functions (where and
orderby).

	Fixed a bug in the image library when realpath() returns false.

	Fixed a bug in the Models that was preventing libraries from being
used within them.

	Fixed a bug in the “exact_length” function of the validation class.

	Fixed some typos in the user guide

Version 1.3

Release Date: April 3, 2006

	Added support for Models.

	Redesigned the database libraries to support additional RDBMs
(Postgres, MySQLi, etc.).

	Redesigned the Active Record class
to enable more varied types of queries with simpler syntax, and
advanced features like JOINs.

	Added a feature to the database class that lets you run custom
function calls.

	Added support for private functions in your
controllers. Any controller function name that starts with an
underscore will not be served by a URI request.

	Added the ability to pass your own initialization parameters to your
custom core libraries when using
$this->load->library()

	Added support for running standard query string URLs.
These can be optionally enabled in your config file.

	Added the ability to specify a “suffix”, which will be
appended to your URLs. For example, you could add .html to your URLs,
making them appear static. This feature is enabled in your config
file.

	Added a new error template for use with native PHP errors.

	Added “alternator” function in the string
helpers.

	Removed slashing from the input class. After much debate we decided
to kill this feature.

	Change the commenting style in the scripts to the PEAR standard so
that IDEs and tools like phpDocumenter can harvest the comments.

	Added better class and function name-spacing to avoid collisions with
user developed classes. All CodeIgniter classes are now prefixed with
CI_ and all controller methods are prefixed with _ci to avoid
controller collisions. A list of reserved function names can be
found here.

	Redesigned how the “CI” super object is referenced, depending on
whether PHP 4 or 5 is being run, since PHP 5 allows a more graceful
way to manage objects that utilizes a bit less resources.

	Deprecated: $this->db->use_table() has been deprecated. Please read
the Active Record page for
information.

	Deprecated: $this->db->smart_escape_str() has been deprecated.
Please use this instead: $this->db->escape()

	Fixed a bug in the exception handler which was preventing some PHP
errors from showing up.

	Fixed a typo in the URI class. $this->total_segment() should be
plural: $this->total_segments()

	Fixed some typos in the default calendar template

	Fixed some typos in the user guide

Version 1.2

Release Date: March 21, 2006

	Redesigned some internal aspects of the framework to resolve scoping
problems that surfaced during the beta tests. The problem was most
notable when instantiating classes in your constructors, particularly
if those classes in turn did work in their constructors.

	Added a global function named
get_instance() allowing the main
CodeIgniter object to be accessible throughout your own classes.

	Added new File Helper:
delete_files()

	Added new URL Helpers: base_url(),
index_page()

	Added the ability to create your own core
libraries and store them in your local
application directory.

	Added an overwrite option to the Upload
class, enabling files to be
overwritten rather than having the file name appended.

	Added Javascript Calendar plugin.

	Added search feature to user guide. Note: This is done using Google,
which at the time of this writing has not crawled all the pages of
the docs.

	Updated the parser class so that it allows tag pars within other tag
pairs.

	Fixed a bug in the DB “where” function.

	Fixed a bug that was preventing custom config files to be
auto-loaded.

	Fixed a bug in the mysql class bind feature that prevented question
marks in the replacement data.

	Fixed some bugs in the xss_clean function

Version Beta 1.1

Release Date: March 10, 2006

	Added a Calendaring class.

	Added support for running multiple
applications that share a common CodeIgniter
backend.

	Moved the “uri protocol” variable from the index.php file into the
config.php file

	Fixed a problem that was preventing certain function calls from
working within constructors.

	Fixed a problem that was preventing the $this->load->library function
from working in constructors.

	Fixed a bug that occurred when the session class was loaded using the
auto-load routine.

	Fixed a bug that can happen with PHP versions that do not support the
E_STRICT constant

	Fixed a data type error in the form_radio function (form helper)

	Fixed a bug that was preventing the xss_clean function from being
called from the validation class.

	Fixed the cookie related config names, which were incorrectly
specified as $conf rather than $config

	Fixed a pagination problem in the scaffolding.

	Fixed a bug in the mysql class “where” function.

	Fixed a regex problem in some code that trimmed duplicate slashes.

	Fixed a bug in the br() function in the HTML helper

	Fixed a syntax mistake in the form_dropdown function in the Form
Helper.

	Removed the “style” attributes form the form helpers.

	Updated the documentation. Added “next/previous” links to each page
and fixed various typos.

Version Beta 1.0

Release Date: February 28, 2006

First publicly released version.

The MIT License (MIT)

Copyright (c) 2014 - 2019, British Columbia Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

CodeIgniter Overview

The following pages describe the broad concepts behind CodeIgniter:

	Getting Started

	CodeIgniter at a Glance

	Supported Features

	Application Flow Chart

	Model-View-Controller

	Architectural Goals

Getting Started With CodeIgniter

Any software application requires some effort to learn. We’ve done our
best to minimize the learning curve while making the process as
enjoyable as possible.

The first step is to install
CodeIgniter, then read all the topics in the Introduction section of
the Table of Contents.

Next, read each of the General Topics pages in order. Each topic
builds on the previous one, and includes code examples that you are
encouraged to try.

Once you understand the basics you’ll be ready to explore the Class
Reference and Helper Reference pages to learn to utilize the
native libraries and helper files.

Feel free to take advantage of our Community
Forums [http://forum.codeigniter.com/] if you have questions or
problems, and our Wiki [https://github.com/bcit-ci/CodeIgniter/wiki] to see code
examples posted by other users.

CodeIgniter at a Glance

CodeIgniter is an Application Framework

CodeIgniter is a toolkit for people who build web applications using
PHP. Its goal is to enable you to develop projects much faster than you
could if you were writing code from scratch, by providing a rich set of
libraries for commonly needed tasks, as well as a simple interface and
logical structure to access these libraries. CodeIgniter lets you
creatively focus on your project by minimizing the amount of code needed
for a given task.

CodeIgniter is Free

CodeIgniter is licensed under the MIT license so you can use it however
you please. For more information please read the
license agreement.

CodeIgniter is Light Weight

Truly light weight. The core system requires only a few very small
libraries. This is in stark contrast to many frameworks that require
significantly more resources. Additional libraries are loaded
dynamically upon request, based on your needs for a given process, so
the base system is very lean and quite fast.

CodeIgniter is Fast

Really fast. We challenge you to find a framework that has better
performance than CodeIgniter.

CodeIgniter Uses M-V-C

CodeIgniter uses the Model-View-Controller approach, which allows great
separation between logic and presentation. This is particularly good for
projects in which designers are working with your template files, as the
code these files contain will be minimized. We describe MVC in more
detail on its own page.

CodeIgniter Generates Clean URLs

The URLs generated by CodeIgniter are clean and search-engine friendly.
Rather than using the standard “query string” approach to URLs that is
synonymous with dynamic systems, CodeIgniter uses a segment-based
approach:

example.com/news/article/345

Note

By default the index.php file is included in the URL but it can
be removed using a simple .htaccess file.

CodeIgniter Packs a Punch

CodeIgniter comes with full-range of libraries that enable the most
commonly needed web development tasks, like accessing a database,
sending email, validating form data, maintaining sessions, manipulating
images, working with XML-RPC data and much more.

CodeIgniter is Extensible

The system can be easily extended through the use of your own libraries,
helpers, or through class extensions or system hooks.

CodeIgniter Does Not Require a Template Engine

Although CodeIgniter does come with a simple template parser that can
be optionally used, it does not force you to use one. Template engines
simply can not match the performance of native PHP, and the syntax that
must be learned to use a template engine is usually only marginally
easier than learning the basics of PHP. Consider this block of PHP code:

<?php foreach ($addressbook as $name):?>
 <?=$name?>
<?php endforeach; ?>

Contrast this with the pseudo-code used by a template engine:

{foreach from=$addressbook item="name"}
 {$name}
{/foreach}

Yes, the template engine example is a bit cleaner, but it comes at the
price of performance, as the pseudo-code must be converted back into PHP
to run. Since one of our goals is maximum performance, we opted to not
require the use of a template engine.

CodeIgniter is Thoroughly Documented

Programmers love to code and hate to write documentation. We’re no
different, of course, but since documentation is as important as the
code itself, we are committed to doing it. Our source code is extremely
clean and well commented as well.

CodeIgniter has a Friendly Community of Users

Our growing community of users can be seen actively participating in our
Community Forums [http://forum.codeigniter.com/].

CodeIgniter Features

Features in and of themselves are a very poor way to judge an
application since they tell you nothing about the user experience, or
how intuitively or intelligently it is designed. Features don’t reveal
anything about the quality of the code, or the performance, or the
attention to detail, or security practices. The only way to really judge
an app is to try it and get to know the code.
Installing CodeIgniter is child’s play so
we encourage you to do just that. In the mean time here’s a list of
CodeIgniter’s main features.

	Model-View-Controller Based System

	Extremely Light Weight

	Full Featured database classes with support for several platforms.

	Query Builder Database Support

	Form and Data Validation

	Security and XSS Filtering

	Session Management

	Email Sending Class. Supports Attachments, HTML/Text email, multiple
protocols (sendmail, SMTP, and Mail) and more.

	Image Manipulation Library (cropping, resizing, rotating, etc.).
Supports GD, ImageMagick, and NetPBM

	File Uploading Class

	FTP Class

	Localization

	Pagination

	Data Encryption

	Benchmarking

	Full Page Caching

	Error Logging

	Application Profiling

	Calendaring Class

	User Agent Class

	Zip Encoding Class

	Template Engine Class

	Trackback Class

	XML-RPC Library

	Unit Testing Class

	Search-engine Friendly URLs

	Flexible URI Routing

	Support for Hooks and Class Extensions

	Large library of “helper” functions

Application Flow Chart

The following graphic illustrates how data flows throughout the system:

[image: CodeIgniter application flow]

	The index.php serves as the front controller, initializing the base
resources needed to run CodeIgniter.

	The Router examines the HTTP request to determine what should be done
with it.

	If a cache file exists, it is sent directly to the browser, bypassing
the normal system execution.

	Security. Before the application controller is loaded, the HTTP
request and any user submitted data is filtered for security.

	The Controller loads the model, core libraries, helpers, and any
other resources needed to process the specific request.

	The finalized View is rendered then sent to the web browser to be
seen. If caching is enabled, the view is cached first so that on
subsequent requests it can be served.

Model-View-Controller

CodeIgniter is based on the Model-View-Controller development pattern.
MVC is a software approach that separates application logic from
presentation. In practice, it permits your web pages to contain minimal
scripting since the presentation is separate from the PHP scripting.

	The Model represents your data structures. Typically your model
classes will contain functions that help you retrieve, insert, and
update information in your database.

	The View is the information that is being presented to a user. A
View will normally be a web page, but in CodeIgniter, a view can also
be a page fragment like a header or footer. It can also be an RSS
page, or any other type of “page”.

	The Controller serves as an intermediary between the Model, the
View, and any other resources needed to process the HTTP request and
generate a web page.

CodeIgniter has a fairly loose approach to MVC since Models are not
required. If you don’t need the added separation, or find that
maintaining models requires more complexity than you want, you can
ignore them and build your application minimally using Controllers and
Views. CodeIgniter also enables you to incorporate your own existing
scripts, or even develop core libraries for the system, enabling you to
work in a way that makes the most sense to you.

Design and Architectural Goals

Our goal for CodeIgniter is maximum performance, capability, and
flexibility in the smallest, lightest possible package.

To meet this goal we are committed to benchmarking, re-factoring, and
simplifying at every step of the development process, rejecting anything
that doesn’t further the stated objective.

From a technical and architectural standpoint, CodeIgniter was created
with the following objectives:

	Dynamic Instantiation. In CodeIgniter, components are loaded and
routines executed only when requested, rather than globally. No
assumptions are made by the system regarding what may be needed
beyond the minimal core resources, so the system is very light-weight
by default. The events, as triggered by the HTTP request, and the
controllers and views you design will determine what is invoked.

	Loose Coupling. Coupling is the degree to which components of a
system rely on each other. The less components depend on each other
the more reusable and flexible the system becomes. Our goal was a
very loosely coupled system.

	Component Singularity. Singularity is the degree to which
components have a narrowly focused purpose. In CodeIgniter, each
class and its functions are highly autonomous in order to allow
maximum usefulness.

CodeIgniter is a dynamically instantiated, loosely coupled system with
high component singularity. It strives for simplicity, flexibility, and
high performance in a small footprint package.

Server Requirements

PHP [http://php.net/] version 5.6 or newer is recommended.

It should work on 5.3.7 as well, but we strongly advise you NOT to run
such old versions of PHP, because of potential security and performance
issues, as well as missing features.

A database is required for most web application programming.
Currently supported databases are:

	MySQL (5.1+) via the mysql (deprecated), mysqli and pdo drivers

	Oracle via the oci8 and pdo drivers

	PostgreSQL via the postgre and pdo drivers

	MS SQL via the mssql, sqlsrv (version 2005 and above only) and pdo drivers

	SQLite via the sqlite (version 2), sqlite3 (version 3) and pdo drivers

	CUBRID via the cubrid and pdo drivers

	Interbase/Firebird via the ibase and pdo drivers

	ODBC via the odbc and pdo drivers (you should know that ODBC is actually an abstraction layer)

Welcome to CodeIgniter

CodeIgniter is an Application Development Framework - a toolkit - for
people who build web sites using PHP. Its goal is to enable you to
develop projects much faster than you could if you were writing code
from scratch, by providing a rich set of libraries for commonly needed
tasks, as well as a simple interface and logical structure to access
these libraries. CodeIgniter lets you creatively focus on your project
by minimizing the amount of code needed for a given task.

Who is CodeIgniter For?

CodeIgniter is right for you if:

	You want a framework with a small footprint.

	You need exceptional performance.

	You need broad compatibility with standard hosting accounts that run
a variety of PHP versions and configurations.

	You want a framework that requires nearly zero configuration.

	You want a framework that does not require you to use the command
line.

	You want a framework that does not require you to adhere to
restrictive coding rules.

	You are not interested in large-scale monolithic libraries like PEAR.

	You do not want to be forced to learn a templating language (although
a template parser is optionally available if you desire one).

	You eschew complexity, favoring simple solutions.

	You need clear, thorough documentation.

Installation Instructions

CodeIgniter is installed in four steps:

	Unzip the package.

	Upload the CodeIgniter folders and files to your server. Normally the
index.php file will be at your root.

	Open the application/config/config.php file with a text editor and
set your base URL. If you intend to use encryption or sessions, set
your encryption key.

	If you intend to use a database, open the
application/config/database.php file with a text editor and set your
database settings.

If you wish to increase security by hiding the location of your
CodeIgniter files you can rename the system and application folders to
something more private. If you do rename them, you must open your main
index.php file and set the $system_path and $application_folder
variables at the top of the file with the new name you’ve chosen.

For the best security, both the system and any application folders
should be placed above web root so that they are not directly accessible
via a browser. By default, .htaccess files are included in each folder
to help prevent direct access, but it is best to remove them from public
access entirely in case the web server configuration changes or doesn’t
abide by the .htaccess.

If you would like to keep your views public it is also possible to move
the views folder out of your application folder.

After moving them, open your main index.php file and set the
$system_path, $application_folder and $view_folder variables,
preferably with a full path, e.g. ‘/www/MyUser/system’.

One additional measure to take in production environments is to disable
PHP error reporting and any other development-only functionality. In
CodeIgniter, this can be done by setting the ENVIRONMENT constant, which
is more fully described on the security
page.

That’s it!

If you’re new to CodeIgniter, please read the Getting
Started section of the User Guide
to begin learning how to build dynamic PHP applications. Enjoy!

Downloading CodeIgniter

	CodeIgniter v3.1.11 (Current version) [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.11]

	CodeIgniter v3.1.10 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.10]

	CodeIgniter v3.1.9 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.9]

	CodeIgniter v3.1.8 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.8]

	CodeIgniter v3.1.7 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.7]

	CodeIgniter v3.1.6 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.6]

	CodeIgniter v3.1.5 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.5]

	CodeIgniter v3.1.4 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.4]

	CodeIgniter v3.1.3 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.3]

	CodeIgniter v3.1.2 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.2]

	CodeIgniter v3.1.1 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.1]

	CodeIgniter v3.1.0 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.1.0]

	CodeIgniter v3.0.6 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.6]

	CodeIgniter v3.0.5 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.5]

	CodeIgniter v3.0.4 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.4]

	CodeIgniter v3.0.3 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.3]

	CodeIgniter v3.0.2 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.2]

	CodeIgniter v3.0.1 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.1]

	CodeIgniter v3.0.0 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/3.0.0]

	CodeIgniter v2.2.6 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.6]

	CodeIgniter v2.2.5 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.5]

	CodeIgniter v2.2.4 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.4]

	CodeIgniter v2.2.3 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.3]

	CodeIgniter v2.2.2 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.2]

	CodeIgniter v2.2.1 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.1]

	CodeIgniter v2.2.0 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.2.0]

	CodeIgniter v2.1.4 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.1.4]

	CodeIgniter v2.1.3 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.1.3]

	CodeIgniter v2.1.2 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.1.2]

	CodeIgniter v2.1.1 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/2.1.1]

	CodeIgniter v2.1.0 [https://codeload.github.com/bcit-ci/CodeIgniter/zip/v2.1.0]

GitHub

Git [http://git-scm.com/about] is a distributed version control system.

Public Git access is available at GitHub [https://github.com/bcit-ci/CodeIgniter].
Please note that while every effort is made to keep this code base
functional, we cannot guarantee the functionality of code taken from
the develop branch.

Beginning with version 2.0.3, stable versions are also available via GitHub Releases [https://github.com/bcit-ci/CodeIgniter/releases].

Installation Instructions

CodeIgniter is installed in four steps:

	Unzip the package.

	Upload the CodeIgniter folders and files to your server. Normally the
index.php file will be at your root.

	Open the application/config/config.php file with a text editor and
set your base URL. If you intend to use encryption or sessions, set
your encryption key.

	If you intend to use a database, open the
application/config/database.php file with a text editor and set your
database settings.

If you wish to increase security by hiding the location of your
CodeIgniter files you can rename the system and application folders to
something more private. If you do rename them, you must open your main
index.php file and set the $system_path and $application_folder
variables at the top of the file with the new name you’ve chosen.

For the best security, both the system and any application folders
should be placed above web root so that they are not directly accessible
via a browser. By default, .htaccess files are included in each folder
to help prevent direct access, but it is best to remove them from public
access entirely in case the web server configuration changes or doesn’t
abide by the .htaccess.

If you would like to keep your views public it is also possible to move
the views folder out of your application folder.

After moving them, open your main index.php file and set the
$system_path, $application_folder and $view_folder variables,
preferably with a full path, e.g. ‘/www/MyUser/system’.

One additional measure to take in production environments is to disable
PHP error reporting and any other development-only functionality. In
CodeIgniter, this can be done by setting the ENVIRONMENT constant, which
is more fully described on the security
page.

That’s it!

If you’re new to CodeIgniter, please read the Getting
Started section of the User Guide
to begin learning how to build dynamic PHP applications. Enjoy!

Upgrading From a Previous Version

Please read the upgrade notes corresponding to the version you are
upgrading from.

	Upgrading from 3.1.10 to 3.1.11

	Upgrading from 3.1.9 to 3.1.10

	Upgrading from 3.1.8 to 3.1.9

	Upgrading from 3.1.7 to 3.1.8

	Upgrading from 3.1.6 to 3.1.7

	Upgrading from 3.1.5 to 3.1.6

	Upgrading from 3.1.4 to 3.1.5

	Upgrading from 3.1.3 to 3.1.4

	Upgrading from 3.1.2 to 3.1.3

	Upgrading from 3.1.1 to 3.1.2

	Upgrading from 3.1.0 to 3.1.1

	Upgrading from 3.0.6 to 3.1.0

	Upgrading from 3.0.5 to 3.0.6

	Upgrading from 3.0.4 to 3.0.5

	Upgrading from 3.0.3 to 3.0.4

	Upgrading from 3.0.2 to 3.0.3

	Upgrading from 3.0.1 to 3.0.2

	Upgrading from 3.0.0 to 3.0.1

	Upgrading from 2.2.x to 3.0.x

	Upgrading from 2.2.2 to 2.2.3

	Upgrading from 2.2.1 to 2.2.2

	Upgrading from 2.2.0 to 2.2.1

	Upgrading from 2.1.4 to 2.2.x

	Upgrading from 2.1.3 to 2.1.4

	Upgrading from 2.1.2 to 2.1.3

	Upgrading from 2.1.1 to 2.1.2

	Upgrading from 2.1.0 to 2.1.1

	Upgrading from 2.0.3 to 2.1.0

	Upgrading from 2.0.2 to 2.0.3

	Upgrading from 2.0.1 to 2.0.2

	Upgrading from 2.0 to 2.0.1

	Upgrading from 1.7.2 to 2.0

	Upgrading from 1.7.1 to 1.7.2

	Upgrading from 1.7.0 to 1.7.1

	Upgrading from 1.6.3 to 1.7.0

	Upgrading from 1.6.2 to 1.6.3

	Upgrading from 1.6.1 to 1.6.2

	Upgrading from 1.6.0 to 1.6.1

	Upgrading from 1.5.4 to 1.6.0

	Upgrading from 1.5.3 to 1.5.4

	Upgrading from 1.5.2 to 1.5.3

	Upgrading from 1.5.0 or 1.5.1 to 1.5.2

	Upgrading from 1.4.1 to 1.5.0

	Upgrading from 1.4.0 to 1.4.1

	Upgrading from 1.3.3 to 1.4.0

	Upgrading from 1.3.2 to 1.3.3

	Upgrading from 1.3.1 to 1.3.2

	Upgrading from 1.3 to 1.3.1

	Upgrading from 1.2 to 1.3

	Upgrading from 1.1 to 1.2

	Upgrading from Beta 1.0 to Beta 1.1

Upgrading from 3.1.10 to 3.1.11

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Replace config/mimes.php

This config file has received some updates. Please copy it to
application/config/mimes.php.

Upgrading from 3.1.9 to 3.1.10

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Check for calls to is_countable()

PHP 7.3 introduces a native is_countable() [https://secure.php.net/is_countable]
function, which creates a name collision with the is_countable() function
we’ve had in our Inflector Helpers.

If you’ve been using the helper function in question, you should now rename
the calls to it to word_is_countable().

Upgrading from 3.1.8 to 3.1.9

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Replace config/mimes.php

This config file has received some updates. Please copy it to
application/config/mimes.php.

Upgrading from 3.1.7 to 3.1.8

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.1.6 to 3.1.7

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Remove usage of CAPTCHA helper extra parameters (deprecation)

The CAPTCHA Helper function
create_captcha() allows passing of its img_path, img_url
and font_path options as the 2nd, 3rd and 4th parameters respectively.

This kind of usage is now deprecated and you should just pass the options
in question as part of the first parameter array.

Note

The functionality in question is still available, but you’re
strongly encouraged to remove its usage sooner rather than later.

Upgrading from 3.1.5 to 3.1.6

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Remove usage of the APC Cache driver (deprecation)

The Cache Library APC driver is now
deprecated, as the APC extension is effectively dead, as explained in its
PHP Manual page [https://secure.php.net/manual/en/intro.apc.php].

If your application happens to be using it, you can switch to another
cache driver, as APC support will be removed in a future CodeIgniter
version.

Note

The driver is still available, but you’re strongly encouraged
to remove its usage sooner rather than later.

Upgrading from 3.1.4 to 3.1.5

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.1.3 to 3.1.4

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.1.2 to 3.1.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Remove usage of nice_date() helper (deprecation)

The Date Helper function nice_date() is
no longer useful since the introduction of PHP’s DateTime classes [https://secure.php.net/datetime]

You can replace it with the following:

DateTime::createFromFormat($input_format, $input_date)->format($desired_output_format);

Thus, nice_date() is now deprecated and scheduled for removal in
CodeIgniter 3.2+.

Note

The function is still available, but you’re strongly encouraged
to remove its usage sooner rather than later.

Step 3: Remove usage of $config[‘standardize_newlines’]

The Input Library would optionally replace
occurrences of rn, r, n in input data with whatever the PHP_EOL
value is on your system - if you’ve set $config['standardize_newlines']
to TRUE in your application/config/config.php.

This functionality is now deprecated and scheduled for removal in
CodeIgniter 3.2.+.

Note

The functionality is still available, but you’re strongly
encouraged to remove its usage sooner rather than later.

Upgrading from 3.1.1 to 3.1.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Update your “ci_sessions” database table

If you’re using the Session Library with the
‘database’ driver, you may have to ALTER your sessions table for your
sessions to continue to work.

Note

The table in question is not necessarily named “ci_sessions”.
It is what you’ve set as your $config['sess_save_path'].

This will only affect you if you’ve changed your session.hash_function
php.ini setting to something like ‘sha512’. Or if you’ve been running
an older CodeIgniter version on PHP 7.1+.

It is recommended that you do this anyway, just to avoid potential issues
in the future if you do change your configuration.

Just execute the one of the following SQL queries, depending on your
database:

// MySQL:
ALTER TABLE ci_sessions CHANGE id id varchar(128) NOT NULL;

// PostgreSQL
ALTER TABLE ci_sessions ALTER COLUMN id SET DATA TYPE varchar(128);

Upgrading from 3.1.0 to 3.1.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.0.6 to 3.1.0

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Check your PHP version

We recommend always running versions that are currently supported [https://secure.php.net/supported-versions.php], which right now is at least PHP 5.6.

PHP 5.2.x versions are now officially not supported by CodeIgniter, and while 5.3.7+
may be at least runnable, we strongly discourage you from using any PHP versions below
the ones listed on the PHP.net Supported Versions [https://secure.php.net/supported-versions.php]
page.

Step 3: If you’re using the ‘odbc’ database driver, check for usage of Query Builder

Query Builder functionality and escape() can
no longer be used with the ‘odbc’ database driver.

This is because, due to its nature, the ODBC extension for PHP [https://secure.php.net/odbc]
does not provide a function that allows to safely escape user-supplied strings for usage
inside an SQL query (which our Query Builder relies on).

Thus, user inputs MUST be bound, as shown in Running Queries,
under the “Query Bindings” section.

Upgrading from 3.0.5 to 3.0.6

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Update your index.php file (optional)

We’ve made some tweaks to the index.php file, mostly related to proper
usage of directory separators (i.e. use the DIRECTORY_SEPARATOR
constant instead of a hard coded forward slash “/”).

Nothing will break if you skip this step, but if you’re running Windows
or just want to be up to date with every change - we do recommend that
you update your index.php file.

Tip: Just copy the ``ENVIRONMENT``, ``$system_path``, ``$application_folder``
and ``$view_folder`` declarations from the old file and put them into the
new one, replacing the defaults.

Step 3: Remove ‘prep_for_form’ usage (deprecation)

The Form Validation Library has a
prep_for_form() method, which is/can also be used as a rule in
set_rules() to automatically perform HTML encoding on input data.

Automatically encoding input (instead of output) data is a bad practice in
the first place, and CodeIgniter and PHP itself offer other alternatives
to this method anyway.
For example, Form Helper functions will
automatically perform HTML escaping when necessary.

Therefore, the prep_for_form method/rule is pretty much useless and is now
deprecated and scheduled for removal in 3.1+.

Note

The method is still available, but you’re strongly encouraged to
remove its usage sooner rather than later.

Upgrading from 3.0.4 to 3.0.5

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.0.3 to 3.0.4

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Upgrading from 3.0.2 to 3.0.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Make sure your ‘base_url’ config value is not empty

When $config['base_url'] is not set, CodeIgniter tries to automatically
detect what your website’s base URL is. This is done purely for convenience
when you are starting development of a new application.

Auto-detection is never reliable and also has security implications, which
is why you should always have it manually configured!

One of the changes in CodeIgniter 3.0.3 is how this auto-detection works,
and more specifically it now falls back to the server’s IP address instead
of the hostname requested by the client. Therefore, if you’ve ever relied
on auto-detection, it will change how your website works now.

In case you need to allow e.g. multiple domains, or both http:// and
https:// prefixes to be dynamically used depending on the request,
remember that application/config/config.php is still a PHP script, in
which you can create this logic with a few lines of code. For example:

$allowed_domains = array('domain1.tld', 'domain2.tld');
$default_domain = 'domain1.tld';

if (in_array($_SERVER['HTTP_HOST'], $allowed_domains, TRUE))
{
 $domain = $_SERVER['HTTP_HOST'];
}
else
{
 $domain = $default_domain;
}

if (! empty($_SERVER['HTTPS']))
{
 $config['base_url'] = 'https://'.$domain;
}
else
{
 $config['base_url'] = 'http://'.$domain;
}

Upgrading from 3.0.1 to 3.0.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Update your application/config/constants.php file

The application/config/constants.php file has been updated to check
if constants aren’t already defined before doing that, making it easier
to add an environment-specific configuration.

Note

If you’ve made modifications to this file, please make a
backup first and cross-check the differences first.

Upgrading from 3.0.0 to 3.0.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory.

Note

If you have any custom developed files in these directories,
please make copies of them first.

Step 2: Update your CLI error templates

Replace all files under your application/views/errors/cli/ directory.

Upgrading from 2.2.x to 3.0.x

Before performing an update you should take your site offline by replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your system/ directory and
replace your index.php file. If any modifications were made to your
index.php they will need to be made fresh in this new one.

Important

You have to delete the old system/ directory first and
then put the new one in its place. A simple copy-paste may cause
issues.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your classes file names

Starting with CodeIgniter 3.0, all class filenames (libraries, drivers, controllers
and models) must be named in a Ucfirst-like manner or in other words - they must
start with a capital letter.

For example, if you have the following library file:

application/libraries/mylibrary.php

… then you’ll have to rename it to:

application/libraries/Mylibrary.php

The same goes for driver libraries and extensions and/or overrides of CodeIgniter’s
own libraries and core classes.

application/libraries/MY_email.php
application/core/MY_log.php

The above files should respectively be renamed to the following:

application/libraries/MY_Email.php
application/core/MY_Log.php

Controllers:

application/controllers/welcome.php -> application/controllers/Welcome.php

Models:

application/models/misc_model.php -> application/models/Misc_model.php

Please note that this DOES NOT affect directories, configuration files, views,
helpers, hooks and anything else - it is only applied to classes.

You must now follow just one simple rule - class names in Ucfirst and everything else
in lowercase.

Step 3: Replace config/mimes.php

This config file has been updated to contain more user mime-types, please copy
it to application/config/mimes.php.

Step 4: Remove $autoload[‘core’] from your config/autoload.php

Use of the $autoload['core'] config array has been deprecated as of CodeIgniter 1.4.1 and is now removed.
Move any entries that you might have listed there to $autoload['libraries'] instead.

Step 5: Move your Log class overrides or extensions

The Log Class is considered as a “core” class and is now located in the
system/core/ directory. Therefore, in order for your Log class overrides
or extensions to work, you need to move them to application/core/:

application/libraries/Log.php -> application/core/Log.php
application/libraries/MY_Log.php -> application/core/MY_Log.php

Step 6: Update your Session library usage

The Session Library has been completely
re-written in CodeIgniter 3 and now comes with a bunch of new features,
but that also means that there are changes that you should make …

Most notably, the library now uses separate storage drivers instead of
always relying on (encrypted) cookies.
In fact, cookies as storage have now been removed and you must always use
some kind of server-side storage engine, with the file-system being the
default option.

The Session Class now utilizes PHP’s own mechanisms for building custom
session handlers, which also means that your session data is now
accessible via the $_SESSION superglobal (though, we’ve kept the
possibility to use it as “userdata”, like you’ve done until now).

A few configuration options have been removed and a few have been added.
You should really read the whole Session library manual for the details, but here’s a short list of changes
that you should make:

	Set your $config['sess_driver'] value

It will default to ‘files’, unless you’ve previously used
$config['sess_use_database'], in which case it will be set to
‘database’.

	Set a $config['sess_save_path'] value

For the ‘database’ driver, a fallback to $config['sess_table_name']
is in place, but otherwise requires you to read the manual for the
specific driver of your choice.

	Update your ci_sessions table (‘database’ driver only)

The table structure has changed a bit, and more specifically:

	session_id field is renamed to id

	user_agent field is dropped

	user_data field is renamed to data and under MySQL is now of type BLOB

	last_activity field is renamed to timestamp

This is accompanied by a slight change in the table indexes too, so
please read the manual about the Session Database Driver for more information.

Important

Only MySQL and PostgreSQL are officially supported
now. Other databases may still work, but due to lack of advisory
locking features, they are unsafe for concurrent requests and
you should consider using another driver instead.

	Remove $config['sess_match_useragent']

The user-agent string is input supplied by the user’s browser, or in
other words: client side input. As such, it is an ineffective feature
and hence why it has been removed.

	Remove $config['sess_encrypt_cookie']

As already noted, the library no longer uses cookies as a storage
mechanism, which renders this option useless.

	Remove $config['sess_expire_on_close']

This option is still usable, but only for backwards compatibility
purposes and it should be otherwise removed. The same effect is
achieved by setting $config['sess_expiration'] to 0.

	Check “flashdata” for collisions with “userdata”

Flashdata is now just regular “userdata”, only marked for deletion on
the next request. In other words: you can’t have both “userdata” and
“flashdata” with the same name, because it’s the same thing.

	Check usage of session metadata

Previously, you could access the ‘session_id’, ‘ip_address’,
‘user_agent’ and ‘last_activity’ metadata items as userdata.
This is no longer possible, and you should read the notes about
Session Metadata
if your application relies on those values.

	Check unset_userdata() usage

Previously, this method used to accept an associative array of
'key' => 'dummy value' pairs for unsetting multiple keys. That
however makes no sense and you now have to pass only the keys, as
the elements of an array.

// Old
$this->session->unset_userdata(array('item' => '', 'item2' => ''));

// New
$this->session->unset_userdata(array('item', 'item2'));

Finally, if you have written a Session extension, you must now move it to
the application/libraries/Session/ directory, although chances are that
it will now also have to be re-factored.

Step 7: Update your config/database.php

Due to 3.0.0’s renaming of Active Record to Query Builder, inside your
config/database.php, you will need to rename the $active_record
variable to $query_builder:

$active_group = 'default';
// $active_record = TRUE;
$query_builder = TRUE;

Step 8: Replace your error templates

In CodeIgniter 3.0, the error templates are now considered as views and have been moved to the
application/views/errors directory.

Furthermore, we’ve added support for CLI error templates in plain-text format that unlike HTML,
is suitable for the command line. This of course requires another level of separation.

It is safe to move your old templates from application/errors to application/views/errors/html,
but you’ll have to copy the new application/views/errors/cli directory from the CodeIgniter archive.

Step 9: Update your config/routes.php file

Routes containing :any

Historically, CodeIgniter has always provided the :any wildcard in
routing, with the intention of providing a way to match any character
within an URI segment.

However, the :any wildcard is actually just an alias for a regular
expression and used to be executed in that manner as .+. This is
considered a bug, as it also matches the / (forward slash) character, which
is the URI segment delimiter and that was never the intention.

In CodeIgniter 3, the :any wildcard will now represent [^/]+, so
that it will not match a forward slash.

There are certainly many developers that have utilized this bug as an actual
feature. If you’re one of them and want to match a forward slash, please use
the .+ regular expression:

(.+) // matches ANYTHING
(:any) // matches any character, except for '/'

Directories and ‘default_controller’, ‘404_override’

As you should know, the $route['default_controller'] and
$route['404_override'] settings accept not only a controller name, but
also controller/method pairs. However, a bug in the routing logic has
made it possible for some users to use that as directory/controller
instead.

As already said, this behavior was incidental and was never intended, nor
documented. If you’ve relied on it, your application will break with
CodeIgniter 3.0.

Another notable change in version 3 is that ‘default_controller’ and
‘404_override’ are now applied per directory. To explain what this means,
let’s take the following example:

$route['default_controller'] = 'main';

Now, assuming that your website is located at example.com, you already
know that if a user visits http://example.com/, the above setting will
cause your ‘Main’ controller to be loaded.

However, what happens if you have an application/controllers/admin/
directory and the user visits http://example.com/admin/?
In CodeIgniter 3, the router will look for a ‘Main’ controller under the
admin/ directory as well. If not found, a Not Found (404) will be triggered.

The same rule applies to the ‘404_override’ setting.

Step 10: Many functions now return NULL instead of FALSE on missing items

Many methods and functions now return NULL instead of FALSE when the required items don’t exist:

	Common functions
	config_item()

	Config Class
	config->item()

	config->slash_item()

	Input Class
	input->get()

	input->post()

	input->get_post()

	input->cookie()

	input->server()

	input->input_stream()

	input->get_request_header()

	Session Class
	session->userdata()

	session->flashdata()

	URI Class
	uri->segment()

	uri->rsegment()

	Array Helper
	element()

	elements()

Step 11: Usage of XSS filtering

Many functions in CodeIgniter allow you to use its XSS filtering feature
on demand by passing a boolean parameter. The default value of that
parameter used to be boolean FALSE, but it is now changed to NULL and it
will be dynamically determined by your $config['global_xss_filtering']
value.

If you used to manually pass a boolean value for the $xss_filter
parameter or if you’ve always had $config['global_xss_filtering'] set
to FALSE, then this change doesn’t concern you.

Otherwise however, please review your usage of the following functions:

	Input Library
	input->get()

	input->post()

	input->get_post()

	input->cookie()

	input->server()

	input->input_stream()

	Cookie Helper get_cookie()

Important

Another related change is that the $_GET, $_POST,
$_COOKIE and $_SERVER superglobals are no longer
automatically overwritten when global XSS filtering is turned on.

Step 12: Check for potential XSS issues with URIs

The URI Library used to automatically convert
a certain set of “programmatic characters” to HTML entities when they
are encountered in a URI segment.

This was aimed at providing some automatic XSS protection, in addition
to the $config['permitted_uri_chars'] setting, but has proven to be
problematic and is now removed in CodeIgniter 3.0.

If your application has relied on this feature, you should update it to
filter URI segments through $this->security->xss_clean() whenever you
output them.

Step 13: Check for usage of the ‘xss_clean’ Form validation rule

A largely unknown rule about XSS cleaning is that it should only be
applied to output, as opposed to input data.

We’ve made that mistake ourselves with our automatic and global XSS cleaning
feature (see previous step about XSS above), so now in an effort to discourage that
practice, we’re also removing ‘xss_clean’ from the officially supported
list of form validation rules.

Because the Form Validation library
generally validates input data, the ‘xss_clean’ rule simply doesn’t
belong in it.

If you really, really need to apply that rule, you should now also load the
Security Helper, which contains
xss_clean() as a regular function and therefore can be also used as
a validation rule.

Step 14: Update usage of Input Class’s get_post() method

Previously, the Input Class method get_post()
was searching first in POST data, then in GET data. This method has been
modified so that it searches in GET then in POST, as its name suggests.

A method has been added, post_get(), which searches in POST then in GET, as
get_post() was doing before.

Step 15: Update usage of Directory Helper’s directory_map() function

In the resulting array, directories now end with a trailing directory
separator (i.e. a slash, usually).

Step 16: Update usage of Database Forge’s drop_table() method

Up until now, drop_table() added an IF EXISTS clause by default or it didn’t work
at all with some drivers. In CodeIgniter 3.0, the IF EXISTS condition is no longer added
by default and has an optional second parameter that allows that instead and is set to
FALSE by default.

If your application relies on IF EXISTS, you’ll have to change its usage.

// Now produces just DROP TABLE `table_name`
$this->dbforge->drop_table('table_name');

// Produces DROP TABLE IF EXISTS `table_name`
$this->dbforge->drop_table('table_name', TRUE);

Note

The given example uses MySQL-specific syntax, but it should work across
all drivers with the exception of ODBC.

Step 17: Change usage of Email library with multiple emails

The Email Library will automatically clear the
set parameters after successfully sending emails. To override this behaviour,
pass FALSE as the first parameter in the send() method:

if ($this->email->send(FALSE))
{
 // Parameters won't be cleared
}

Step 18: Update your Form_validation language lines

Two improvements have been made to the Form Validation Library’s language
files and error messages format:

	Language Library line keys now must be
prefixed with form_validation_ in order to avoid collisions:

// Old
$lang['rule'] = ...

// New
$lang['form_validation_rule'] = ...

	The error messages format has been changed to use named parameters, to
allow more flexibility than what sprintf() offers:

// Old
'The %s field does not match the %s field.'

// New
'The {field} field does not match the {param} field.'

Note

The old formatting still works, but the non-prefixed line keys
are DEPRECATED and scheduled for removal in CodeIgniter 3.1+.
Therefore you’re encouraged to update its usage sooner rather than
later.

Step 19: Make sure your ‘base_url’ config value is not empty

When $config['base_url'] is not set, CodeIgniter tries to automatically
detect what your website’s base URL is. This is done purely for convenience
when you are starting development of a new application.

Auto-detection is never reliable and also has security implications, which
is why you should always have it manually configured!

One of the changes in CodeIgniter 3.0.3 is how this auto-detection works,
and more specifically it now falls back to the server’s IP address instead
of the hostname requested by the client. Therefore, if you’ve ever relied
on auto-detection, it will change how your website works now.

In case you need to allow e.g. multiple domains, or both http:// and
https:// prefixes to be dynamically used depending on the request,
remember that application/config/config.php is still a PHP script, in
which you can create this logic with a few lines of code. For example:

$allowed_domains = array('domain1.tld', 'domain2.tld');
$default_domain = 'domain1.tld';

if (in_array($_SERVER['HTTP_HOST'], $allowed_domains, TRUE))
{
 $domain = $_SERVER['HTTP_HOST'];
}
else
{
 $domain = $default_domain;
}

if (! empty($_SERVER['HTTPS']))
{
 $config['base_url'] = 'https://'.$domain;
}
else
{
 $config['base_url'] = 'http://'.$domain;
}

Step 20: Remove usage of (previously) deprecated functionalities

In addition to the $autoload['core'] configuration setting, there’s a
number of other functionalities that have been removed in CodeIgniter 3.0.0:

The SHA1 library

The previously deprecated SHA1 library has been removed, alter your code to use PHP’s native
sha1() function to generate a SHA1 hash.

Additionally, the sha1() method in the Encrypt Library has been removed.

The EXT constant

Usage of the EXT constant has been deprecated since dropping support for PHP 4. There’s no
longer a need to maintain different filename extensions and in this new CodeIgniter version,
the EXT constant has been removed. Use just ‘.php’ instead.

Smiley helper

The Smiley Helper is a legacy feature from EllisLab’s
ExpressionEngine product. However, it is too specific for a general purpose framework like
CodeIgniter and as such it is now deprecated.

Also, the previously deprecated js_insert_smiley() (since version 1.7.2) is now removed.

The Encrypt library

Following numerous vulnerability reports, the Encrypt Library has
been deprecated and a new, Encryption Library is added to take
its place.

The new library requires either the MCrypt extension [http://php.net/mcrypt] (and /dev/urandom
availability) or PHP 5.3.3 and the OpenSSL extension [http://php.net/openssl].
While this might be rather inconvenient, it is a requirement that allows us to have properly
implemented cryptographic functions.

Note

The Encrypt Library is still available for the purpose
of keeping backwards compatibility.

Important

You are strongly encouraged to switch to the new Encryption Library as soon as possible!

The Cart library

The Cart Library, similarly to the Smiley Helper is too specific for CodeIgniter. It is now deprecated
and scheduled for removal in CodeIgniter 3.1+.

Note

The library is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

Database drivers ‘mysql’, ‘sqlite’, ‘mssql’, ‘pdo/dblib’

The mysql driver utilizes the old ‘mysql’ PHP extension, known for its aging code base and
many low-level problems. The extension is deprecated as of PHP 5.5 and CodeIgniter deprecates
it in version 3.0, switching the default configured MySQL driver to mysqli.

Please use either the ‘mysqli’ or ‘pdo/mysql’ drivers for MySQL. The old ‘mysql’ driver will be
removed at some point in the future.

The sqlite, mssql and pdo/dblib (also known as pdo/mssql or pdo/sybase) drivers
all depend on PHP extensions that for different reasons no longer exist since PHP 5.3.

Therefore we are now deprecating these drivers as we will have to remove them in one of the next
CodeIgniter versions. You should use the more advanced, sqlite3, sqlsrv or pdo/sqlsrv
drivers respectively.

Note

These drivers are still available, but you’re strongly encouraged to switch to other ones
sooner rather than later.

Security helper do_hash()

Security Helper function do_hash() is now just an alias for
PHP’s native hash() function. It is deprecated and scheduled for removal in CodeIgniter 3.1+.

Note

This function is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

The $config[‘global_xss_filtering’] setting

As already explained above, XSS filtering should not be done on input data,
but on output instead. Therefore, the $config['global_xss_filtering'],
which automatically filters input data, is considered a bad practice and
is now deprecated.

Instead, you should manually escape any user-provided data via the
xss_clean() function when you need to output it, or use a
library like HTML Purifier [http://htmlpurifier.org/] that does that
for you.

Note

The setting is still available, but you’re strongly encouraged to
remove its usage sooner rather than later.

File helper read_file()

File Helper function read_file() is now just an alias for
PHP’s native file_get_contents() function. It is deprecated and scheduled for removal in
CodeIgniter 3.1+.

Note

This function is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

String helper repeater()

String Helper function repeater() is now just an alias for
PHP’s native str_repeat() function. It is deprecated and scheduled for removal in CodeIgniter 3.1+.

Note

This function is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

String helper trim_slashes()

String Helper function trim_slashes() is now just an alias
for PHP’s native trim() function (with a slash passed as its second argument). It is deprecated and
scheduled for removal in CodeIgniter 3.1+.

Note

This function is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

Form helper form_prep()

Form Helper function form_prep()
is now just an alias for common function
html_escape(). It is deprecated and will be removed in the future.

Please use html_escape() instead.

Note

This function is still available, but you’re strongly encouraged
to remove its usage sooner rather than later.

Email helper functions

Email Helper only has two functions

	valid_email()

	send_email()

Both of them are now aliases for PHP’s native filter_var() and mail() functions, respectively.
Therefore the Email Helper altogether is being deprecated and
is scheduled for removal in CodeIgniter 3.1+.

Note

These functions are still available, but you’re strongly encouraged to remove their usage
sooner rather than later.

Date helper standard_date()

Date Helper function standard_date() is being deprecated due
to the availability of native PHP constants [http://php.net/manual/en/class.datetime.php#datetime.constants.types],
which when combined with date() provide the same functionality. Furthermore, they have the
exact same names as the ones supported by standard_date(). Here are examples of how to replace
its usage:

// Old way
standard_date(); // defaults to standard_date('DATE_RFC822', now());

// Replacement
date(DATE_RFC822, now());

// Old way
standard_date('DATE_ATOM', $time);

// Replacement
date(DATE_ATOM, $time);

Note

This function is still available, but you’re strongly encouraged to remove its usage sooner
rather than later as it is scheduled for removal in CodeIgniter 3.1+.

HTML helpers nbs(), br()

HTML Helper functions nbs() and br() are just aliases
for the native str_repeat() function used with and
 respectively.

Because there’s no point in just aliasing native PHP functions, they are now deprecated and
scheduled for removal in CodeIgniter 3.1+.

Note

These functions are still available, but you’re strongly encouraged to remove their usage
sooner rather than later.

Pagination library ‘anchor_class’ setting

The Pagination Library now supports adding pretty much any HTML
attribute to your anchors via the ‘attributes’ configuration setting. This includes passing the
‘class’ attribute and using the separate ‘anchor_class’ setting no longer makes sense.
As a result of that, the ‘anchor_class’ setting is now deprecated and scheduled for removal in
CodeIgniter 3.1+.

Note

This setting is still available, but you’re strongly encouraged to remove its usage sooner
rather than later.

String helper random_string() types ‘unique’ and ‘encrypt’

When using the String Helper function random_string(),
you should no longer pass the unique and encrypt randomization types. They are only
aliases for md5 and sha1 respectively and are now deprecated and scheduled for removal
in CodeIgniter 3.1+.

Note

These options are still available, but you’re strongly encouraged to remove their usage
sooner rather than later.

URL helper url_title() separators ‘dash’ and ‘underscore’

When using the URL Helper function url_title(), you
should no longer pass dash or underscore as the word separator. This function will
now accept any character and you should just pass the chosen character directly, so you
should write ‘-‘ instead of ‘dash’ and ‘_’ instead of ‘underscore’.

dash and underscore now act as aliases and are deprecated and scheduled for removal
in CodeIgniter 3.1+.

Note

These options are still available, but you’re strongly encouraged to remove their usage
sooner rather than later.

Session Library method all_userdata()

As seen in the Change Log, Session Library
method userdata() now allows you to fetch all userdata by simply omitting its parameter:

$this->session->userdata();

This makes the all_userdata() method redudant and therefore it is now just an alias for
userdata() with the above shown usage and is being deprecated and scheduled for removal
in CodeIgniter 3.1+.

Note

This method is still available, but you’re strongly encouraged to remove its usage
sooner rather than later.

Database Forge method add_column() with an AFTER clause

If you have used the third parameter for Database Forge method
add_column() to add a field for an AFTER clause, then you should change its usage.

That third parameter has been deprecated and scheduled for removal in CodeIgniter 3.1+.

You should now put AFTER clause field names in the field definition array instead:

// Old usage:
$field = array(
 'new_field' => array('type' => 'TEXT')
);

$this->dbforge->add_column('table_name', $field, 'another_field');

// New usage:
$field = array(
 'new_field' => array('type' => 'TEXT', 'after' => 'another_field')
);

$this->dbforge->add_column('table_name', $field);

Note

The parameter is still available, but you’re strongly encouraged to remove its usage
sooner rather than later.

Note

This is for MySQL and CUBRID databases only! Other drivers don’t support this
clause and will silently ignore it.

URI Routing methods fetch_directory(), fetch_class(), fetch_method()

With properties CI_Router::$directory, CI_Router::$class and CI_Router::$method
being public and their respective fetch_*() no longer doing anything else to just return
the properties - it doesn’t make sense to keep them.

Those are all internal, undocumented methods, but we’ve opted to deprecate them for now
in order to maintain backwards-compatibility just in case. If some of you have utilized them,
then you can now just access the properties instead:

$this->router->directory;
$this->router->class;
$this->router->method;

Note

Those methods are still available, but you’re strongly encouraged to remove their usage
sooner rather than later.

Input library method is_cli_request()

Calls to the CI_Input::is_cli_request() method are necessary at many places
in the CodeIgniter internals and this is often before the Input Library is loaded. Because of that, it is being replaced by a common
function named is_cli() and this method is now just an alias.

The new function is both available at all times for you to use and shorter to type.

// Old
$this->input->is_cli_request();

// New
is_cli();

CI_Input::is_cli_request() is now now deprecated and scheduled for removal in
CodeIgniter 3.1+.

Note

This method is still available, but you’re strongly encouraged to remove its usage
sooner rather than later.

Config library method system_url()

Usage of CI_Config::system_url() encourages insecure coding practices.
Namely, your CodeIgniter system/ directory shouldn’t be publicly accessible
from a security point of view.

Because of this, this method is now deprecated and scheduled for removal in
CodeIgniter 3.1+.

Note

This method is still available, but you’re strongly encouraged to remove its usage
sooner rather than later.

The Javascript library

The Javascript Library has always had an
‘experimental’ status and was never really useful, nor a proper solution.

It is now deprecated and scheduled for removal in CodeIgniter 3.1+.

Note

This library is still available, but you’re strongly encouraged to remove its usage
sooner rather than later.

Form Validation method prep_for_form()

The Form Validation Library has a
prep_for_form() method, which is/can also be used as a rule in
set_rules() to automatically perform HTML encoding on input data.

Automatically encoding input (instead of output) data is a bad practice in
the first place, and CodeIgniter and PHP itself offer other alternatives
to this method anyway.
For example, Form Helper functions will
automatically perform HTML escaping when necessary.

Therefore, the prep_for_form method/rule is pretty much useless and is now
deprecated and scheduled for removal in 3.1+.

Note

The method is still available, but you’re strongly encouraged to
remove its usage sooner rather than later.

Step 21: Check your usage of Text helper highlight_phrase()

The default HTML tag used by Text Helper function
highlight_phrase() has been changed from to the new HTML5
tag <mark>.

Unless you’ve used your own highlighting tags, this might cause trouble
for your visitors who use older web browsers such as Internet Explorer 8.
We therefore suggest that you add the following code to your CSS files
in order to avoid backwards compatibility with old browsers:

mark {
 background: #ff0;
 color: #000;
};

Upgrading from 2.2.2 to 2.2.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Upgrading from 2.2.1 to 2.2.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Upgrading from 2.2.0 to 2.2.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Upgrading from 2.1.4 to 2.2.x

Note

The Encrypt Class now requires the
Mcrypt extension. If you were previously using the Encrypt Class
without Mcrypt, then this is a breaking change. You must install
the Mcrypt extension in order to upgrade. For information on
installing Mcrypt please see the PHP documentation
<http://php.net/manual/en/mcrypt.setup.php>.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Upgrading from 2.1.3 to 2.1.4

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Upgrading from 2.1.2 to 2.1.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 2.1.1 to 2.1.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 2.1.0 to 2.1.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Replace config/mimes.php

This config file has been updated to contain more user mime-types, please copy
it to _application/config/mimes.php*.

Step 3: Update your IP address tables

This upgrade adds support for IPv6 IP addresses. In order to store them, you need
to enlarge your ip_address columns to 45 characters. For example, CodeIgniter’s
session table will need to change

ALTER TABLE ci_sessions CHANGE ip_address ip_address varchar(45) default '0' NOT NULL

Upgrading from 2.0.3 to 2.1.0

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Replace config/mimes.php

This config file has been updated to contain more user agent types,
please copy it to application/config/mimes.php.

Step 3: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 2.0.2 to 2.0.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder and replace
your index.php file. If any modifications were made to your index.php
they will need to be made fresh in this new one.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your main index.php file

If you are running a stock index.php file simply replace your version
with the new one.

If your index.php file has internal modifications, please add your
modifications to the new file and use it.

Step 3: Replace config/user_agents.php

This config file has been updated to contain more user agent types,
please copy it to application/config/user_agents.php.

Step 4: Change references of the EXT constant to “.php”

Note

The EXT Constant has been marked as deprecated, but has not
been removed from the application. You are encouraged to make the
changes sooner rather than later.

Step 5: Remove APPPATH.’third_party’ from autoload.php

Open application/config/autoload.php, and look for the following:

$autoload['packages'] = array(APPPATH.'third_party');

If you have not chosen to load any additional packages, that line can be
changed to:

$autoload['packages'] = array();

Which should provide for nominal performance gains if not autoloading
packages.

Update Sessions Database Tables

If you are using database sessions with the CI Session Library, please
update your ci_sessions database table as follows:

CREATE INDEX last_activity_idx ON ci_sessions(last_activity);
ALTER TABLE ci_sessions MODIFY user_agent VARCHAR(120);

Upgrading from 2.0.1 to 2.0.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder and replace
your index.php file. If any modifications were made to your index.php
they will need to be made fresh in this new one.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Remove loading calls for the Security Library

Security has been moved to the core and is now always loaded
automatically. Make sure you remove any loading calls as they will
result in PHP errors.

Step 3: Move MY_Security

If you are overriding or extending the Security library, you will need
to move it to application/core.

csrf_token_name and csrf_hash have changed to protected class
properties. Please use security->get_csrf_hash() and
security->get_csrf_token_name() to access those values.

Upgrading from 2.0.0 to 2.0.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder and replace
your index.php file. If any modifications were made to your index.php
they will need to be made fresh in this new one.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Replace config/mimes.php

This config file has been updated to contain more mime types, please
copy it to application/config/mimes.php.

Step 3: Check for forms posting to default controller

The default behavior for form_open() when called with no parameters
used to be to post to the default controller, but it will now just leave
an empty action=”” meaning the form will submit to the current URL. If
submitting to the default controller was the expected behavior it will
need to be changed from:

echo form_open(); //<form action="" method="post" accept-charset="utf-8">

to use either a / or base_url():

echo form_open('/'); //<form action="http://example.com/index.php/" method="post" accept-charset="utf-8">
echo form_open(base_url()); //<form action="http://example.com/" method="post" accept-charset="utf-8">

Upgrading from 1.7.2 to 2.0.0

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Update Instructions

Step 1: Update your CodeIgniter files

Replace all files and directories in your “system” folder except
your application folder.

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Adjust get_dir_file_info() where necessary

Version 2.0.0 brings a non-backwards compatible change to
get_dir_file_info() in the File
Helper. Non-backwards compatible changes
are extremely rare in CodeIgniter, but this one we feel was warranted
due to how easy it was to create serious server performance issues. If
you need recursiveness where you are using this helper function,
change such instances, setting the second parameter, $top_level_only
to FALSE:

get_dir_file_info('/path/to/directory', FALSE);

Step 3: Convert your Plugins to Helpers

2.0.0 gets rid of the “Plugin” system as their functionality was
identical to Helpers, but non-extensible. You will need to rename your
plugin files from filename_pi.php to filename_helper.php, move them to
your helpers folder, and change all instances of:

$this->load->plugin('foo');

to

$this->load->helper('foo');

Step 4: Update stored encrypted data

Note

If your application does not use the Encrypt library, does
not store Encrypted data permanently, or is on an environment that does
not support Mcrypt, you may skip this step.

The Encrypt library has had a number of improvements, some for
encryption strength and some for performance, that has an unavoidable
consequence of making it no longer possible to decode encrypted data
produced by the original version of this library. To help with the
transition, a new method has been added, encode_from_legacy() that
will decode the data with the original algorithm and return a re-encoded
string using the improved methods. This will enable you to easily
replace stale encrypted data with fresh in your applications, either on
the fly or en masse.

Please read how to use this
method in the Encrypt library
documentation.

Step 5: Remove loading calls for the compatibility helper.

The compatibility helper has been removed from the CodeIgniter core. All
methods in it should be natively available in supported PHP versions.

Step 6: Update Class extension

All core classes are now prefixed with CI_. Update Models and
Controllers to extend CI_Model and CI_Controller, respectively.

Step 7: Update Parent Constructor calls

All native CodeIgniter classes now use the PHP 5 __construct()
convention. Please update extended libraries to call
parent::__construct().

Step 8: Move any core extensions to application/core

Any extensions to core classes (e.g. MY_Controller.php) in your
application/libraries folder must be moved to the new
application/core folder.

Step 9: Update your user guide

Please replace your local copy of the user guide with the new version,
including the image files.

Update Notes

Please refer to the 2.0.0 Change Log for full
details, but here are some of the larger changes that are more likely to
impact your code:

	Scaffolding has been removed.

	The CAPTCHA plugin in now a helper.

	The JavaScript calendar plugin was removed.

	The system/cache and system/logs directories are now in the application
directory.

	The Validation class has been removed. Please see the
Form Validation library

	“default” is now a reserved name.

	The xss_clean() function has moved to the Security Class.

	do_xss_clean() now returns FALSE if the uploaded file fails XSS checks.

	The Session Class requires now the use of an
encryption key set in the config file.

	The following deprecated Active Record functions have been removed:
orwhere, orlike, groupby, orhaving, orderby,
getwhere.

	_drop_database() and _create_database() functions have been removed
from the db utility drivers.

	The dohash() function of the Security helper
has been renamed to do_hash() for naming consistency.

The config folder

The following files have been changed:

	config.php

	database.php

	mimes.php

	routes.php

	user_agents.php

The following files have been added:

	foreign_chars.php

	profiler.php

Upgrading from 1.7.1 to 1.7.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

	index.php

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Remove header() from 404 error template

If you are using header() in your 404 error template, such as the case
with the default error_404.php template shown below, remove that line
of code.

<?php header("HTTP/1.1 404 Not Found"); ?>

404 status headers are now properly handled in the show_404() method
itself.

Step 3: Confirm your system_path

In your updated index.php file, confirm that the $system_path variable
is set to your application’s system folder.

Step 4: Update your user guide

Please replace your local copy of the user guide with the new version,
including the image files.

Upgrading from 1.7.0 to 1.7.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please replace your local copy of the user guide with the new version,
including the image files.

Upgrading from 1.6.3 to 1.7.0

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your Session Table

If you are using the Session class in your application, AND if you are
storing session data to a database, you must add a new column named
user_data to your session table. Here is an example of what this column
might look like for MySQL:

user_data text NOT NULL

To add this column you will run a query similar to this:

ALTER TABLE `ci_sessions` ADD `user_data` text NOT NULL

You’ll find more information regarding the new Session functionality in
the Session class page.

Step 3: Update your Validation Syntax

This is an optional, but recommended step, for people currently
using the Validation class. CI 1.7 introduces a new Form Validation
class, which deprecates the old
Validation library. We have left the old one in place so that existing
applications that use it will not break, but you are encouraged to
migrate to the new version as soon as possible. Please read the user
guide carefully as the new library works a little differently, and has
several new features.

Step 4: Update your user guide

Please replace your local copy of the user guide with the new version,
including the image files.

Upgrading from 1.6.2 to 1.6.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.6.1 to 1.6.2

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Encryption Key

If you are using sessions, open up application/config/config.php and
verify you’ve set an encryption key.

Step 3: Constants File

Copy /application/config/constants.php to your installation, and modify
if necessary.

Step 4: Mimes File

Replace /application/config/mimes.php with the dowloaded version. If
you’ve added custom mime types, you’ll need to re-add them.

Step 5: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.6.0 to 1.6.1

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/language

	system/libraries

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.5.4 to 1.6.0

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/codeigniter

	system/database

	system/helpers

	system/libraries

	system/plugins

	system/language

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Add time_to_update to your config.php

Add the following to application/config/config.php with the other
session configuration options

$config['sess_time_to_update'] = 300;

Step 3: Add $autoload[‘model’]

Add the following to application/config/autoload.php

/*
| ---
Auto-load Model files
Prototype:
$autoload['model'] = array('my_model');
*/

$autoload['model'] = array();

Step 4: Add to your database.php

Make the following changes to your application/config/database.php file:

Add the following variable above the database configuration options,
with $active_group

$active_record = TRUE;

Remove the following from your database configuration options

$db['default']['active_r'] = TRUE;

Add the following to your database configuration options

$db['default']['char_set'] = "utf8";
$db['default']['dbcollat'] = "utf8_general_ci";

Step 5: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.5.3 to 1.5.4

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	application/config/mimes.php

	system/codeigniter

	system/database

	system/helpers

	system/libraries

	system/plugins

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Add charset to your config.php

Add the following to application/config/config.php

/*
|--
Default Character Set
This determines which character set is used by default in various methods
that require a character set to be provided.
*/
$config['charset'] = "UTF-8";

Step 3: Autoloading language files

If you want to autoload any language files, add this line to
application/config/autoload.php

$autoload['language'] = array();

Step 4: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.5.2 to 1.5.3

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/database/drivers

	system/helpers

	system/libraries/Input.php

	system/libraries/Loader.php

	system/libraries/Profiler.php

	system/libraries/Table.php

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.5.0 to 1.5.2

Note

The instructions on this page assume you are running version
1.5.0 or 1.5.1. If you have not upgraded to that version please do so
first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	system/helpers/download_helper.php

	system/helpers/form_helper.php

	system/libraries/Table.php

	system/libraries/User_agent.php

	system/libraries/Exceptions.php

	system/libraries/Input.php

	system/libraries/Router.php

	system/libraries/Loader.php

	system/libraries/Image_lib.php

	system/language/english/unit_test_lang.php

	system/database/DB_active_rec.php

	system/database/drivers/mysqli/mysqli_driver.php

	codeigniter/

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.4.1 to 1.5.0

Note

The instructions on this page assume you are running version
1.4.1. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace these files and directories in your “system” folder with the new
versions:

	application/config/user_agents.php (new file for 1.5)

	application/config/smileys.php (new file for 1.5)

	codeigniter/

	database/ (new folder for 1.5. Replaces the “drivers” folder)

	helpers/

	language/

	libraries/

	scaffolding/

Note

If you have any custom developed files in these folders please
make copies of them first.

Step 2: Update your database.php file

Open your application/config/database.php file and add these new items:

$db['default']['cache_on'] = FALSE;
$db['default']['cachedir'] = '';

Step 3: Update your config.php file

Open your application/config/config.php file and ADD these new items:

/*
|--
Class Extension Prefix
This item allows you to set the filename/classname prefix when extending
native libraries. For more information please see the user guide:
https://codeigniter.com/user_guide/general/core_classes.html
https://codeigniter.com/user_guide/general/creating_libraries.html
*/
$config['subclass_prefix'] = 'MY_';

/*
|--
Rewrite PHP Short Tags
If your PHP installation does not have short tag support enabled CI
can rewrite the tags on-the-fly, enabling you to utilize that syntax
in your view files. Options are TRUE or FALSE (boolean)
*/
$config['rewrite_short_tags'] = FALSE;

In that same file REMOVE this item:

/*
|--
Enable/Disable Error Logging
If you would like errors or debug messages logged set this variable to
TRUE (boolean). Note: You must set the file permissions on the "logs" folder
such that it is writable.
*/
$config['log_errors'] = FALSE;

Error logging is now disabled simply by setting the threshold to zero.

Step 4: Update your main index.php file

If you are running a stock index.php file simply replace your version
with the new one.

If your index.php file has internal modifications, please add your
modifications to the new file and use it.

Step 5: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.4.0 to 1.4.1

Note

The instructions on this page assume you are running version
1.4.0. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	codeigniter

	drivers

	helpers

	libraries

Step 2: Update your config.php file

Open your application/config/config.php file and add this new item:

/*
|--
Output Compression
Enables Gzip output compression for faster page loads. When enabled,
the output class will test whether your server supports Gzip.
Even if it does, however, not all browsers support compression
so enable only if you are reasonably sure your visitors can handle it.
VERY IMPORTANT: If you are getting a blank page when compression is enabled it
means you are prematurely outputting something to your browser. It could
even be a line of whitespace at the end of one of your scripts. For
compression to work, nothing can be sent before the output buffer is called
by the output class. Do not "echo" any values with compression enabled.
*/
$config['compress_output'] = FALSE;

Step 3: Rename an Autoload Item

Open the following file: application/config/autoload.php

Find this array item:

$autoload['core'] = array();

And rename it to this:

$autoload['libraries'] = array();

This change was made to improve clarity since some users were not sure
that their own libraries could be auto-loaded.

Step 4: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.3.3 to 1.4.0

Note

The instructions on this page assume you are running version
1.3.3. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	application/config/hooks.php

	application/config/mimes.php

	codeigniter

	drivers

	helpers

	init

	language

	libraries

	scaffolding

Step 2: Update your config.php file

Open your application/config/config.php file and add these new items:

/*
|--
Enable/Disable System Hooks
If you would like to use the "hooks" feature you must enable it by
setting this variable to TRUE (boolean). See the user guide for details.
*/
$config['enable_hooks'] = FALSE;

/*
|--
Allowed URL Characters
This lets you specify which characters are permitted within your URLs.
When someone tries to submit a URL with disallowed characters they will
get a warning message.
As a security measure you are STRONGLY encouraged to restrict URLs to
as few characters as possible. By default only these are allowed: a-z 0-9~%.:_-
Leave blank to allow all characters -- but only if you are insane.
DO NOT CHANGE THIS UNLESS YOU FULLY UNDERSTAND THE REPERCUSSIONS!!
*/
$config['permitted_uri_chars'] = 'a-z 0-9~%.:_-';

Step 3: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.3.2 to 1.3.3

Note

The instructions on this page assume you are running version
1.3.2. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	codeigniter

	drivers

	helpers

	init

	libraries

Step 2: Update your Models

If you are NOT using CodeIgniter’s
Models feature disregard this step.

As of version 1.3.3, CodeIgniter does not connect automatically to
your database when a model is loaded. This allows you greater
flexibility in determining which databases you would like used with your
models. If your application is not connecting to your database prior to
a model being loaded you will have to update your code. There are
several options for connecting, as described
here.

Step 3: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.3.1 to 1.3.2

Note

The instructions on this page assume you are running version
1.3.1. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	drivers

	init

	libraries

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.3 to 1.3.1

Note

The instructions on this page assume you are running version
1.3. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	drivers

	init/init_unit_test.php (new for 1.3.1)

	language/

	libraries

	scaffolding

Step 2: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading from 1.2 to 1.3

Note

The instructions on this page assume you are running version
1.2. If you have not upgraded to that version please do so first.

Before performing an update you should take your site offline by
replacing the index.php file with a static one.

Step 1: Update your CodeIgniter files

Replace the following directories in your “system” folder with the new
versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	application/models/ (new for 1.3)

	codeigniter (new for 1.3)

	drivers

	helpers

	init

	language

	libraries

	plugins

	scaffolding

Step 2: Update your error files

Version 1.3 contains two new error templates located in
application/errors, and for naming consistency the other error templates
have been renamed.

If you have not customized any of the error templates simply replace
this folder:

	application/errors/

If you have customized your error templates, rename them as follows:

	404.php = error_404.php

	error.php = error_general.php

	error_db.php (new)

	error_php.php (new)

Step 3: Update your index.php file

Please open your main index.php file (located at your root). At the very
bottom of the file, change this:

require_once BASEPATH.'libraries/Front_controller'.EXT;

To this:

require_once BASEPATH.'codeigniter/CodeIgniter'.EXT;

Step 4: Update your config.php file

Open your application/config/config.php file and add these new items:

/*
|--
URL suffix
This option allows you to add a suffix to all URLs.
For example, if a URL is this:
example.com/index.php/products/view/shoes
You can optionally add a suffix, like ".html",
making the page appear to be of a certain type:
example.com/index.php/products/view/shoes.html
*/
$config['url_suffix'] = "";

/*
|--
Enable Query Strings
By default CodeIgniter uses search-engine and
human-friendly segment based URLs:
example.com/who/what/where/
You can optionally enable standard query string
based URLs:
example.com?who=me&what=something&where=here
Options are: TRUE or FALSE (boolean)
The two other items let you set the query string "words"
that will invoke your controllers and functions:
example.com/index.php?c=controller&m=function
*/
$config['enable_query_strings'] = FALSE;
$config['controller_trigger'] = 'c';
$config['function_trigger'] = 'm';

Step 5: Update your database.php file

Open your application/config/database.php file and add these new items:

$db['default']['dbprefix'] = "";
$db['default']['active_r'] = TRUE;

Step 6: Update your user guide

Please also replace your local copy of the user guide with the new
version.

Upgrading From Beta 1.0 to Final 1.2

To upgrade to Version 1.2 please replace the following directories with
the new versions:

Note

If you have any custom developed files in these folders please
make copies of them first.

	drivers

	helpers

	init

	language

	libraries

	plugins

	scaffolding

Please also replace your local copy of the user guide with the new
version.

Upgrading From Beta 1.0 to Beta 1.1

To upgrade to Beta 1.1 please perform the following steps:

Step 1: Replace your index file

Replace your main index.php file with the new index.php file. Note: If
you have renamed your “system” folder you will need to edit this info in
the new file.

Step 2: Relocate your config folder

This version of CodeIgniter now permits multiple sets of “applications”
to all share a common set of backend files. In order to enable each
application to have its own configuration values, the config directory
must now reside inside of your application folder, so please move it
there.

Step 3: Replace directories

Replace the following directories with the new versions:

	drivers

	helpers

	init

	libraries

	scaffolding

Step 4: Add the calendar language file

There is a new language file corresponding to the new calendaring class
which must be added to your language folder. Add the following item to
your version: language/english/calendar_lang.php

Step 5: Edit your config file

The original application/config/config.php file has a typo in it Open
the file and look for the items related to cookies:

$conf['cookie_prefix'] = "";
$conf['cookie_domain'] = "";
$conf['cookie_path'] = "/";

Change the array name from $conf to $config, like this:

$config['cookie_prefix'] = "";
$config['cookie_domain'] = "";
$config['cookie_path'] = "/";

Lastly, add the following new item to the config file (and edit the
option if needed):

/*
|--
URI PROTOCOL
This item determines which server global
should be used to retrieve the URI string. The
default setting of "auto" works for most servers.
If your links do not seem to work, try one of
the other delicious flavors:
'auto' Default - auto detects
'path_info' Uses the PATH_INFO
'query_string' Uses the QUERY_STRING
*/

$config['uri_protocol'] = "auto";

Troubleshooting

If you find that no matter what you put in your URL only your default
page is loading, it might be that your server does not support the
REQUEST_URI variable needed to serve search-engine friendly URLs. As a
first step, open your application/config/config.php file and look for
the URI Protocol information. It will recommend that you try a couple
alternate settings. If it still doesn’t work after you’ve tried this
you’ll need to force CodeIgniter to add a question mark to your URLs. To
do this open your application/config/config.php file and change this:

$config['index_page'] = "index.php";

To this:

$config['index_page'] = "index.php?";

General Topics

	CodeIgniter URLs

	Controllers

	Reserved Names

	Views

	Models

	Helpers

	Using CodeIgniter Libraries

	Creating Libraries

	Using CodeIgniter Drivers

	Creating Drivers

	Creating Core System Classes

	Creating Ancillary Classes

	Hooks - Extending the Framework Core

	Auto-loading Resources

	Common Functions

	Compatibility Functions

	URI Routing

	Error Handling

	Caching

	Profiling Your Application

	Running via the CLI

	Managing your Applications

	Handling Multiple Environments

	Alternate PHP Syntax for View Files

	Security

	PHP Style Guide

CodeIgniter URLs

By default, URLs in CodeIgniter are designed to be search-engine and
human friendly. Rather than using the standard “query string” approach
to URLs that is synonymous with dynamic systems, CodeIgniter uses a
segment-based approach:

example.com/news/article/my_article

Note

Query string URLs can be optionally enabled, as described
below.

URI Segments

The segments in the URL, in following with the Model-View-Controller
approach, usually represent:

example.com/class/function/ID

	The first segment represents the controller class that should be
invoked.

	The second segment represents the class function, or method, that
should be called.

	The third, and any additional segments, represent the ID and any
variables that will be passed to the controller.

The URI Library and the URL Helper contain functions that make it easy to work
with your URI data. In addition, your URLs can be remapped using the
URI Routing feature for more flexibility.

Removing the index.php file

By default, the index.php file will be included in your URLs:

example.com/index.php/news/article/my_article

If your Apache server has mod_rewrite enabled, you can easily remove this
file by using a .htaccess file with some simple rules. Here is an example
of such a file, using the “negative” method in which everything is redirected
except the specified items:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ index.php/$1 [L]

In the above example, any HTTP request other than those for existing
directories and existing files is treated as a request for your index.php file.

Note

These specific rules might not work for all server configurations.

Note

Make sure to also exclude from the above rule any assets that you
might need to be accessible from the outside world.

Adding a URL Suffix

In your config/config.php file you can specify a suffix that will be
added to all URLs generated by CodeIgniter. For example, if a URL is
this:

example.com/index.php/products/view/shoes

You can optionally add a suffix, like .html, making the page appear to
be of a certain type:

example.com/index.php/products/view/shoes.html

Enabling Query Strings

In some cases you might prefer to use query strings URLs:

index.php?c=products&m=view&id=345

CodeIgniter optionally supports this capability, which can be enabled in
your application/config.php file. If you open your config file you’ll
see these items:

$config['enable_query_strings'] = FALSE;
$config['controller_trigger'] = 'c';
$config['function_trigger'] = 'm';

If you change “enable_query_strings” to TRUE this feature will become
active. Your controllers and functions will then be accessible using the
“trigger” words you’ve set to invoke your controllers and methods:

index.php?c=controller&m=method

Note

If you are using query strings you will have to build your own
URLs, rather than utilizing the URL helpers (and other helpers
that generate URLs, like some of the form helpers) as these are
designed to work with segment based URLs.

Controllers

Controllers are the heart of your application, as they determine how
HTTP requests should be handled.

Page Contents

	Controllers
	What is a Controller?

	Let’s try it: Hello World!

	Methods

	Passing URI Segments to your methods

	Defining a Default Controller

	Remapping Method Calls

	Processing Output

	Private methods

	Organizing Your Controllers into Sub-directories

	Class Constructors

	Reserved method names

	That’s it!

What is a Controller?

A Controller is simply a class file that is named in a way that can be
associated with a URI.

Consider this URI:

example.com/index.php/blog/

In the above example, CodeIgniter would attempt to find a controller
named Blog.php and load it.

When a controller’s name matches the first segment of a URI, it will
be loaded.

Let’s try it: Hello World!

Let’s create a simple controller so you can see it in action. Using your
text editor, create a file called Blog.php, and put the following code
in it:

<?php
class Blog extends CI_Controller {

 public function index()
 {
 echo 'Hello World!';
 }
}

Then save the file to your application/controllers/ directory.

Important

The file must be called ‘Blog.php’, with a capital ‘B’.

Now visit the your site using a URL similar to this:

example.com/index.php/blog/

If you did it right, you should see:

Hello World!

Important

Class names must start with an uppercase letter.

This is valid:

<?php
class Blog extends CI_Controller {

}

This is not valid:

<?php
class blog extends CI_Controller {

}

Also, always make sure your controller extends the parent controller
class so that it can inherit all its methods.

Methods

In the above example the method name is index(). The “index” method
is always loaded by default if the second segment of the URI is
empty. Another way to show your “Hello World” message would be this:

example.com/index.php/blog/index/

The second segment of the URI determines which method in the
controller gets called.

Let’s try it. Add a new method to your controller:

<?php
class Blog extends CI_Controller {

 public function index()
 {
 echo 'Hello World!';
 }

 public function comments()
 {
 echo 'Look at this!';
 }
}

Now load the following URL to see the comment method:

example.com/index.php/blog/comments/

You should see your new message.

Passing URI Segments to your methods

If your URI contains more than two segments they will be passed to your
method as parameters.

For example, let’s say you have a URI like this:

example.com/index.php/products/shoes/sandals/123

Your method will be passed URI segments 3 and 4 (“sandals” and “123”):

<?php
class Products extends CI_Controller {

 public function shoes($sandals, $id)
 {
 echo $sandals;
 echo $id;
 }
}

Important

If you are using the URI Routing
feature, the segments passed to your method will be the re-routed
ones.

Defining a Default Controller

CodeIgniter can be told to load a default controller when a URI is not
present, as will be the case when only your site root URL is requested.
To specify a default controller, open your application/config/routes.php
file and set this variable:

$route['default_controller'] = 'blog';

Where ‘blog’ is the name of the controller class you want used. If you now
load your main index.php file without specifying any URI segments you’ll
see your “Hello World” message by default.

For more information, please refer to the “Reserved Routes” section of the
URI Routing documentation.

Remapping Method Calls

As noted above, the second segment of the URI typically determines which
method in the controller gets called. CodeIgniter permits you to override
this behavior through the use of the _remap() method:

public function _remap()
{
 // Some code here...
}

Important

If your controller contains a method named _remap(),
it will always get called regardless of what your URI contains. It
overrides the normal behavior in which the URI determines which method
is called, allowing you to define your own method routing rules.

The overridden method call (typically the second segment of the URI) will
be passed as a parameter to the _remap() method:

public function _remap($method)
{
 if ($method === 'some_method')
 {
 $this->$method();
 }
 else
 {
 $this->default_method();
 }
}

Any extra segments after the method name are passed into _remap() as an
optional second parameter. This array can be used in combination with
PHP’s call_user_func_array() [http://php.net/call_user_func_array]
to emulate CodeIgniter’s default behavior.

Example:

public function _remap($method, $params = array())
{
 $method = 'process_'.$method;
 if (method_exists($this, $method))
 {
 return call_user_func_array(array($this, $method), $params);
 }
 show_404();
}

Processing Output

CodeIgniter has an output class that takes care of sending your final
rendered data to the web browser automatically. More information on this
can be found in the Views and Output Class pages. In some cases, however, you might want to
post-process the finalized data in some way and send it to the browser
yourself. CodeIgniter permits you to add a method named _output()
to your controller that will receive the finalized output data.

Important

If your controller contains a method named _output(),
it will always be called by the output class instead of
echoing the finalized data directly. The first parameter of the
method will contain the finalized output.

Here is an example:

public function _output($output)
{
 echo $output;
}

Note

Please note that your _output() method will receive the
data in its finalized state. Benchmark and memory usage data
will be rendered, cache files written (if you have caching
enabled), and headers will be sent (if you use that
feature) before it is handed off
to the _output() method.
To have your controller’s output cached properly, its
_output() method can use:

if ($this->output->cache_expiration > 0)
{
 $this->output->_write_cache($output);
}

If you are using this feature the page execution timer and
memory usage stats might not be perfectly accurate since they
will not take into account any further processing you do.
For an alternate way to control output before any of the
final processing is done, please see the available methods
in the Output Library.

Private methods

In some cases you may want certain methods hidden from public access.
In order to achieve this, simply declare the method as being private
or protected and it will not be served via a URL request. For example,
if you were to have a method like this:

private function _utility()
{
 // some code
}

Trying to access it via the URL, like this, will not work:

example.com/index.php/blog/_utility/

Note

Prefixing method names with an underscore will also prevent
them from being called. This is a legacy feature that is left
for backwards-compatibility.

Organizing Your Controllers into Sub-directories

If you are building a large application you might want to hierarchically
organize or structure your controllers into sub-directories. CodeIgniter
permits you to do this.

Simply create sub-directories under the main application/controllers/
one and place your controller classes within them.

Note

When using this feature the first segment of your URI must
specify the folder. For example, let’s say you have a controller located
here:

application/controllers/products/Shoes.php

To call the above controller your URI will look something like this:

example.com/index.php/products/shoes/show/123

Each of your sub-directories may contain a default controller which will be
called if the URL contains only the sub-directory. Simply put a controller
in there that matches the name of your ‘default_controller’ as specified in
your application/config/routes.php file.

CodeIgniter also permits you to remap your URIs using its URI
Routing feature.

Class Constructors

If you intend to use a constructor in any of your Controllers, you
MUST place the following line of code in it:

parent::__construct();

The reason this line is necessary is because your local constructor will
be overriding the one in the parent controller class so we need to
manually call it.

Example:

<?php
class Blog extends CI_Controller {

 public function __construct()
 {
 parent::__construct();
 // Your own constructor code
 }
}

Constructors are useful if you need to set some default values, or run a
default process when your class is instantiated. Constructors can’t
return a value, but they can do some default work.

Reserved method names

Since your controller classes will extend the main application
controller you must be careful not to name your methods identically to
the ones used by that class, otherwise your local functions will
override them. See Reserved Names for a full
list.

Important

You should also never have a method named identically
to its class name. If you do, and there is no __construct()
method in the same class, then your e.g. Index::index()
method will be executed as a class constructor! This is a PHP4
backwards-compatibility feature.

That’s it!

That, in a nutshell, is all there is to know about controllers.

Reserved Names

In order to help out, CodeIgniter uses a series of function, method,
class and variable names in its operation. Because of this, some names
cannot be used by a developer. Following is a list of reserved names
that cannot be used.

Controller names

Since your controller classes will extend the main application
controller you must be careful not to name your methods identically to
the ones used by that class, otherwise your local methods will
override them. The following is a list of reserved names. Do not name
your controller any of these:

	CI_Controller

	Default

	index

Functions

	is_php()

	is_really_writable()

	load_class()

	is_loaded()

	get_config()

	config_item()

	show_error()

	show_404()

	log_message()

	set_status_header()

	get_mimes()

	html_escape()

	remove_invisible_characters()

	is_https()

	function_usable()

	get_instance()

	_error_handler()

	_exception_handler()

	_stringify_attributes()

Variables

	$config

	$db

	$lang

Constants

	ENVIRONMENT

	FCPATH

	SELF

	BASEPATH

	APPPATH

	VIEWPATH

	CI_VERSION

	MB_ENABLED

	ICONV_ENABLED

	UTF8_ENABLED

	FILE_READ_MODE

	FILE_WRITE_MODE

	DIR_READ_MODE

	DIR_WRITE_MODE

	FOPEN_READ

	FOPEN_READ_WRITE

	FOPEN_WRITE_CREATE_DESTRUCTIVE

	FOPEN_READ_WRITE_CREATE_DESTRUCTIVE

	FOPEN_WRITE_CREATE

	FOPEN_READ_WRITE_CREATE

	FOPEN_WRITE_CREATE_STRICT

	FOPEN_READ_WRITE_CREATE_STRICT

	SHOW_DEBUG_BACKTRACE

	EXIT_SUCCESS

	EXIT_ERROR

	EXIT_CONFIG

	EXIT_UNKNOWN_FILE

	EXIT_UNKNOWN_CLASS

	EXIT_UNKNOWN_METHOD

	EXIT_USER_INPUT

	EXIT_DATABASE

	EXIT__AUTO_MIN

	EXIT__AUTO_MAX

Views

A view is simply a web page, or a page fragment, like a header, footer,
sidebar, etc. In fact, views can flexibly be embedded within other views
(within other views, etc., etc.) if you need this type of hierarchy.

Views are never called directly, they must be loaded by a
controller. Remember that in an MVC framework, the
Controller acts as the traffic cop, so it is responsible for fetching a
particular view. If you have not read the
Controllers page you should do so before
continuing.

Using the example controller you created in the
controller page, let’s add a view to it.

Creating a View

Using your text editor, create a file called blogview.php, and put this
in it:

<html>
<head>
 <title>My Blog</title>
</head>
<body>
 <h1>Welcome to my Blog!</h1>
</body>
</html>

Then save the file in your application/views/ directory.

Loading a View

To load a particular view file you will use the following method:

$this->load->view('name');

Where name is the name of your view file.

Note

The .php file extension does not need to be specified
unless you use something other than .php.

Now, open the controller file you made earlier called Blog.php, and
replace the echo statement with the view loading method:

<?php
class Blog extends CI_Controller {

 public function index()
 {
 $this->load->view('blogview');
 }
}

If you visit your site using the URL you did earlier you should see your
new view. The URL was similar to this:

example.com/index.php/blog/

Loading multiple views

CodeIgniter will intelligently handle multiple calls to
$this->load->view() from within a controller. If more than one call
happens they will be appended together. For example, you may wish to
have a header view, a menu view, a content view, and a footer view. That
might look something like this:

<?php

class Page extends CI_Controller {

 public function index()
 {
 $data['page_title'] = 'Your title';
 $this->load->view('header');
 $this->load->view('menu');
 $this->load->view('content', $data);
 $this->load->view('footer');
 }

}

In the example above, we are using “dynamically added data”, which you
will see below.

Storing Views within Sub-directories

Your view files can also be stored within sub-directories if you prefer
that type of organization. When doing so you will need to include the
directory name loading the view. Example:

$this->load->view('directory_name/file_name');

Adding Dynamic Data to the View

Data is passed from the controller to the view by way of an array or
an object in the second parameter of the view loading method. Here
is an example using an array:

$data = array(
 'title' => 'My Title',
 'heading' => 'My Heading',
 'message' => 'My Message'
);

$this->load->view('blogview', $data);

And here’s an example using an object:

$data = new Someclass();
$this->load->view('blogview', $data);

Note

If you use an object, the class variables will be turned
into array elements.

Let’s try it with your controller file. Open it add this code:

<?php
class Blog extends CI_Controller {

 public function index()
 {
 $data['title'] = "My Real Title";
 $data['heading'] = "My Real Heading";

 $this->load->view('blogview', $data);
 }
}

Now open your view file and change the text to variables that correspond
to the array keys in your data:

<html>
<head>
 <title><?php echo $title;?></title>
</head>
<body>
 <h1><?php echo $heading;?></h1>
</body>
</html>

Then load the page at the URL you’ve been using and you should see the
variables replaced.

Creating Loops

The data array you pass to your view files is not limited to simple
variables. You can pass multi dimensional arrays, which can be looped to
generate multiple rows. For example, if you pull data from your database
it will typically be in the form of a multi-dimensional array.

Here’s a simple example. Add this to your controller:

<?php
class Blog extends CI_Controller {

 public function index()
 {
 $data['todo_list'] = array('Clean House', 'Call Mom', 'Run Errands');

 $data['title'] = "My Real Title";
 $data['heading'] = "My Real Heading";

 $this->load->view('blogview', $data);
 }
}

Now open your view file and create a loop:

<html>
<head>
 <title><?php echo $title;?></title>
</head>
<body>
 <h1><?php echo $heading;?></h1>

 <h3>My Todo List</h3>

 <?php foreach ($todo_list as $item):?>

 <?php echo $item;?>

 <?php endforeach;?>

</body>
</html>

Note

You’ll notice that in the example above we are using PHP’s
alternative syntax. If you are not familiar with it you can read about
it here.

Returning views as data

There is a third optional parameter lets you change the behavior of
the method so that it returns data as a string rather than sending it
to your browser. This can be useful if you want to process the data in
some way. If you set the parameter to TRUE (boolean) it will return
data. The default behavior is false, which sends it to your browser.
Remember to assign it to a variable if you want the data returned:

$string = $this->load->view('myfile', '', TRUE);

Models

Models are optionally available for those who want to use a more
traditional MVC approach.

Page Contents

	Models
	What is a Model?

	Anatomy of a Model

	Loading a Model

	Auto-loading Models

	Connecting to your Database

What is a Model?

Models are PHP classes that are designed to work with information in
your database. For example, let’s say you use CodeIgniter to manage a
blog. You might have a model class that contains functions to insert,
update, and retrieve your blog data. Here is an example of what such a
model class might look like:

class Blog_model extends CI_Model {

 public $title;
 public $content;
 public $date;

 public function get_last_ten_entries()
 {
 $query = $this->db->get('entries', 10);
 return $query->result();
 }

 public function insert_entry()
 {
 $this->title = $_POST['title']; // please read the below note
 $this->content = $_POST['content'];
 $this->date = time();

 $this->db->insert('entries', $this);
 }

 public function update_entry()
 {
 $this->title = $_POST['title'];
 $this->content = $_POST['content'];
 $this->date = time();

 $this->db->update('entries', $this, array('id' => $_POST['id']));
 }

}

Note

The methods in the above example use the Query Builder database methods.

Note

For the sake of simplicity in this example we’re using $_POST
directly. This is generally bad practice, and a more common approach
would be to use the Input Library
$this->input->post('title').

Anatomy of a Model

Model classes are stored in your application/models/ directory.
They can be nested within sub-directories if you want this type of
organization.

The basic prototype for a model class is this:

class Model_name extends CI_Model {

}

Where Model_name is the name of your class. Class names must have
the first letter capitalized with the rest of the name lowercase. Make
sure your class extends the base Model class.

The file name must match the class name. For example, if this is your class:

class User_model extends CI_Model {

}

Your file will be this:

application/models/User_model.php

Loading a Model

Your models will typically be loaded and called from within your
controller methods. To load a model you will use
the following method:

$this->load->model('model_name');

If your model is located in a sub-directory, include the relative path
from your models directory. For example, if you have a model located at
application/models/blog/Queries.php you’ll load it using:

$this->load->model('blog/queries');

Once loaded, you will access your model methods using an object with the
same name as your class:

$this->load->model('model_name');

$this->model_name->method();

If you would like your model assigned to a different object name you can
specify it via the second parameter of the loading method:

$this->load->model('model_name', 'foobar');

$this->foobar->method();

Here is an example of a controller, that loads a model, then serves a
view:

class Blog_controller extends CI_Controller {

 public function blog()
 {
 $this->load->model('blog');

 $data['query'] = $this->blog->get_last_ten_entries();

 $this->load->view('blog', $data);
 }
}

Auto-loading Models

If you find that you need a particular model globally throughout your
application, you can tell CodeIgniter to auto-load it during system
initialization. This is done by opening the
application/config/autoload.php file and adding the model to the
autoload array.

Connecting to your Database

When a model is loaded it does NOT connect automatically to your
database. The following options for connecting are available to you:

	You can connect using the standard database methods described
here, either from within your
Controller class or your Model class.

	You can tell the model loading method to auto-connect by passing
TRUE (boolean) via the third parameter, and connectivity settings,
as defined in your database config file will be used:

$this->load->model('model_name', '', TRUE);

	You can manually pass database connectivity settings via the third
parameter:

$config['hostname'] = 'localhost';
$config['username'] = 'myusername';
$config['password'] = 'mypassword';
$config['database'] = 'mydatabase';
$config['dbdriver'] = 'mysqli';
$config['dbprefix'] = '';
$config['pconnect'] = FALSE;
$config['db_debug'] = TRUE;

$this->load->model('model_name', '', $config);

Helper Functions

Helpers, as the name suggests, help you with tasks. Each helper file is
simply a collection of functions in a particular category. There are URL
Helpers, that assist in creating links, there are Form Helpers that help
you create form elements, Text Helpers perform various text formatting
routines, Cookie Helpers set and read cookies, File Helpers help you
deal with files, etc.

Unlike most other systems in CodeIgniter, Helpers are not written in an
Object Oriented format. They are simple, procedural functions. Each
helper function performs one specific task, with no dependence on other
functions.

CodeIgniter does not load Helper Files by default, so the first step in
using a Helper is to load it. Once loaded, it becomes globally available
in your controller and
views.

Helpers are typically stored in your system/helpers, or
application/helpers directory. CodeIgniter will look first in your
application/helpers directory. If the directory does not exist or the
specified helper is not located there CI will instead look in your
global system/helpers/ directory.

Loading a Helper

Loading a helper file is quite simple using the following method:

$this->load->helper('name');

Where name is the file name of the helper, without the .php file
extension or the “helper” part.

For example, to load the URL Helper file, which is named
url_helper.php, you would do this:

$this->load->helper('url');

A helper can be loaded anywhere within your controller methods (or
even within your View files, although that’s not a good practice), as
long as you load it before you use it. You can load your helpers in your
controller constructor so that they become available automatically in
any function, or you can load a helper in a specific function that needs
it.

Note

The Helper loading method above does not return a value, so
don’t try to assign it to a variable. Just use it as shown.

Loading Multiple Helpers

If you need to load more than one helper you can specify them in an
array, like this:

$this->load->helper(
 array('helper1', 'helper2', 'helper3')
);

Auto-loading Helpers

If you find that you need a particular helper globally throughout your
application, you can tell CodeIgniter to auto-load it during system
initialization. This is done by opening the application/config/autoload.php
file and adding the helper to the autoload array.

Using a Helper

Once you’ve loaded the Helper File containing the function you intend to
use, you’ll call it the way you would a standard PHP function.

For example, to create a link using the anchor() function in one of
your view files you would do this:

<?php echo anchor('blog/comments', 'Click Here');?>

Where “Click Here” is the name of the link, and “blog/comments” is the
URI to the controller/method you wish to link to.

“Extending” Helpers

To “extend” Helpers, create a file in your application/helpers/ folder
with an identical name to the existing Helper, but prefixed with MY_
(this item is configurable. See below.).

If all you need to do is add some functionality to an existing helper -
perhaps add a function or two, or change how a particular helper
function operates - then it’s overkill to replace the entire helper with
your version. In this case it’s better to simply “extend” the Helper.

Note

The term “extend” is used loosely since Helper functions are
procedural and discrete and cannot be extended in the traditional
programmatic sense. Under the hood, this gives you the ability to
add to or or to replace the functions a Helper provides.

For example, to extend the native Array Helper you’ll create a file
named application/helpers/MY_array_helper.php, and add or override
functions:

// any_in_array() is not in the Array Helper, so it defines a new function
function any_in_array($needle, $haystack)
{
 $needle = is_array($needle) ? $needle : array($needle);

 foreach ($needle as $item)
 {
 if (in_array($item, $haystack))
 {
 return TRUE;
 }
 }

 return FALSE;
}

// random_element() is included in Array Helper, so it overrides the native function
function random_element($array)
{
 shuffle($array);
 return array_pop($array);
}

Setting Your Own Prefix

The filename prefix for “extending” Helpers is the same used to extend
libraries and core classes. To set your own prefix, open your
application/config/config.php file and look for this item:

$config['subclass_prefix'] = 'MY_';

Please note that all native CodeIgniter libraries are prefixed with CI_
so DO NOT use that as your prefix.

Now What?

In the Table of Contents you’ll find a list of all the available Helper
Files. Browse each one to see what they do.

Using CodeIgniter Libraries

All of the available libraries are located in your system/libraries/
directory. In most cases, to use one of these classes involves initializing
it within a controller using the following
initialization method:

$this->load->library('class_name');

Where ‘class_name’ is the name of the class you want to invoke. For
example, to load the Form Validation Library you would do this:

$this->load->library('form_validation');

Once initialized you can use it as indicated in the user guide page
corresponding to that class.

Additionally, multiple libraries can be loaded at the same time by
passing an array of libraries to the load method.

Example:

$this->load->library(array('email', 'table'));

Creating Your Own Libraries

Please read the section of the user guide that discusses how to
create your own libraries.

Creating Libraries

When we use the term “Libraries” we are normally referring to the
classes that are located in the libraries directory and described in the
Class Reference of this user guide. In this case, however, we will
instead describe how you can create your own libraries within your
application/libraries directory in order to maintain separation between
your local resources and the global framework resources.

As an added bonus, CodeIgniter permits your libraries to extend native
classes if you simply need to add some functionality to an existing
library. Or you can even replace native libraries just by placing
identically named versions in your application/libraries directory.

In summary:

	You can create entirely new libraries.

	You can extend native libraries.

	You can replace native libraries.

The page below explains these three concepts in detail.

Note

The Database classes can not be extended or replaced with your
own classes. All other classes are able to be replaced/extended.

Storage

Your library classes should be placed within your application/libraries
directory, as this is where CodeIgniter will look for them when they are
initialized.

Naming Conventions

	File names must be capitalized. For example: Myclass.php

	Class declarations must be capitalized. For example: class Myclass

	Class names and file names must match.

The Class File

Classes should have this basic prototype:

<?php
defined('BASEPATH') OR exit('No direct script access allowed');

class Someclass {

 public function some_method()
 {
 }
}

Note

We are using the name Someclass purely as an example.

Using Your Class

From within any of your Controller methods you
can initialize your class using the standard:

$this->load->library('someclass');

Where someclass is the file name, without the “.php” file extension.
You can submit the file name capitalized or lower case. CodeIgniter
doesn’t care.

Once loaded you can access your class using the lower case version:

$this->someclass->some_method(); // Object instances will always be lower case

Passing Parameters When Initializing Your Class

In the library loading method you can dynamically pass data as an
array via the second parameter and it will be passed to your class
constructor:

$params = array('type' => 'large', 'color' => 'red');

$this->load->library('someclass', $params);

If you use this feature you must set up your class constructor to expect
data:

<?php defined('BASEPATH') OR exit('No direct script access allowed');

class Someclass {

 public function __construct($params)
 {
 // Do something with $params
 }
}

You can also pass parameters stored in a config file. Simply create a
config file named identically to the class file name and store it in
your application/config/ directory. Note that if you dynamically pass
parameters as described above, the config file option will not be
available.

Utilizing CodeIgniter Resources within Your Library

To access CodeIgniter’s native resources within your library use the
get_instance() method. This method returns the CodeIgniter super
object.

Normally from within your controller methods you will call any of the
available CodeIgniter methods using the $this construct:

$this->load->helper('url');
$this->load->library('session');
$this->config->item('base_url');
// etc.

$this, however, only works directly within your controllers, your
models, or your views. If you would like to use CodeIgniter’s classes
from within your own custom classes you can do so as follows:

First, assign the CodeIgniter object to a variable:

$CI =& get_instance();

Once you’ve assigned the object to a variable, you’ll use that variable
instead of $this:

$CI =& get_instance();

$CI->load->helper('url');
$CI->load->library('session');
$CI->config->item('base_url');
// etc.

Note

You’ll notice that the above get_instance() function is being
passed by reference:

$CI =& get_instance();

This is very important. Assigning by reference allows you to use the
original CodeIgniter object rather than creating a copy of it.

However, since a library is a class, it would be better if you
take full advantage of the OOP principles. So, in order to
be able to use the CodeIgniter super-object in all of the class
methods, you’re encouraged to assign it to a property instead:

class Example_library {

 protected $CI;

 // We'll use a constructor, as you can't directly call a function
 // from a property definition.
 public function __construct()
 {
 // Assign the CodeIgniter super-object
 $this->CI =& get_instance();
 }

 public function foo()
 {
 $this->CI->load->helper('url');
 redirect();
 }

 public function bar()
 {
 echo $this->CI->config->item('base_url');
 }

}

Replacing Native Libraries with Your Versions

Simply by naming your class files identically to a native library will
cause CodeIgniter to use it instead of the native one. To use this
feature you must name the file and the class declaration exactly the
same as the native library. For example, to replace the native Email
library you’ll create a file named application/libraries/Email.php,
and declare your class with:

class CI_Email {

}

Note that most native classes are prefixed with CI_.

To load your library you’ll see the standard loading method:

$this->load->library('email');

Note

At this time the Database classes can not be replaced with
your own versions.

Extending Native Libraries

If all you need to do is add some functionality to an existing library -
perhaps add a method or two - then it’s overkill to replace the entire
library with your version. In this case it’s better to simply extend the
class. Extending a class is nearly identical to replacing a class with a
couple exceptions:

	The class declaration must extend the parent class.

	Your new class name and filename must be prefixed with MY_ (this
item is configurable. See below.).

For example, to extend the native Email class you’ll create a file named
application/libraries/MY_Email.php, and declare your class with:

class MY_Email extends CI_Email {

}

If you need to use a constructor in your class make sure you
extend the parent constructor:

class MY_Email extends CI_Email {

 public function __construct($config = array())
 {
 parent::__construct($config);
 // Your own constructor code
 }

}

Note

Not all of the libraries have the same (or any) parameters
in their constructor. Take a look at the library that you’re
extending first to see how it should be implemented.

Loading Your Sub-class

To load your sub-class you’ll use the standard syntax normally used. DO
NOT include your prefix. For example, to load the example above, which
extends the Email class, you will use:

$this->load->library('email');

Once loaded you will use the class variable as you normally would for
the class you are extending. In the case of the email class all calls
will use:

$this->email->some_method();

Setting Your Own Prefix

To set your own sub-class prefix, open your
application/config/config.php file and look for this item:

$config['subclass_prefix'] = 'MY_';

Please note that all native CodeIgniter libraries are prefixed with CI_
so DO NOT use that as your prefix.

Using CodeIgniter Drivers

Drivers are a special type of Library that has a parent class and any
number of potential child classes. Child classes have access to the
parent class, but not their siblings. Drivers provide an elegant syntax
in your controllers for libraries that benefit
from or require being broken down into discrete classes.

Drivers are found in the system/libraries/ directory, in their own
sub-directory which is identically named to the parent library class.
Also inside that directory is a subdirectory named drivers, which
contains all of the possible child class files.

To use a driver you will initialize it within a controller using the
following initialization method:

$this->load->driver('class_name');

Where class name is the name of the driver class you want to invoke. For
example, to load a driver named “Some_parent” you would do this:

$this->load->driver('some_parent');

Methods of that class can then be invoked with:

$this->some_parent->some_method();

The child classes, the drivers themselves, can then be called directly
through the parent class, without initializing them:

$this->some_parent->child_one->some_method();
$this->some_parent->child_two->another_method();

Creating Your Own Drivers

Please read the section of the user guide that discusses how to create
your own drivers.

Creating Drivers

Driver Directory and File Structure

Sample driver directory and file structure layout:

	/application/libraries/Driver_name
	Driver_name.php

	drivers
	Driver_name_subclass_1.php

	Driver_name_subclass_2.php

	Driver_name_subclass_3.php

Note

In order to maintain compatibility on case-sensitive
file systems, the Driver_name directory must be
named in the format returned by ucfirst().

Note

The Driver library’s architecture is such that
the subclasses don’t extend and therefore don’t inherit
properties or methods of the main driver.

Creating Core System Classes

Every time CodeIgniter runs there are several base classes that are
initialized automatically as part of the core framework. It is possible,
however, to swap any of the core system classes with your own versions
or even extend the core versions.

Most users will never have any need to do this, but the option to
replace or extend them does exist for those who would like to
significantly alter the CodeIgniter core.

Note

Messing with a core system class has a lot of implications, so
make sure you know what you are doing before attempting it.

System Class List

The following is a list of the core system files that are invoked every
time CodeIgniter runs:

	Benchmark

	Config

	Controller

	Exceptions

	Hooks

	Input

	Language

	Loader

	Log

	Output

	Router

	Security

	URI

	Utf8

Replacing Core Classes

To use one of your own system classes instead of a default one simply
place your version inside your local application/core/ directory:

application/core/some_class.php

If this directory does not exist you can create it.

Any file named identically to one from the list above will be used
instead of the one normally used.

Please note that your class must use CI as a prefix. For example, if
your file is named Input.php the class will be named:

class CI_Input {

}

Extending Core Class

If all you need to do is add some functionality to an existing library -
perhaps add a method or two - then it’s overkill to replace the entire
library with your version. In this case it’s better to simply extend the
class. Extending a class is nearly identical to replacing a class with a
couple exceptions:

	The class declaration must extend the parent class.

	Your new class name and filename must be prefixed with MY_ (this
item is configurable. See below.).

For example, to extend the native Input class you’ll create a file named
application/core/MY_Input.php, and declare your class with:

class MY_Input extends CI_Input {

}

Note

If you need to use a constructor in your class make sure you
extend the parent constructor:

class MY_Input extends CI_Input {

 public function __construct()
 {
 parent::__construct();
 // Your own constructor code
 }
}

Tip: Any functions in your class that are named identically to the
methods in the parent class will be used instead of the native ones
(this is known as “method overriding”). This allows you to substantially
alter the CodeIgniter core.

If you are extending the Controller core class, then be sure to extend
your new class in your application controller’s constructors.

class Welcome extends MY_Controller {

 public function index()
 {
 $this->load->view('welcome_message');
 }
}

Setting Your Own Prefix

To set your own sub-class prefix, open your
application/config/config.php file and look for this item:

$config['subclass_prefix'] = 'MY_';

Please note that all native CodeIgniter libraries are prefixed
with CI_ so DO NOT use that as your prefix.

Creating Ancillary Classes

In some cases you may want to develop classes that exist apart from your
controllers but have the ability to utilize all of CodeIgniter’s
resources. This is easily possible as you’ll see.

get_instance()

	
get_instance()

	

	Returns:	Reference to your controller’s instance

	Return type:	CI_Controller

Any class that you instantiate within your controller methods can
access CodeIgniter’s native resources simply by using the
get_instance() function. This function returns the main
CodeIgniter object.

Normally, to call any of the available methods, CodeIgniter requires
you to use the $this construct:

$this->load->helper('url');
$this->load->library('session');
$this->config->item('base_url');
// etc.

$this, however, only works within your controllers, your models,
or your views. If you would like to use CodeIgniter’s classes from
within your own custom classes you can do so as follows:

First, assign the CodeIgniter object to a variable:

$CI =& get_instance();

Once you’ve assigned the object to a variable, you’ll use that variable
instead of $this:

$CI =& get_instance();

$CI->load->helper('url');
$CI->load->library('session');
$CI->config->item('base_url');
// etc.

If you’ll be using get_instance() inside another class, then it would
be better if you assign it to a property. This way, you won’t need to call
get_instance() in every single method.

Example:

class Example {

 protected $CI;

 // We'll use a constructor, as you can't directly call a function
 // from a property definition.
 public function __construct()
 {
 // Assign the CodeIgniter super-object
 $this->CI =& get_instance();
 }

 public function foo()
 {
 $this->CI->load->helper('url');
 redirect();
 }

 public function bar()
 {
 $this->CI->config->item('base_url');
 }
}

In the above example, both methods foo() and bar() will work
after you instantiate the Example class, without the need to call
get_instance() in each of them.

Hooks - Extending the Framework Core

CodeIgniter’s Hooks feature provides a means to tap into and modify the
inner workings of the framework without hacking the core files. When
CodeIgniter runs it follows a specific execution process, diagramed in
the Application Flow page. There may be
instances, however, where you’d like to cause some action to take place
at a particular stage in the execution process. For example, you might
want to run a script right before your controllers get loaded, or right
after, or you might want to trigger one of your own scripts in some
other location.

Enabling Hooks

The hooks feature can be globally enabled/disabled by setting the
following item in the application/config/config.php file:

$config['enable_hooks'] = TRUE;

Defining a Hook

Hooks are defined in the application/config/hooks.php file.
Each hook is specified as an array with this prototype:

$hook['pre_controller'] = array(
 'class' => 'MyClass',
 'function' => 'Myfunction',
 'filename' => 'Myclass.php',
 'filepath' => 'hooks',
 'params' => array('beer', 'wine', 'snacks')
);

Notes:

The array index correlates to the name of the particular hook point you
want to use. In the above example the hook point is pre_controller. A
list of hook points is found below. The following items should be
defined in your associative hook array:

	class The name of the class you wish to invoke. If you prefer to
use a procedural function instead of a class, leave this item blank.

	function The function (or method) name you wish to call.

	filename The file name containing your class/function.

	filepath The name of the directory containing your script.
Note:
Your script must be located in a directory INSIDE your application/
directory, so the file path is relative to that directory. For example,
if your script is located in application/hooks/, you will simply use
‘hooks’ as your filepath. If your script is located in
application/hooks/utilities/ you will use ‘hooks/utilities’ as your
filepath. No trailing slash.

	params Any parameters you wish to pass to your script. This item
is optional.

You can also use lambda/anoymous functions (or closures) as hooks, with
a simpler syntax:

$hook['post_controller'] = function()
{
 /* do something here */
};

Multiple Calls to the Same Hook

If want to use the same hook point with more than one script, simply
make your array declaration multi-dimensional, like this:

$hook['pre_controller'][] = array(
 'class' => 'MyClass',
 'function' => 'MyMethod',
 'filename' => 'Myclass.php',
 'filepath' => 'hooks',
 'params' => array('beer', 'wine', 'snacks')
);

$hook['pre_controller'][] = array(
 'class' => 'MyOtherClass',
 'function' => 'MyOtherMethod',
 'filename' => 'Myotherclass.php',
 'filepath' => 'hooks',
 'params' => array('red', 'yellow', 'blue')
);

Notice the brackets after each array index:

$hook['pre_controller'][]

This permits you to have the same hook point with multiple scripts. The
order you define your array will be the execution order.

Hook Points

The following is a list of available hook points.

	pre_system
Called very early during system execution. Only the benchmark and
hooks class have been loaded at this point. No routing or other
processes have happened.

	pre_controller
Called immediately prior to any of your controllers being called.
All base classes, routing, and security checks have been done.

	post_controller_constructor
Called immediately after your controller is instantiated, but prior
to any method calls happening.

	post_controller
Called immediately after your controller is fully executed.

	display_override
Overrides the _display() method, used to send the finalized page
to the web browser at the end of system execution. This permits you
to use your own display methodology. Note that you will need to
reference the CI superobject with $this->CI =& get_instance() and
then the finalized data will be available by calling
$this->CI->output->get_output().

	cache_override
Enables you to call your own method instead of the _display_cache()
method in the Output Library. This permits
you to use your own cache display mechanism.

	post_system
Called after the final rendered page is sent to the browser, at the
end of system execution after the finalized data is sent to the
browser.

Auto-loading Resources

CodeIgniter comes with an “Auto-load” feature that permits libraries,
helpers, and models to be initialized automatically every time the
system runs. If you need certain resources globally throughout your
application you should consider auto-loading them for convenience.

The following items can be loaded automatically:

	Classes found in the libraries/ directory

	Helper files found in the helpers/ directory

	Custom config files found in the config/ directory

	Language files found in the system/language/ directory

	Models found in the models/ folder

To autoload resources, open the application/config/autoload.php
file and add the item you want loaded to the autoload array. You’ll
find instructions in that file corresponding to each type of item.

Note

Do not include the file extension (.php) when adding items to
the autoload array.

Additionally, if you want CodeIgniter to use a Composer [https://getcomposer.org/]
auto-loader, just set $config['composer_autoload'] to TRUE or
a custom path in application/config/config.php.

Common Functions

CodeIgniter uses a few functions for its operation that are globally
defined, and are available to you at any point. These do not require
loading any libraries or helpers.

	
is_php($version)

	

	Parameters:	
	$version (string) – Version number

	Returns:	TRUE if the running PHP version is at least the one specified or FALSE if not

	Return type:	bool

Determines if the PHP version being used is greater than the
supplied version number.

Example:

if (is_php('5.3'))
{
 $str = quoted_printable_encode($str);
}

Returns boolean TRUE if the installed version of PHP is equal to or
greater than the supplied version number. Returns FALSE if the installed
version of PHP is lower than the supplied version number.

	
is_really_writable($file)

	

	Parameters:	
	$file (string) – File path

	Returns:	TRUE if the path is writable, FALSE if not

	Return type:	bool

is_writable() returns TRUE on Windows servers when you really can’t
write to the file as the OS reports to PHP as FALSE only if the
read-only attribute is marked.

This function determines if a file is actually writable by attempting
to write to it first. Generally only recommended on platforms where
this information may be unreliable.

Example:

if (is_really_writable('file.txt'))
{
 echo "I could write to this if I wanted to";
}
else
{
 echo "File is not writable";
}

Note

See also PHP bug #54709 [https://bugs.php.net/bug.php?id=54709] for more info.

	
config_item($key)

	

	Parameters:	
	$key (string) – Config item key

	Returns:	Configuration key value or NULL if not found

	Return type:	mixed

The Config Library is the preferred way of
accessing configuration information, however config_item() can be used
to retrieve single keys. See Config Library
documentation for more information.

	
set_status_header($code[, $text = ''])

	

	Parameters:	
	$code (int) – HTTP Response status code

	$text (string) – A custom message to set with the status code

	Return type:	void

Permits you to manually set a server status header. Example:

set_status_header(401);
// Sets the header as: Unauthorized

See here [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html] for
a full list of headers.

	
remove_invisible_characters($str[, $url_encoded = TRUE])

	

	Parameters:	
	$str (string) – Input string

	$url_encoded (bool) – Whether to remove URL-encoded characters as well

	Returns:	Sanitized string

	Return type:	string

This function prevents inserting NULL characters between ASCII
characters, like Java\0script.

Example:

remove_invisible_characters('Java\\0script');
// Returns: 'Javascript'

	
html_escape($var)

	

	Parameters:	
	$var (mixed) – Variable to escape (string or array)

	Returns:	HTML escaped string(s)

	Return type:	mixed

This function acts as an alias for PHP’s native htmlspecialchars()
function, with the advantage of being able to accept an array of strings.

It is useful in preventing Cross Site Scripting (XSS).

	
get_mimes()

	

	Returns:	An associative array of file types

	Return type:	array

This function returns a reference to the MIMEs array from
application/config/mimes.php.

	
is_https()

	

	Returns:	TRUE if currently using HTTP-over-SSL, FALSE if not

	Return type:	bool

Returns TRUE if a secure (HTTPS) connection is used and FALSE
in any other case (including non-HTTP requests).

	
is_cli()

	

	Returns:	TRUE if currently running under CLI, FALSE otherwise

	Return type:	bool

Returns TRUE if the application is run through the command line
and FALSE if not.

Note

This function checks both if the PHP_SAPI value is ‘cli’
or if the STDIN constant is defined.

	
function_usable($function_name)

	

	Parameters:	
	$function_name (string) – Function name

	Returns:	TRUE if the function can be used, FALSE if not

	Return type:	bool

Returns TRUE if a function exists and is usable, FALSE otherwise.

This function runs a function_exists() check and if the
Suhosin extension <http://www.hardened-php.net/suhosin/> is loaded,
checks if it doesn’t disable the function being checked.

It is useful if you want to check for the availability of functions
such as eval() and exec(), which are dangerous and might be
disabled on servers with highly restrictive security policies.

Note

This function was introduced because Suhosin terminated
script execution, but this turned out to be a bug. A fix
has been available for some time (version 0.9.34), but is
unfortunately not released yet.

Compatibility Functions

CodeIgniter provides a set of compatibility functions that enable
you to use functions what are otherwise natively available in PHP,
but only in higher versions or depending on a certain extension.

Being custom implementations, these functions will also have some
set of dependencies on their own, but are still useful if your
PHP setup doesn’t offer them natively.

Note

Much like the common functions, the
compatibility functions are always available, as long as
their dependencies are met.

	Password Hashing
	Dependencies

	Constants

	Function reference

	Hash (Message Digest)
	Dependencies

	Function reference

	Multibyte String
	Dependencies

	Function reference

	Standard Functions
	Dependencies

	Function reference

Password Hashing

This set of compatibility functions offers a “backport” of PHP’s
standard Password Hashing extension [http://php.net/password]
that is otherwise available only since PHP 5.5.

Dependencies

	PHP 5.3.7

	CRYPT_BLOWFISH support for crypt()

Constants

	PASSWORD_BCRYPT

	PASSWORD_DEFAULT

Function reference

	
password_get_info($hash)

	

	Parameters:	
	$hash (string) – Password hash

	Returns:	Information about the hashed password

	Return type:	array

For more information, please refer to the PHP manual for
password_get_info() [http://php.net/password_get_info].

	
password_hash($password, $algo[, $options = array()])

	

	Parameters:	
	$password (string) – Plain-text password

	$algo (int) – Hashing algorithm

	$options (array) – Hashing options

	Returns:	Hashed password or FALSE on failure

	Return type:	string

For more information, please refer to the PHP manual for
password_hash() [http://php.net/password_hash].

Note

Unless you provide your own (and valid) salt, this function
has a further dependency on an available CSPRNG source. Each
of the following would satisfy that:
- mcrypt_create_iv() with MCRYPT_DEV_URANDOM
- openssl_random_pseudo_bytes()
- /dev/arandom
- /dev/urandom

	
password_needs_rehash()

	

	Parameters:	
	$hash (string) – Password hash

	$algo (int) – Hashing algorithm

	$options (array) – Hashing options

	Returns:	TRUE if the hash should be rehashed to match the given algorithm and options, FALSE otherwise

	Return type:	bool

For more information, please refer to the PHP manual for
password_needs_rehash() [http://php.net/password_needs_rehash].

	
password_verify($password, $hash)

	

	Parameters:	
	$password (string) – Plain-text password

	$hash (string) – Password hash

	Returns:	TRUE if the password matches the hash, FALSE if not

	Return type:	bool

For more information, please refer to the PHP manual for
password_verify() [http://php.net/password_verify].

Hash (Message Digest)

This compatibility layer contains backports for the hash_equals()
and hash_pbkdf2() functions, which otherwise require PHP 5.6 and/or
PHP 5.5 respectively.

Dependencies

	None

Function reference

	
hash_equals($known_string, $user_string)

	

	Parameters:	
	$known_string (string) – Known string

	$user_string (string) – User-supplied string

	Returns:	TRUE if the strings match, FALSE otherwise

	Return type:	string

For more information, please refer to the PHP manual for
hash_equals() [http://php.net/hash_equals].

	
hash_pbkdf2($algo, $password, $salt, $iterations[, $length = 0[, $raw_output = FALSE]])

	

	Parameters:	
	$algo (string) – Hashing algorithm

	$password (string) – Password

	$salt (string) – Hash salt

	$iterations (int) – Number of iterations to perform during derivation

	$length (int) – Output string length

	$raw_output (bool) – Whether to return raw binary data

	Returns:	Password-derived key or FALSE on failure

	Return type:	string

For more information, please refer to the PHP manual for
hash_pbkdf2() [http://php.net/hash_pbkdf2].

Multibyte String

This set of compatibility functions offers limited support for PHP’s
Multibyte String extension [http://php.net/mbstring]. Because of
the limited alternative solutions, only a few functions are available.

Note

When a character set parameter is ommited,
$config['charset'] will be used.

Dependencies

	iconv [http://php.net/iconv] extension

Important

This dependency is optional and these functions will
always be declared. If iconv is not available, they WILL
fall-back to their non-mbstring versions.

Important

Where a character set is supplied, it must be
supported by iconv and in a format that it recognizes.

Note

For you own dependency check on the actual mbstring
extension, use the MB_ENABLED constant.

Function reference

	
mb_strlen($str[, $encoding = NULL])

	

	Parameters:	
	$str (string) – Input string

	$encoding (string) – Character set

	Returns:	Number of characters in the input string or FALSE on failure

	Return type:	string

For more information, please refer to the PHP manual for
mb_strlen() [http://php.net/mb_strlen].

	
mb_strpos($haystack, $needle[, $offset = 0[, $encoding = NULL]])

	

	Parameters:	
	$haystack (string) – String to search in

	$needle (string) – Part of string to search for

	$offset (int) – Search offset

	$encoding (string) – Character set

	Returns:	Numeric character position of where $needle was found or FALSE if not found

	Return type:	mixed

For more information, please refer to the PHP manual for
mb_strpos() [http://php.net/mb_strpos].

	
mb_substr($str, $start[, $length = NULL[, $encoding = NULL]])

	

	Parameters:	
	$str (string) – Input string

	$start (int) – Position of first character

	$length (int) – Maximum number of characters

	$encoding (string) – Character set

	Returns:	Portion of $str specified by $start and $length or FALSE on failure

	Return type:	string

For more information, please refer to the PHP manual for
mb_substr() [http://php.net/mb_substr].

Standard Functions

This set of compatibility functions offers support for a few
standard functions in PHP that otherwise require a newer PHP version.

Dependencies

	None

Function reference

	
array_column(array $array, $column_key[, $index_key = NULL])

	

	Parameters:	
	$array (array) – Array to fetch results from

	$column_key (mixed) – Key of the column to return values from

	$index_key (mixed) – Key to use for the returned values

	Returns:	An array of values representing a single column from the input array

	Return type:	array

For more information, please refer to the PHP manual for
array_column() [http://php.net/array_column].

	
hex2bin($data)

	

	Parameters:	
	$data (array) – Hexadecimal representation of data

	Returns:	Binary representation of the given data

	Return type:	string

For more information, please refer to the PHP manual for hex2bin() [http://php.net/hex2bin].

URI Routing

Typically there is a one-to-one relationship between a URL string and
its corresponding controller class/method. The segments in a URI
normally follow this pattern:

example.com/class/function/id/

In some instances, however, you may want to remap this relationship so
that a different class/method can be called instead of the one
corresponding to the URL.

For example, let’s say you want your URLs to have this prototype:

example.com/product/1/
example.com/product/2/
example.com/product/3/
example.com/product/4/

Normally the second segment of the URL is reserved for the method
name, but in the example above it instead has a product ID. To
overcome this, CodeIgniter allows you to remap the URI handler.

Setting your own routing rules

Routing rules are defined in your application/config/routes.php file.
In it you’ll see an array called $route that permits you to specify
your own routing criteria. Routes can either be specified using wildcards
or Regular Expressions.

Wildcards

A typical wildcard route might look something like this:

$route['product/:num'] = 'catalog/product_lookup';

In a route, the array key contains the URI to be matched, while the
array value contains the destination it should be re-routed to. In the
above example, if the literal word “product” is found in the first
segment of the URL, and a number is found in the second segment, the
“catalog” class and the “product_lookup” method are instead used.

You can match literal values or you can use two wildcard types:

(:num) will match a segment containing only numbers.
(:any) will match a segment containing any character (except for ‘/’, which is the segment delimiter).

Note

Wildcards are actually aliases for regular expressions, with
:any being translated to [^/]+ and :num to [0-9]+,
respectively.

Note

Routes will run in the order they are defined. Higher routes
will always take precedence over lower ones.

Note

Route rules are not filters! Setting a rule of e.g.
‘foo/bar/(:num)’ will not prevent controller Foo and method
bar to be called with a non-numeric value if that is a valid
route.

Examples

Here are a few routing examples:

$route['journals'] = 'blogs';

A URL containing the word “journals” in the first segment will be
remapped to the “blogs” class.

$route['blog/joe'] = 'blogs/users/34';

A URL containing the segments blog/joe will be remapped to the “blogs”
class and the “users” method. The ID will be set to “34”.

$route['product/(:any)'] = 'catalog/product_lookup';

A URL with “product” as the first segment, and anything in the second
will be remapped to the “catalog” class and the “product_lookup”
method.

$route['product/(:num)'] = 'catalog/product_lookup_by_id/$1';

A URL with “product” as the first segment, and a number in the second
will be remapped to the “catalog” class and the
“product_lookup_by_id” method passing in the match as a variable to
the method.

Important

Do not use leading/trailing slashes.

Regular Expressions

If you prefer you can use regular expressions to define your routing
rules. Any valid regular expression is allowed, as are back-references.

Note

If you use back-references you must use the dollar syntax
rather than the double backslash syntax.

A typical RegEx route might look something like this:

$route['products/([a-z]+)/(\d+)'] = '$1/id_$2';

In the above example, a URI similar to products/shirts/123 would instead
call the “shirts” controller class and the “id_123” method.

With regular expressions, you can also catch multiple segments at once.
For example, if a user accesses a password protected area of your web
application and you wish to be able to redirect them back to the same
page after they log in, you may find this example useful:

$route['login/(.+)'] = 'auth/login/$1';

Note

In the above example, if the $1 placeholder contains a
slash, it will still be split into multiple parameters when
passed to Auth::login().

For those of you who don’t know regular expressions and want to learn
more about them, regular-expressions.info [http://www.regular-expressions.info/]
might be a good starting point.

Note

You can also mix and match wildcards with regular expressions.

Callbacks

You can also use callbacks in place of the normal routing rules to process
the back-references. Example:

$route['products/([a-zA-Z]+)/edit/(\d+)'] = function ($product_type, $id)
{
 return 'catalog/product_edit/' . strtolower($product_type) . '/' . $id;
};

Using HTTP verbs in routes

It is possible to use HTTP verbs (request method) to define your routing rules.
This is particularly useful when building RESTful applications. You can use standard HTTP
verbs (GET, PUT, POST, DELETE, PATCH) or a custom one such (e.g. PURGE). HTTP verb rules
are case-insensitive. All you need to do is to add the verb as an array key to your route.
Example:

$route['products']['put'] = 'product/insert';

In the above example, a PUT request to URI “products” would call the Product::insert()
controller method.

$route['products/(:num)']['DELETE'] = 'product/delete/$1';

A DELETE request to URL with “products” as first the segment and a number in the second will be
mapped to the Product::delete() method, passing the numeric value as the first parameter.

Using HTTP verbs is of course, optional.

Reserved Routes

There are three reserved routes:

$route['default_controller'] = 'welcome';

This route points to the action that should be executed if the URI contains
no data, which will be the case when people load your root URL.
The setting accepts a controller/method value and index() would be
the default method if you don’t specify one. In the above example, it is
Welcome::index() that would be called.

Note

You can NOT use a directory as a part of this setting!

You are encouraged to always have a default route as otherwise a 404 page
will appear by default.

$route['404_override'] = '';

This route indicates which controller class should be loaded if the
requested controller is not found. It will override the default 404
error page. Same per-directory rules as with ‘default_controller’
apply here as well.

It won’t affect to the show_404() function, which will
continue loading the default error_404.php file at
application/views/errors/error_404.php.

$route['translate_uri_dashes'] = FALSE;

As evident by the boolean value, this is not exactly a route. This
option enables you to automatically replace dashes (‘-‘) with
underscores in the controller and method URI segments, thus saving you
additional route entries if you need to do that.
This is required, because the dash isn’t a valid class or method name
character and would cause a fatal error if you try to use it.

Error Handling

CodeIgniter lets you build error reporting into your applications using
the functions described below. In addition, it has an error logging
class that permits error and debugging messages to be saved as text
files.

Note

By default, CodeIgniter displays all PHP errors. You might
wish to change this behavior once your development is complete. You’ll
find the error_reporting() function located at the top of your main
index.php file. Disabling error reporting will NOT prevent log files
from being written if there are errors.

Unlike most systems in CodeIgniter, the error functions are simple
procedural interfaces that are available globally throughout the
application. This approach permits error messages to get triggered
without having to worry about class/function scoping.

CodeIgniter also returns a status code whenever a portion of the core
calls exit(). This exit status code is separate from the HTTP status
code, and serves as a notice to other processes that may be watching of
whether the script completed successfully, or if not, what kind of
problem it encountered that caused it to abort. These values are
defined in application/config/constants.php. While exit status codes
are most useful in CLI settings, returning the proper code helps server
software keep track of your scripts and the health of your application.

The following functions let you generate errors:

	
show_error($message, $status_code, $heading = 'An Error Was Encountered')

	

	Parameters:	
	$message (mixed) – Error message

	$status_code (int) – HTTP Response status code

	$heading (string) – Error page heading

	Return type:	void

This function will display the error message supplied to it using
the error template appropriate to your execution:

application/views/errors/html/error_general.php

or:

application/views/errors/cli/error_general.php

The optional parameter $status_code determines what HTTP status
code should be sent with the error. If $status_code is less
than 100, the HTTP status code will be set to 500, and the exit
status code will be set to $status_code + EXIT__AUTO_MIN.
If that value is larger than EXIT__AUTO_MAX, or if
$status_code is 100 or higher, the exit status code will be set
to EXIT_ERROR.
You can check in application/config/constants.php for more detail.

	
show_404($page = '', $log_error = TRUE)

	

	Parameters:	
	$page (string) – URI string

	$log_error (bool) – Whether to log the error

	Return type:	void

This function will display the 404 error message supplied to it
using the error template appropriate to your execution:

application/views/errors/html/error_404.php

or:

application/views/errors/cli/error_404.php

The function expects the string passed to it to be the file path to
the page that isn’t found. The exit status code will be set to
EXIT_UNKNOWN_FILE.
Note that CodeIgniter automatically shows 404 messages if
controllers are not found.

CodeIgniter automatically logs any show_404() calls. Setting the
optional second parameter to FALSE will skip logging.

	
log_message($level, $message)

	

	Parameters:	
	$level (string) – Log level: ‘error’, ‘debug’ or ‘info’

	$message (string) – Message to log

	Return type:	void

This function lets you write messages to your log files. You must
supply one of three “levels” in the first parameter, indicating what
type of message it is (debug, error, info), with the message itself
in the second parameter.

Example:

if ($some_var == '')
{
 log_message('error', 'Some variable did not contain a value.');
}
else
{
 log_message('debug', 'Some variable was correctly set');
}

log_message('info', 'The purpose of some variable is to provide some value.');

There are three message types:

	Error Messages. These are actual errors, such as PHP errors or
user errors.

	Debug Messages. These are messages that assist in debugging. For
example, if a class has been initialized, you could log this as
debugging info.

	Informational Messages. These are the lowest priority messages,
simply giving information regarding some process.

Note

In order for the log file to actually be written, the
logs/ directory must be writable. In addition, you must
set the “threshold” for logging in
application/config/config.php. You might, for example,
only want error messages to be logged, and not the other
two types. If you set it to zero logging will be disabled.

Web Page Caching

CodeIgniter lets you cache your pages in order to achieve maximum
performance.

Although CodeIgniter is quite fast, the amount of dynamic information
you display in your pages will correlate directly to the server
resources, memory, and processing cycles utilized, which affect your
page load speeds. By caching your pages, since they are saved in their
fully rendered state, you can achieve performance that nears that of
static web pages.

How Does Caching Work?

Caching can be enabled on a per-page basis, and you can set the length
of time that a page should remain cached before being refreshed. When a
page is loaded for the first time, the cache file will be written to
your application/cache folder. On subsequent page loads the cache file
will be retrieved and sent to the requesting user’s browser. If it has
expired, it will be deleted and refreshed before being sent to the
browser.

Enabling Caching

To enable caching, put the following tag in any of your controller
methods:

$this->output->cache($n);

Where $n is the number of minutes you wish the page to remain
cached between refreshes.

The above tag can go anywhere within a method. It is not affected by
the order that it appears, so place it wherever it seems most logical to
you. Once the tag is in place, your pages will begin being cached.

Important

Because of the way CodeIgniter stores content for output,
caching will only work if you are generating display for your
controller with a view.

Important

If you change configuration options that might affect
your output, you have to manually delete your cache files.

Note

Before the cache files can be written you must set the file
permissions on your application/cache/ directory such that
it is writable.

Deleting Caches

If you no longer wish to cache a file you can remove the caching tag and
it will no longer be refreshed when it expires.

Note

Removing the tag will not delete the cache immediately. It will
have to expire normally.

If you need to manually delete the cache, you can use the delete_cache()
method:

// Deletes cache for the currently requested URI
$this->output->delete_cache();

// Deletes cache for /foo/bar
$this->output->delete_cache('/foo/bar');

Profiling Your Application

The Profiler Class will display benchmark results, queries you have run,
and $_POST data at the bottom of your pages. This information can be
useful during development in order to help with debugging and
optimization.

Initializing the Class

Important

This class does NOT need to be initialized. It is loaded
automatically by the Output Library
if profiling is enabled as shown below.

Enabling the Profiler

To enable the profiler place the following line anywhere within your
Controller methods:

$this->output->enable_profiler(TRUE);

When enabled a report will be generated and inserted at the bottom of
your pages.

To disable the profiler you will use:

$this->output->enable_profiler(FALSE);

Setting Benchmark Points

In order for the Profiler to compile and display your benchmark data you
must name your mark points using specific syntax.

Please read the information on setting Benchmark points in the
Benchmark Library page.

Enabling and Disabling Profiler Sections

Each section of Profiler data can be enabled or disabled by setting a
corresponding config variable to TRUE or FALSE. This can be done one of
two ways. First, you can set application wide defaults with the
application/config/profiler.php config file.

Example:

$config['config'] = FALSE;
$config['queries'] = FALSE;

In your controllers, you can override the defaults and config file
values by calling the set_profiler_sections() method of the
Output Library:

$sections = array(
 'config' => TRUE,
 'queries' => TRUE
);

$this->output->set_profiler_sections($sections);

Available sections and the array key used to access them are described
in the table below.

	Key
	Description
	Default

	benchmarks
	Elapsed time of Benchmark points and total execution time
	TRUE

	config
	CodeIgniter Config variables
	TRUE

	controller_info
	The Controller class and method requested
	TRUE

	get
	Any GET data passed in the request
	TRUE

	http_headers
	The HTTP headers for the current request
	TRUE

	memory_usage
	Amount of memory consumed by the current request, in bytes
	TRUE

	post
	Any POST data passed in the request
	TRUE

	queries
	Listing of all database queries executed, including execution time
	TRUE

	uri_string
	The URI of the current request
	TRUE

	session_data
	Data stored in the current session
	TRUE

	query_toggle_count
	The number of queries after which the query block will default to
hidden.
	25

Note

Disabling the save_queries setting in
your database configuration will also effectively disable profiling for
database queries and render the ‘queries’ setting above useless. You can
optionally override this setting with $this->db->save_queries = TRUE;.
Without this setting you won’t be able to view the queries or the
last_query <database/helpers>.

Running via the CLI

As well as calling an applications Controllers
via the URL in a browser they can also be loaded via the command-line
interface (CLI).

Page Contents

	Running via the CLI
	What is the CLI?

	Why run via the command-line?

	Let’s try it: Hello World!

	That’s it!

What is the CLI?

The command-line interface is a text-based method of interacting with
computers. For more information, check the Wikipedia
article [http://en.wikipedia.org/wiki/Command-line_interface].

Why run via the command-line?

There are many reasons for running CodeIgniter from the command-line,
but they are not always obvious.

	Run your cron-jobs without needing to use wget or curl

	Make your cron-jobs inaccessible from being loaded in the URL by
checking the return value of is_cli().

	Make interactive “tasks” that can do things like set permissions,
prune cache folders, run backups, etc.

	Integrate with other applications in other languages. For example, a
random C++ script could call one command and run code in your models!

Let’s try it: Hello World!

Let’s create a simple controller so you can see it in action. Using your
text editor, create a file called Tools.php, and put the following code
in it:

<?php
class Tools extends CI_Controller {

 public function message($to = 'World')
 {
 echo "Hello {$to}!".PHP_EOL;
 }
}

Then save the file to your application/controllers/ folder.

Now normally you would visit the site using a URL similar to this:

example.com/index.php/tools/message/to

Instead, we are going to open the terminal in Mac/Linux or go to Run > “cmd”
in Windows and navigate to our CodeIgniter project.

$ cd /path/to/project;
$ php index.php tools message

If you did it right, you should see Hello World! printed.

$ php index.php tools message "John Smith"

Here we are passing it an argument in the same way that URL parameters
work. “John Smith” is passed as an argument and the output is:

Hello John Smith!

That’s it!

That, in a nutshell, is all there is to know about controllers on the
command line. Remember that this is just a normal controller, so routing
and _remap() works fine.

Managing your Applications

By default it is assumed that you only intend to use CodeIgniter to
manage one application, which you will build in your application/
directory. It is possible, however, to have multiple sets of
applications that share a single CodeIgniter installation, or even to
rename or relocate your application directory.

Renaming the Application Directory

If you would like to rename your application directory you may do so
as long as you open your main index.php file and set its name using
the $application_folder variable:

$application_folder = 'application';

Relocating your Application Directory

It is possible to move your application directory to a different
location on your server than your web root. To do so open
your main index.php and set a full server path in the
$application_folder variable:

$application_folder = '/path/to/your/application';

Running Multiple Applications with one CodeIgniter Installation

If you would like to share a common CodeIgniter installation to manage
several different applications simply put all of the directories located
inside your application directory into their own sub-directory.

For example, let’s say you want to create two applications, named “foo”
and “bar”. You could structure your application directories like this:

applications/foo/
applications/foo/config/
applications/foo/controllers/
applications/foo/libraries/
applications/foo/models/
applications/foo/views/
applications/bar/
applications/bar/config/
applications/bar/controllers/
applications/bar/libraries/
applications/bar/models/
applications/bar/views/

To select a particular application for use requires that you open your
main index.php file and set the $application_folder variable. For
example, to select the “foo” application for use you would do this:

$application_folder = 'applications/foo';

Note

Each of your applications will need its own index.php file
which calls the desired application. The index.php file can be named
anything you want.

Handling Multiple Environments

Developers often desire different system behavior depending on whether
an application is running in a development or production environment.
For example, verbose error output is something that would be useful
while developing an application, but it may also pose a security issue
when “live”.

The ENVIRONMENT Constant

By default, CodeIgniter comes with the environment constant set to use
the value provided in $_SERVER['CI_ENV'], otherwise defaults to
‘development’. At the top of index.php, you will see:

define('ENVIRONMENT', isset($_SERVER['CI_ENV']) ? $_SERVER['CI_ENV'] : 'development');

This server variable can be set in your .htaccess file, or Apache
config using SetEnv [https://httpd.apache.org/docs/2.2/mod/mod_env.html#setenv].
Alternative methods are available for nginx and other servers, or you can
remove this logic entirely and set the constant based on the server’s IP address.

In addition to affecting some basic framework behavior (see the next
section), you may use this constant in your own development to
differentiate between which environment you are running in.

Effects On Default Framework Behavior

There are some places in the CodeIgniter system where the ENVIRONMENT
constant is used. This section describes how default framework behavior
is affected.

Error Reporting

Setting the ENVIRONMENT constant to a value of ‘development’ will cause
all PHP errors to be rendered to the browser when they occur.
Conversely, setting the constant to ‘production’ will disable all error
output. Disabling error reporting in production is a good security
practice.

Configuration Files

Optionally, you can have CodeIgniter load environment-specific
configuration files. This may be useful for managing things like
differing API keys across multiple environments. This is described in
more detail in the environment section of the Config Class documentation.

Alternate PHP Syntax for View Files

If you do not utilize CodeIgniter’s template
engine, you’ll be using pure PHP in your
View files. To minimize the PHP code in these files, and to make it
easier to identify the code blocks it is recommended that you use PHPs
alternative syntax for control structures and short tag echo statements.
If you are not familiar with this syntax, it allows you to eliminate the
braces from your code, and eliminate “echo” statements.

Automatic Short Tag Support

Note

If you find that the syntax described in this page does not
work on your server it might be that “short tags” are disabled in your
PHP ini file. CodeIgniter will optionally rewrite short tags on-the-fly,
allowing you to use that syntax even if your server doesn’t support it.
This feature can be enabled in your config/config.php file.

Please note that if you do use this feature, if PHP errors are
encountered in your view files, the error message and line number
will not be accurately shown. Instead, all errors will be shown as
eval() errors.

Alternative Echos

Normally to echo, or print out a variable you would do this:

<?php echo $variable; ?>

With the alternative syntax you can instead do it this way:

<?=$variable?>

Alternative Control Structures

Controls structures, like if, for, foreach, and while can be written in
a simplified format as well. Here is an example using foreach:

<?php foreach ($todo as $item): ?>

 <?=$item?>

<?php endforeach; ?>

Notice that there are no braces. Instead, the end brace is replaced with
endforeach. Each of the control structures listed above has a similar
closing syntax: endif, endfor, endforeach, and endwhile

Also notice that instead of using a semicolon after each structure
(except the last one), there is a colon. This is important!

Here is another example, using if/elseif/else. Notice the colons:

<?php if ($username === 'sally'): ?>

 <h3>Hi Sally</h3>

<?php elseif ($username === 'joe'): ?>

 <h3>Hi Joe</h3>

<?php else: ?>

 <h3>Hi unknown user</h3>

<?php endif; ?>

Security

This page describes some “best practices” regarding web security, and
details CodeIgniter’s internal security features.

Note

If you came here looking for a security contact, please refer to
our Contribution Guide <../contributing/index>.

URI Security

CodeIgniter is fairly restrictive regarding which characters it allows
in your URI strings in order to help minimize the possibility that
malicious data can be passed to your application. URIs may only contain
the following:

	Alpha-numeric text (latin characters only)

	Tilde: ~

	Percent sign: %

	Period: .

	Colon: :

	Underscore: _

	Dash: -

	Space

Register_globals

During system initialization all global variables that are found to exist
in the $_GET, $_POST, $_REQUEST and $_COOKIE are unset.

The unsetting routine is effectively the same as register_globals = off.

display_errors

In production environments, it is typically desirable to “disable” PHP’s
error reporting by setting the internal display_errors flag to a value
of 0. This disables native PHP errors from being rendered as output,
which may potentially contain sensitive information.

Setting CodeIgniter’s ENVIRONMENT constant in index.php to a value of
‘production’ will turn off these errors. In development mode, it is
recommended that a value of ‘development’ is used. More information
about differentiating between environments can be found on the
Handling Environments page.

magic_quotes_runtime

The magic_quotes_runtime directive is turned off during system
initialization so that you don’t have to remove slashes when retrieving
data from your database.

Best Practices

Before accepting any data into your application, whether it be POST data
from a form submission, COOKIE data, URI data, XML-RPC data, or even
data from the SERVER array, you are encouraged to practice this three
step approach:

	Validate the data to ensure it conforms to the correct type, length,
size, etc.

	Filter the data as if it were tainted.

	Escape the data before submitting it into your database or outputting
it to a browser.

CodeIgniter provides the following functions and tips to assist you
in this process:

XSS Filtering

CodeIgniter comes with a Cross Site Scripting filter. This filter
looks for commonly used techniques to embed malicious JavaScript into
your data, or other types of code that attempt to hijack cookies or
do other malicious things. The XSS Filter is described
here.

Note

XSS filtering should only be performed on output. Filtering
input data may modify the data in undesirable ways, including
stripping special characters from passwords, which reduces
security instead of improving it.

CSRF protection

CSRF stands for Cross-Site Request Forgery, which is the process of an
attacker tricking their victim into unknowingly submitting a request.

CodeIgniter provides CSRF protection out of the box, which will get
automatically triggered for every non-GET HTTP request, but also needs
you to create your submit forms in a certain way. This is explained in
the Security Library documentation.

Password handling

It is critical that you handle passwords in your application properly.

Unfortunately, many developers don’t know how to do that, and the web is
full of outdated or otherwise wrongful advices, which doesn’t help.

We would like to give you a list of combined do’s and don’ts to help you
with that. Please read below.

	DO NOT store passwords in plain-text format.

Always hash your passwords.

	DO NOT use Base64 or similar encoding for storing passwords.

This is as good as storing them in plain-text. Really. Do hashing,
not encoding.

Encoding, and encryption too, are two-way processes. Passwords are
secrets that must only be known to their owner, and thus must work
only in one direction. Hashing does that - there’s no un-hashing or
de-hashing, but there is decoding and decryption.

	DO NOT use weak or broken hashing algorithms like MD5 or SHA1.

These algorithms are old, proven to be flawed, and not designed for
password hashing in the first place.

Also, DON’T invent your own algorithms.

Only use strong password hashing algorithms like BCrypt, which is used
in PHP’s own Password Hashing [http://php.net/password] functions.

Please use them, even if you’re not running PHP 5.5+, CodeIgniter
provides them for you.

	DO NOT ever display or send a password in plain-text format!

Even to the password’s owner, if you need a “Forgotten password”
feature, just randomly generate a new, one-time (this is also important)
password and send that instead.

	DO NOT put unnecessary limits on your users’ passwords.

If you’re using a hashing algorithm other than BCrypt (which has a limit
of 72 characters), you should set a relatively high limit on password
lengths in order to mitigate DoS attacks - say, 1024 characters.

Other than that however, there’s no point in forcing a rule that a
password can only be up to a number of characters, or that it can’t
contain a certain set of special characters.

Not only does this reduce security instead of improving it, but
there’s literally no reason to do it. No technical limitations and
no (practical) storage constraints apply once you’ve hashed them, none!

Validate input data

CodeIgniter has a Form Validation Library that assists you in
validating, filtering, and prepping your data.

Even if that doesn’t work for your use case however, be sure to always
validate and sanitize all input data. For example, if you expect a numeric
string for an input variable, you can check for that with is_numeric()
or ctype_digit(). Always try to narrow down your checks to a certain
pattern.

Have it in mind that this includes not only $_POST and $_GET
variables, but also cookies, the user-agent string and basically
all data that is not created directly by your own code.

Escape all data before database insertion

Never insert information into your database without escaping it.
Please see the section that discusses database queries for more information.

Hide your files

Another good security practice is to only leave your index.php
and “assets” (e.g. .js, css and image files) under your server’s
webroot directory (most commonly named “htdocs/”). These are
the only files that you would need to be accessible from the web.

Allowing your visitors to see anything else would potentially
allow them to access sensitive data, execute scripts, etc.

If you’re not allowed to do that, you can try using a .htaccess
file to restrict access to those resources.

CodeIgniter will have an index.html file in all of its
directories in an attempt to hide some of this data, but have
it in mind that this is not enough to prevent a serious
attacker.

PHP Style Guide

The following page describes the coding styles adhered to when
contributing to the development of CodeIgniter. There is no requirement
to use these styles in your own CodeIgniter application, though they
are recommended.

Table of Contents

	PHP Style Guide
	File Format
	TextMate

	BBEdit

	PHP Closing Tag

	File Naming

	Class and Method Naming

	Variable Names

	Commenting

	Constants

	TRUE, FALSE, and NULL

	Logical Operators

	Comparing Return Values and Typecasting

	Debugging Code

	Whitespace in Files

	Compatibility

	One File per Class

	Whitespace

	Line Breaks

	Code Indenting

	Bracket and Parenthetic Spacing

	Localized Text

	Private Methods and Variables

	PHP Errors

	Short Open Tags

	One Statement Per Line

	Strings

	SQL Queries

	Default Function Arguments

File Format

Files should be saved with Unicode (UTF-8) encoding. The BOM should
not be used. Unlike UTF-16 and UTF-32, there’s no byte order to
indicate in a UTF-8 encoded file, and the BOM can have a negative side
effect in PHP of sending output, preventing the application from being
able to set its own headers. Unix line endings should be used (LF).

Here is how to apply these settings in some of the more common text
editors. Instructions for your text editor may vary; check your text
editor’s documentation.

TextMate

	Open the Application Preferences

	Click Advanced, and then the “Saving” tab

	In “File Encoding”, select “UTF-8 (recommended)”

	In “Line Endings”, select “LF (recommended)”

	Optional: Check “Use for existing files as well” if you wish to
modify the line endings of files you open to your new preference.

BBEdit

	Open the Application Preferences

	Select “Text Encodings” on the left.

	In “Default text encoding for new documents”, select “Unicode (UTF-8,
no BOM)”

	Optional: In “If file’s encoding can’t be guessed, use”, select
“Unicode (UTF-8, no BOM)”

	Select “Text Files” on the left.

	In “Default line breaks”, select “Mac OS X and Unix (LF)”

PHP Closing Tag

The PHP closing tag on a PHP document ?> is optional to the PHP
parser. However, if used, any whitespace following the closing tag,
whether introduced by the developer, user, or an FTP application, can
cause unwanted output, PHP errors, or if the latter are suppressed,
blank pages. For this reason, all PHP files MUST OMIT the PHP closing
tag and end with a single empty line instead.

File Naming

Class files must be named in a Ucfirst-like manner, while any other file name
(configurations, views, generic scripts, etc.) should be in all lowercase.

INCORRECT:

somelibrary.php
someLibrary.php
SOMELIBRARY.php
Some_Library.php

Application_config.php
Application_Config.php
applicationConfig.php

CORRECT:

Somelibrary.php
Some_library.php

applicationconfig.php
application_config.php

Furthermore, class file names should match the name of the class itself.
For example, if you have a class named Myclass, then its filename must
be Myclass.php.

Class and Method Naming

Class names should always start with an uppercase letter. Multiple words
should be separated with an underscore, and not CamelCased.

INCORRECT:

class superclass
class SuperClass

CORRECT:

class Super_class

class Super_class {

 public function __construct()
 {

 }
}

Class methods should be entirely lowercased and named to clearly
indicate their function, preferably including a verb. Try to avoid
overly long and verbose names. Multiple words should be separated
with an underscore.

INCORRECT:

function fileproperties() // not descriptive and needs underscore separator
function fileProperties() // not descriptive and uses CamelCase
function getfileproperties() // Better! But still missing underscore separator
function getFileProperties() // uses CamelCase
function get_the_file_properties_from_the_file() // wordy

CORRECT:

function get_file_properties() // descriptive, underscore separator, and all lowercase letters

Variable Names

The guidelines for variable naming are very similar to those used for
class methods. Variables should contain only lowercase letters,
use underscore separators, and be reasonably named to indicate their
purpose and contents. Very short, non-word variables should only be used
as iterators in for() loops.

INCORRECT:

$j = 'foo'; // single letter variables should only be used in for() loops
$Str // contains uppercase letters
$bufferedText // uses CamelCasing, and could be shortened without losing semantic meaning
$groupid // multiple words, needs underscore separator
$name_of_last_city_used // too long

CORRECT:

for ($j = 0; $j < 10; $j++)
$str
$buffer
$group_id
$last_city

Commenting

In general, code should be commented prolifically. It not only helps
describe the flow and intent of the code for less experienced
programmers, but can prove invaluable when returning to your own code
months down the line. There is not a required format for comments, but
the following are recommended.

DocBlock [http://manual.phpdoc.org/HTMLSmartyConverter/HandS/phpDocumentor/tutorial_phpDocumentor.howto.pkg.html#basics.docblock]
style comments preceding class, method, and property declarations so they can be
picked up by IDEs:

/**
 * Super Class
 *
 * @package Package Name
 * @subpackage Subpackage
 * @category Category
 * @author Author Name
 * @link http://example.com
 */
class Super_class {

/**
 * Encodes string for use in XML
 *
 * @param string $str Input string
 * @return string
 */
function xml_encode($str)

/**
 * Data for class manipulation
 *
 * @var array
 */
public $data = array();

Use single line comments within code, leaving a blank line between large
comment blocks and code.

// break up the string by newlines
$parts = explode("\n", $str);

// A longer comment that needs to give greater detail on what is
// occurring and why can use multiple single-line comments. Try to
// keep the width reasonable, around 70 characters is the easiest to
// read. Don't hesitate to link to permanent external resources
// that may provide greater detail:
//
// http://example.com/information_about_something/in_particular/

$parts = $this->foo($parts);

Constants

Constants follow the same guidelines as do variables, except constants
should always be fully uppercase. Always use CodeIgniter constants when
appropriate, i.e. SLASH, LD, RD, PATH_CACHE, etc.

INCORRECT:

myConstant // missing underscore separator and not fully uppercase
N // no single-letter constants
S_C_VER // not descriptive
$str = str_replace('{foo}', 'bar', $str); // should use LD and RD constants

CORRECT:

MY_CONSTANT
NEWLINE
SUPER_CLASS_VERSION
$str = str_replace(LD.'foo'.RD, 'bar', $str);

TRUE, FALSE, and NULL

TRUE, FALSE, and NULL keywords should always be fully
uppercase.

INCORRECT:

if ($foo == true)
$bar = false;
function foo($bar = null)

CORRECT:

if ($foo == TRUE)
$bar = FALSE;
function foo($bar = NULL)

Logical Operators

Use of the || “or” comparison operator is discouraged, as its clarity
on some output devices is low (looking like the number 11, for instance).
&& is preferred over AND but either are acceptable, and a space should
always precede and follow !.

INCORRECT:

if ($foo || $bar)
if ($foo AND $bar) // okay but not recommended for common syntax highlighting applications
if (!$foo)
if (! is_array($foo))

CORRECT:

if ($foo OR $bar)
if ($foo && $bar) // recommended
if (! $foo)
if (! is_array($foo))

Comparing Return Values and Typecasting

Some PHP functions return FALSE on failure, but may also have a valid
return value of “” or 0, which would evaluate to FALSE in loose
comparisons. Be explicit by comparing the variable type when using these
return values in conditionals to ensure the return value is indeed what
you expect, and not a value that has an equivalent loose-type
evaluation.

Use the same stringency in returning and checking your own variables.
Use === and !== as necessary.

INCORRECT:

// If 'foo' is at the beginning of the string, strpos will return a 0,
// resulting in this conditional evaluating as TRUE
if (strpos($str, 'foo') == FALSE)

CORRECT:

if (strpos($str, 'foo') === FALSE)

INCORRECT:

function build_string($str = "")
{
 if ($str == "") // uh-oh! What if FALSE or the integer 0 is passed as an argument?
 {

 }
}

CORRECT:

function build_string($str = "")
{
 if ($str === "")
 {

 }
}

See also information regarding typecasting [http://php.net/manual/en/language.types.type-juggling.php#language.types.typecasting],
which can be quite useful. Typecasting has a slightly different effect
which may be desirable. When casting a variable as a string, for
instance, NULL and boolean FALSE variables become empty strings, 0 (and
other numbers) become strings of digits, and boolean TRUE becomes “1”:

$str = (string) $str; // cast $str as a string

Debugging Code

Do not leave debugging code in your submissions, even when commented out.
Things such as var_dump(), print_r(), die()/exit() should not be included
in your code unless it serves a specific purpose other than debugging.

Whitespace in Files

No whitespace can precede the opening PHP tag or follow the closing PHP
tag. Output is buffered, so whitespace in your files can cause output to
begin before CodeIgniter outputs its content, leading to errors and an
inability for CodeIgniter to send proper headers.

Compatibility

CodeIgniter recommends PHP 5.6 or newer to be used, but it should be
compatible with PHP 5.3.7. Your code must either be compatible with this
requirement, provide a suitable fallback, or be an optional feature that
dies quietly without affecting a user’s application.

Additionally, do not use PHP functions that require non-default libraries
to be installed unless your code contains an alternative method when the
function is not available.

One File per Class

Use separate files for each class, unless the classes are closely related.
An example of a CodeIgniter file that contains multiple classes is the
Xmlrpc library file.

Whitespace

Use tabs for whitespace in your code, not spaces. This may seem like a
small thing, but using tabs instead of whitespace allows the developer
looking at your code to have indentation at levels that they prefer and
customize in whatever application they use. And as a side benefit, it
results in (slightly) more compact files, storing one tab character
versus, say, four space characters.

Line Breaks

Files must be saved with Unix line breaks. This is more of an issue for
developers who work in Windows, but in any case ensure that your text
editor is setup to save files with Unix line breaks.

Code Indenting

Use Allman style indenting. With the exception of Class declarations,
braces are always placed on a line by themselves, and indented at the
same level as the control statement that “owns” them.

INCORRECT:

function foo($bar) {
 // ...
}

foreach ($arr as $key => $val) {
 // ...
}

if ($foo == $bar) {
 // ...
} else {
 // ...
}

for ($i = 0; $i < 10; $i++)
 {
 for ($j = 0; $j < 10; $j++)
 {
 // ...
 }
 }

try {
 // ...
}
catch() {
 // ...
}

CORRECT:

function foo($bar)
{
 // ...
}

foreach ($arr as $key => $val)
{
 // ...
}

if ($foo == $bar)
{
 // ...
}
else
{
 // ...
}

for ($i = 0; $i < 10; $i++)
{
 for ($j = 0; $j < 10; $j++)
 {
 // ...
 }
}

try
{
 // ...
}
catch()
{
 // ...
}

Bracket and Parenthetic Spacing

In general, parenthesis and brackets should not use any additional
spaces. The exception is that a space should always follow PHP control
structures that accept arguments with parenthesis (declare, do-while,
elseif, for, foreach, if, switch, while), to help distinguish them from
functions and increase readability.

INCORRECT:

$arr[$foo] = 'foo';

CORRECT:

$arr[$foo] = 'foo'; // no spaces around array keys

INCORRECT:

function foo ($bar)
{

}

CORRECT:

function foo($bar) // no spaces around parenthesis in function declarations
{

}

INCORRECT:

foreach($query->result() as $row)

CORRECT:

foreach ($query->result() as $row) // single space following PHP control structures, but not in interior parenthesis

Localized Text

CodeIgniter libraries should take advantage of corresponding language files
whenever possible.

INCORRECT:

return "Invalid Selection";

CORRECT:

return $this->lang->line('invalid_selection');

Private Methods and Variables

Methods and variables that are only accessed internally,
such as utility and helper functions that your public methods use for
code abstraction, should be prefixed with an underscore.

public function convert_text()
private function _convert_text()

PHP Errors

Code must run error free and not rely on warnings and notices to be
hidden to meet this requirement. For instance, never access a variable
that you did not set yourself (such as $_POST array keys) without first
checking to see that it isset().

Make sure that your dev environment has error reporting enabled
for ALL users, and that display_errors is enabled in the PHP
environment. You can check this setting with:

if (ini_get('display_errors') == 1)
{
 exit "Enabled";
}

On some servers where display_errors is disabled, and you do not have
the ability to change this in the php.ini, you can often enable it with:

ini_set('display_errors', 1);

Note

Setting the display_errors [http://php.net/manual/en/errorfunc.configuration.php#ini.display-errors]
setting with ini_set() at runtime is not identical to having
it enabled in the PHP environment. Namely, it will not have any
effect if the script has fatal errors.

Short Open Tags

Always use full PHP opening tags, in case a server does not have
short_open_tag enabled.

INCORRECT:

<? echo $foo; ?>

<?=$foo?>

CORRECT:

<?php echo $foo; ?>

Note

PHP 5.4 will always have the <?= tag available.

One Statement Per Line

Never combine statements on one line.

INCORRECT:

$foo = 'this'; $bar = 'that'; $bat = str_replace($foo, $bar, $bag);

CORRECT:

$foo = 'this';
$bar = 'that';
$bat = str_replace($foo, $bar, $bag);

Strings

Always use single quoted strings unless you need variables parsed, and
in cases where you do need variables parsed, use braces to prevent
greedy token parsing. You may also use double-quoted strings if the
string contains single quotes, so you do not have to use escape
characters.

INCORRECT:

"My String" // no variable parsing, so no use for double quotes
"My string $foo" // needs braces
'SELECT foo FROM bar WHERE baz = \'bag\'' // ugly

CORRECT:

'My String'
"My string {$foo}"
"SELECT foo FROM bar WHERE baz = 'bag'"

SQL Queries

SQL keywords are always capitalized: SELECT, INSERT, UPDATE, WHERE,
AS, JOIN, ON, IN, etc.

Break up long queries into multiple lines for legibility, preferably
breaking for each clause.

INCORRECT:

// keywords are lowercase and query is too long for
// a single line (... indicates continuation of line)
$query = $this->db->query("select foo, bar, baz, foofoo, foobar as raboof, foobaz from exp_pre_email_addresses
...where foo != 'oof' and baz != 'zab' order by foobaz limit 5, 100");

CORRECT:

$query = $this->db->query("SELECT foo, bar, baz, foofoo, foobar AS raboof, foobaz
 FROM exp_pre_email_addresses
 WHERE foo != 'oof'
 AND baz != 'zab'
 ORDER BY foobaz
 LIMIT 5, 100");

Default Function Arguments

Whenever appropriate, provide function argument defaults, which helps
prevent PHP errors with mistaken calls and provides common fallback
values which can save a few lines of code. Example:

function foo($bar = '', $baz = FALSE)

Libraries

	Benchmarking Class

	Caching Driver

	Calendaring Class

	Shopping Cart Class

	Config Class

	Email Class

	Encrypt Class

	Encryption Library

	File Uploading Class

	Form Validation

	FTP Class

	Image Manipulation Class

	Input Class

	Javascript Class

	Language Class

	Loader Class

	Migrations Class

	Output Class

	Pagination Class

	Template Parser Class

	Security Class

	Session Library

	HTML Table Class

	Trackback Class

	Typography Class

	Unit Testing Class

	URI Class

	User Agent Class

	XML-RPC and XML-RPC Server Classes

	Zip Encoding Class

Benchmarking Class

CodeIgniter has a Benchmarking class that is always active, enabling the
time difference between any two marked points to be calculated.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

In addition, the benchmark is always started the moment the framework is
invoked, and ended by the output class right before sending the final
view to the browser, enabling a very accurate timing of the entire
system execution to be shown.

	Using the Benchmark Class
	Profiling Your Benchmark Points

	Displaying Total Execution Time

	Displaying Memory Consumption

	Class Reference

Using the Benchmark Class

The Benchmark class can be used within your
controllers,
views, or your models.
The process for usage is this:

	Mark a start point

	Mark an end point

	Run the “elapsed time” function to view the results

Here’s an example using real code:

$this->benchmark->mark('code_start');

// Some code happens here

$this->benchmark->mark('code_end');

echo $this->benchmark->elapsed_time('code_start', 'code_end');

Note

The words “code_start” and “code_end” are arbitrary. They
are simply words used to set two markers. You can use any words you
want, and you can set multiple sets of markers. Consider this example:

$this->benchmark->mark('dog');

// Some code happens here

$this->benchmark->mark('cat');

// More code happens here

$this->benchmark->mark('bird');

echo $this->benchmark->elapsed_time('dog', 'cat');
echo $this->benchmark->elapsed_time('cat', 'bird');
echo $this->benchmark->elapsed_time('dog', 'bird');

Profiling Your Benchmark Points

If you want your benchmark data to be available to the
Profiler all of your marked points must
be set up in pairs, and each mark point name must end with _start and
_end. Each pair of points must otherwise be named identically. Example:

$this->benchmark->mark('my_mark_start');

// Some code happens here...

$this->benchmark->mark('my_mark_end');

$this->benchmark->mark('another_mark_start');

// Some more code happens here...

$this->benchmark->mark('another_mark_end');

Please read the Profiler page for more
information.

Displaying Total Execution Time

If you would like to display the total elapsed time from the moment
CodeIgniter starts to the moment the final output is sent to the
browser, simply place this in one of your view templates:

<?php echo $this->benchmark->elapsed_time();?>

You’ll notice that it’s the same function used in the examples above to
calculate the time between two point, except you are not using any
parameters. When the parameters are absent, CodeIgniter does not stop
the benchmark until right before the final output is sent to the
browser. It doesn’t matter where you use the function call, the timer
will continue to run until the very end.

An alternate way to show your elapsed time in your view files is to use
this pseudo-variable, if you prefer not to use the pure PHP:

{elapsed_time}

Note

If you want to benchmark anything within your controller
functions you must set your own start/end points.

Displaying Memory Consumption

If your PHP installation is configured with –enable-memory-limit, you
can display the amount of memory consumed by the entire system using the
following code in one of your view file:

<?php echo $this->benchmark->memory_usage();?>

Note

This function can only be used in your view files. The consumption
will reflect the total memory used by the entire app.

An alternate way to show your memory usage in your view files is to use
this pseudo-variable, if you prefer not to use the pure PHP:

{memory_usage}

Class Reference

	
class CI_Benchmark

	
	
mark($name)

	

	Parameters:	
	$name (string) – the name you wish to assign to your marker

	Return type:	void

Sets a benchmark marker.

	
elapsed_time([$point1 = ''[, $point2 = ''[, $decimals = 4]]])

	

	Parameters:	
	$point1 (string) – a particular marked point

	$point2 (string) – a particular marked point

	$decimals (int) – number of decimal places for precision

	Returns:	Elapsed time

	Return type:	string

Calculates and returns the time difference between two marked points.

If the first parameter is empty this function instead returns the
{elapsed_time} pseudo-variable. This permits the full system
execution time to be shown in a template. The output class will
swap the real value for this variable.

	
memory_usage()

	

	Returns:	Memory usage info

	Return type:	string

Simply returns the {memory_usage} marker.

This permits it to be put it anywhere in a template without the memory
being calculated until the end. The Output Class will
swap the real value for this variable.

Caching Driver

CodeIgniter features wrappers around some of the most popular forms of
fast and dynamic caching. All but file-based caching require specific
server requirements, and a Fatal Exception will be thrown if server
requirements are not met.

	Example Usage

	Class Reference

	Drivers
	Alternative PHP Cache (APC) Caching

	File-based Caching

	Memcached Caching

	WinCache Caching

	Redis Caching

	Dummy Cache

Example Usage

The following example will load the cache driver, specify APC
as the driver to use, and fall back to file-based caching if APC is not
available in the hosting environment.

$this->load->driver('cache', array('adapter' => 'apc', 'backup' => 'file'));

if (! $foo = $this->cache->get('foo'))
{
 echo 'Saving to the cache!
';
 $foo = 'foobarbaz!';

 // Save into the cache for 5 minutes
 $this->cache->save('foo', $foo, 300);
}

echo $foo;

You can also prefix cache item names via the key_prefix setting, which is useful
to avoid collisions when you’re running multiple applications on the same environment.

$this->load->driver('cache',
 array('adapter' => 'apc', 'backup' => 'file', 'key_prefix' => 'my_')
);

$this->cache->get('foo'); // Will get the cache entry named 'my_foo'

Class Reference

	
class CI_Cache

	
	
is_supported($driver)

	

	Parameters:	
	$driver (string) – the name of the caching driver

	Returns:	TRUE if supported, FALSE if not

	Return type:	bool

This method is automatically called when accessing drivers via
$this->cache->get(). However, if the individual drivers are used,
make sure to call this method to ensure the driver is supported in the
hosting environment.

if ($this->cache->apc->is_supported())
{
 if ($data = $this->cache->apc->get('my_cache'))
 {
 // do things.
 }
}

	
get($id)

	

	Parameters:	
	$id (string) – Cache item name

	Returns:	Item value or FALSE if not found

	Return type:	mixed

This method will attempt to fetch an item from the cache store. If the
item does not exist, the method will return FALSE.

$foo = $this->cache->get('my_cached_item');

	
save($id, $data[, $ttl = 60[, $raw = FALSE]])

	

	Parameters:	
	$id (string) – Cache item name

	$data (mixed) – the data to save

	$ttl (int) – Time To Live, in seconds (default 60)

	$raw (bool) – Whether to store the raw value

	Returns:	TRUE on success, FALSE on failure

	Return type:	string

This method will save an item to the cache store. If saving fails, the
method will return FALSE.

$this->cache->save('cache_item_id', 'data_to_cache');

Note

The $raw parameter is only utilized by APC and Memcache,
in order to allow usage of increment() and decrement().

	
delete($id)

	

	Parameters:	
	$id (string) – name of cached item

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

This method will delete a specific item from the cache store. If item
deletion fails, the method will return FALSE.

$this->cache->delete('cache_item_id');

	
increment($id[, $offset = 1])

	

	Parameters:	
	$id (string) – Cache ID

	$offset (int) – Step/value to add

	Returns:	New value on success, FALSE on failure

	Return type:	mixed

Performs atomic incrementation of a raw stored value.

// 'iterator' has a value of 2

$this->cache->increment('iterator'); // 'iterator' is now 3

$this->cache->increment('iterator', 3); // 'iterator' is now 6

	
decrement($id[, $offset = 1])

	

	Parameters:	
	$id (string) – Cache ID

	$offset (int) – Step/value to reduce by

	Returns:	New value on success, FALSE on failure

	Return type:	mixed

Performs atomic decrementation of a raw stored value.

// 'iterator' has a value of 6

$this->cache->decrement('iterator'); // 'iterator' is now 5

$this->cache->decrement('iterator', 2); // 'iterator' is now 3

	
clean()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

This method will ‘clean’ the entire cache. If the deletion of the
cache files fails, the method will return FALSE.

$this->cache->clean();

	
cache_info()

	

	Returns:	Information on the entire cache database

	Return type:	mixed

This method will return information on the entire cache.

var_dump($this->cache->cache_info());

Note

The information returned and the structure of the data is dependent
on which adapter is being used.

	
get_metadata($id)

	

	Parameters:	
	$id (string) – Cache item name

	Returns:	Metadata for the cached item

	Return type:	mixed

This method will return detailed information on a specific item in the
cache.

var_dump($this->cache->get_metadata('my_cached_item'));

Note

The information returned and the structure of the data is dependent
on which adapter is being used.

Drivers

Alternative PHP Cache (APC) Caching

All of the methods listed above can be accessed without passing a
specific adapter to the driver loader as follows:

$this->load->driver('cache');
$this->cache->apc->save('foo', 'bar', 10);

For more information on APC, please see
http://php.net/apc.

File-based Caching

Unlike caching from the Output Class, the driver file-based caching
allows for pieces of view files to be cached. Use this with care, and
make sure to benchmark your application, as a point can come where disk
I/O will negate positive gains by caching.

All of the methods listed above can be accessed without passing a
specific adapter to the driver loader as follows:

$this->load->driver('cache');
$this->cache->file->save('foo', 'bar', 10);

Memcached Caching

Multiple Memcached servers can be specified in the memcached.php
configuration file, located in the _application/config/* directory.

All of the methods listed above can be accessed without passing a
specific adapter to the driver loader as follows:

$this->load->driver('cache');
$this->cache->memcached->save('foo', 'bar', 10);

For more information on Memcached, please see
http://php.net/memcached.

WinCache Caching

Under Windows, you can also utilize the WinCache driver.

All of the methods listed above can be accessed without passing a
specific adapter to the driver loader as follows:

$this->load->driver('cache');
$this->cache->wincache->save('foo', 'bar', 10);

For more information on WinCache, please see
http://php.net/wincache.

Redis Caching

Redis is an in-memory key-value store which can operate in LRU cache mode.
To use it, you need Redis server and phpredis PHP extension [https://github.com/phpredis/phpredis].

Config options to connect to redis server must be stored in the application/config/redis.php file.
Available options are:

$config['socket_type'] = 'tcp'; //`tcp` or `unix`
$config['socket'] = '/var/run/redis.sock'; // in case of `unix` socket type
$config['host'] = '127.0.0.1';
$config['password'] = NULL;
$config['port'] = 6379;
$config['timeout'] = 0;

All of the methods listed above can be accessed without passing a
specific adapter to the driver loader as follows:

$this->load->driver('cache');
$this->cache->redis->save('foo', 'bar', 10);

For more information on Redis, please see
http://redis.io.

Dummy Cache

This is a caching backend that will always ‘miss.’ It stores no data,
but lets you keep your caching code in place in environments that don’t
support your chosen cache.

Calendaring Class

The Calendar class enables you to dynamically create calendars. Your
calendars can be formatted through the use of a calendar template,
allowing 100% control over every aspect of its design. In addition, you
can pass data to your calendar cells.

	Using the Calendaring Class
	Initializing the Class

	Displaying a Calendar

	Passing Data to your Calendar Cells

	Setting Display Preferences

	Showing Next/Previous Month Links

	Creating a Calendar Template

	Class Reference

Using the Calendaring Class

Initializing the Class

Like most other classes in CodeIgniter, the Calendar class is
initialized in your controller using the $this->load->library function:

$this->load->library('calendar');

Once loaded, the Calendar object will be available using:

$this->calendar

Displaying a Calendar

Here is a very simple example showing how you can display a calendar:

$this->load->library('calendar');
echo $this->calendar->generate();

The above code will generate a calendar for the current month/year based
on your server time. To show a calendar for a specific month and year
you will pass this information to the calendar generating function:

$this->load->library('calendar');
echo $this->calendar->generate(2006, 6);

The above code will generate a calendar showing the month of June in
2006. The first parameter specifies the year, the second parameter
specifies the month.

Passing Data to your Calendar Cells

To add data to your calendar cells involves creating an associative
array in which the keys correspond to the days you wish to populate and
the array value contains the data. The array is passed to the third
parameter of the calendar generating function. Consider this example:

$this->load->library('calendar');

$data = array(
 3 => 'http://example.com/news/article/2006/06/03/',
 7 => 'http://example.com/news/article/2006/06/07/',
 13 => 'http://example.com/news/article/2006/06/13/',
 26 => 'http://example.com/news/article/2006/06/26/'
);

echo $this->calendar->generate(2006, 6, $data);

Using the above example, day numbers 3, 7, 13, and 26 will become links
pointing to the URLs you’ve provided.

Note

By default it is assumed that your array will contain links.
In the section that explains the calendar template below you’ll see how
you can customize how data passed to your cells is handled so you can
pass different types of information.

Setting Display Preferences

There are seven preferences you can set to control various aspects of
the calendar. Preferences are set by passing an array of preferences in
the second parameter of the loading function. Here is an example:

$prefs = array(
 'start_day' => 'saturday',
 'month_type' => 'long',
 'day_type' => 'short'
);

$this->load->library('calendar', $prefs);

echo $this->calendar->generate();

The above code would start the calendar on saturday, use the “long”
month heading, and the “short” day names. More information regarding
preferences below.

	Preference
	Default
	Options
	Description

	template
	None
	None
	
	A string or array containing your calendar template.

	See the template section below.

	local_time
	time()
	None
	A Unix timestamp corresponding to the current time.

	start_day
	sunday
	Any week day (sunday, monday, tuesday, etc.)
	Sets the day of the week the calendar should start on.

	month_type
	long
	long, short
	
	Determines what version of the month name to use in the header.

	long = January, short = Jan.

	day_type
	abr
	long, short, abr
	
	Determines what version of the weekday names to use in

	the column headers. long = Sunday, short = Sun, abr = Su.

	show_next_prev
	FALSE
	TRUE/FALSE (boolean)
	
	Determines whether to display links allowing you to toggle

	to next/previous months. See information on this feature below.

	next_prev_url
	controller/method
	A URL
	Sets the basepath used in the next/previous calendar links.

	show_other_days
	FALSE
	TRUE/FALSE (boolean)
	
	Determines whether to display days of other months that share the

	first or last week of the calendar month.

Showing Next/Previous Month Links

To allow your calendar to dynamically increment/decrement via the
next/previous links requires that you set up your calendar code similar
to this example:

$prefs = array(
 'show_next_prev' => TRUE,
 'next_prev_url' => 'http://example.com/index.php/calendar/show/'
);

$this->load->library('calendar', $prefs);

echo $this->calendar->generate($this->uri->segment(3), $this->uri->segment(4));

You’ll notice a few things about the above example:

	You must set the “show_next_prev” to TRUE.

	You must supply the URL to the controller containing your calendar in
the “next_prev_url” preference. If you don’t, it will be set to the current
controller/method.

	You must supply the “year” and “month” to the calendar generating
function via the URI segments where they appear (Note: The calendar
class automatically adds the year/month to the base URL you
provide.).

Creating a Calendar Template

By creating a calendar template you have 100% control over the design of
your calendar. Using the string method, each component of your calendar
will be placed within a pair of pseudo-variables as shown here:

$prefs['template'] = '

 {table_open}<table border="0" cellpadding="0" cellspacing="0">{/table_open}

 {heading_row_start}<tr>{/heading_row_start}

 {heading_previous_cell}<th><<</th>{/heading_previous_cell}
 {heading_title_cell}<th colspan="{colspan}">{heading}</th>{/heading_title_cell}
 {heading_next_cell}<th>>></th>{/heading_next_cell}

 {heading_row_end}</tr>{/heading_row_end}

 {week_row_start}<tr>{/week_row_start}
 {week_day_cell}<td>{week_day}</td>{/week_day_cell}
 {week_row_end}</tr>{/week_row_end}

 {cal_row_start}<tr>{/cal_row_start}
 {cal_cell_start}<td>{/cal_cell_start}
 {cal_cell_start_today}<td>{/cal_cell_start_today}
 {cal_cell_start_other}<td class="other-month">{/cal_cell_start_other}

 {cal_cell_content}{day}{/cal_cell_content}
 {cal_cell_content_today}<div class="highlight">{day}</div>{/cal_cell_content_today}

 {cal_cell_no_content}{day}{/cal_cell_no_content}
 {cal_cell_no_content_today}<div class="highlight">{day}</div>{/cal_cell_no_content_today}

 {cal_cell_blank} {/cal_cell_blank}

 {cal_cell_other}{day}{/cal_cel_other}

 {cal_cell_end}</td>{/cal_cell_end}
 {cal_cell_end_today}</td>{/cal_cell_end_today}
 {cal_cell_end_other}</td>{/cal_cell_end_other}
 {cal_row_end}</tr>{/cal_row_end}

 {table_close}</table>{/table_close}
';

$this->load->library('calendar', $prefs);

echo $this->calendar->generate();

Using the array method, you will pass key => value pairs. You can pass as
many or as few values as you’d like. Omitted keys will use the default values
inherited in the calendar class.

Example:

$prefs['template'] = array(
 'table_open' => '<table class="calendar">',
 'cal_cell_start' => '<td class="day">',
 'cal_cell_start_today' => '<td class="today">'
);

$this->load->library('calendar', $prefs);

echo $this->calendar->generate();

Class Reference

	
class CI_Calendar

	
	
initialize([$config = array()])

	

	Parameters:	
	$config (array) – Configuration parameters

	Returns:	CI_Calendar instance (method chaining)

	Return type:	CI_Calendar

Initializes the Calendaring preferences. Accepts an associative array as input, containing display preferences.

	
generate([$year = ''[, $month = ''[, $data = array()]]])

	

	Parameters:	
	$year (int) – Year

	$month (int) – Month

	$data (array) – Data to be shown in the calendar cells

	Returns:	HTML-formatted calendar

	Return type:	string

Generate the calendar.

	
get_month_name($month)

	

	Parameters:	
	$month (int) – Month

	Returns:	Month name

	Return type:	string

Generates a textual month name based on the numeric month provided.

	
get_day_names($day_type = '')

	

	Parameters:	
	$day_type (string) – ‘long’, ‘short’, or ‘abr’

	Returns:	Array of day names

	Return type:	array

Returns an array of day names (Sunday, Monday, etc.) based on the type
provided. Options: long, short, abr. If no $day_type is provided (or
if an invalid type is provided) this method will return the “abbreviated”
style.

	
adjust_date($month, $year)

	

	Parameters:	
	$month (int) – Month

	$year (int) – Year

	Returns:	An associative array containing month and year

	Return type:	array

This method makes sure that you have a valid month/year. For example, if
you submit 13 as the month, the year will increment and the month will
become January:

print_r($this->calendar->adjust_date(13, 2014));

outputs:

Array
(
 [month] => '01'
 [year] => '2015'
)

	
get_total_days($month, $year)

	

	Parameters:	
	$month (int) – Month

	$year (int) – Year

	Returns:	Count of days in the specified month

	Return type:	int

Total days in a given month:

echo $this->calendar->get_total_days(2, 2012);
// 29

Note

This method is an alias for Date Helper function days_in_month().

	
default_template()

	

	Returns:	An array of template values

	Return type:	array

Sets the default template. This method is used when you have not created
your own template.

	
parse_template()

	

	Returns:	CI_Calendar instance (method chaining)

	Return type:	CI_Calendar

Harvests the data within the template {pseudo-variables} used to
display the calendar.

Shopping Cart Class

The Cart Class permits items to be added to a session that stays active
while a user is browsing your site. These items can be retrieved and
displayed in a standard “shopping cart” format, allowing the user to
update the quantity or remove items from the cart.

Important

The Cart library is DEPRECATED and should not be used.
It is currently only kept for backwards compatibility.

Please note that the Cart Class ONLY provides the core “cart”
functionality. It does not provide shipping, credit card authorization,
or other processing components.

	Using the Cart Class
	Initializing the Shopping Cart Class

	Adding an Item to The Cart

	Adding Multiple Items to The Cart

	Displaying the Cart

	Updating The Cart
	What is a Row ID?

	Class Reference

Using the Cart Class

Initializing the Shopping Cart Class

Important

The Cart class utilizes CodeIgniter’s Session
Class to save the cart information to a database, so
before using the Cart class you must set up a database table as
indicated in the Session Documentation, and set the
session preferences in your application/config/config.php file to
utilize a database.

To initialize the Shopping Cart Class in your controller constructor,
use the $this->load->library() method:

$this->load->library('cart');

Once loaded, the Cart object will be available using:

$this->cart

Note

The Cart Class will load and initialize the Session Class
automatically, so unless you are using sessions elsewhere in your
application, you do not need to load the Session class.

Adding an Item to The Cart

To add an item to the shopping cart, simply pass an array with the
product information to the $this->cart->insert() method, as shown
below:

$data = array(
 'id' => 'sku_123ABC',
 'qty' => 1,
 'price' => 39.95,
 'name' => 'T-Shirt',
 'options' => array('Size' => 'L', 'Color' => 'Red')
);

$this->cart->insert($data);

Important

The first four array indexes above (id, qty, price, and
name) are required. If you omit any of them the data will not be
saved to the cart. The fifth index (options) is optional. It is intended
to be used in cases where your product has options associated with it.
Use an array for options, as shown above.

The five reserved indexes are:

	id - Each product in your store must have a unique identifier.
Typically this will be an “sku” or other such identifier.

	qty - The quantity being purchased.

	price - The price of the item.

	name - The name of the item.

	options - Any additional attributes that are needed to identify
the product. These must be passed via an array.

In addition to the five indexes above, there are two reserved words:
rowid and subtotal. These are used internally by the Cart class, so
please do NOT use those words as index names when inserting data into
the cart.

Your array may contain additional data. Anything you include in your
array will be stored in the session. However, it is best to standardize
your data among all your products in order to make displaying the
information in a table easier.

$data = array(
 'id' => 'sku_123ABC',
 'qty' => 1,
 'price' => 39.95,
 'name' => 'T-Shirt',
 'coupon' => 'XMAS-50OFF'
);

$this->cart->insert($data);

The insert() method will return the $rowid if you successfully insert a
single item.

Adding Multiple Items to The Cart

By using a multi-dimensional array, as shown below, it is possible to
add multiple products to the cart in one action. This is useful in cases
where you wish to allow people to select from among several items on the
same page.

$data = array(
 array(
 'id' => 'sku_123ABC',
 'qty' => 1,
 'price' => 39.95,
 'name' => 'T-Shirt',
 'options' => array('Size' => 'L', 'Color' => 'Red')
),
 array(
 'id' => 'sku_567ZYX',
 'qty' => 1,
 'price' => 9.95,
 'name' => 'Coffee Mug'
),
 array(
 'id' => 'sku_965QRS',
 'qty' => 1,
 'price' => 29.95,
 'name' => 'Shot Glass'
)
);

$this->cart->insert($data);

Displaying the Cart

To display the cart you will create a view
file with code similar to the one shown below.

Please note that this example uses the form
helper.

<?php echo form_open('path/to/controller/update/method'); ?>

<table cellpadding="6" cellspacing="1" style="width:100%" border="0">

<tr>
 <th>QTY</th>
 <th>Item Description</th>
 <th style="text-align:right">Item Price</th>
 <th style="text-align:right">Sub-Total</th>
</tr>

<?php $i = 1; ?>

<?php foreach ($this->cart->contents() as $items): ?>

 <?php echo form_hidden($i.'[rowid]', $items['rowid']); ?>

 <tr>
 <td><?php echo form_input(array('name' => $i.'[qty]', 'value' => $items['qty'], 'maxlength' => '3', 'size' => '5')); ?></td>
 <td>
 <?php echo $items['name']; ?>

 <?php if ($this->cart->has_options($items['rowid']) == TRUE): ?>

 <p>
 <?php foreach ($this->cart->product_options($items['rowid']) as $option_name => $option_value): ?>

 <?php echo $option_name; ?>: <?php echo $option_value; ?>

 <?php endforeach; ?>
 </p>

 <?php endif; ?>

 </td>
 <td style="text-align:right"><?php echo $this->cart->format_number($items['price']); ?></td>
 <td style="text-align:right">$<?php echo $this->cart->format_number($items['subtotal']); ?></td>
 </tr>

<?php $i++; ?>

<?php endforeach; ?>

<tr>
 <td colspan="2"> </td>
 <td class="right">Total</td>
 <td class="right">$<?php echo $this->cart->format_number($this->cart->total()); ?></td>
</tr>

</table>

<p><?php echo form_submit('', 'Update your Cart'); ?></p>

Updating The Cart

To update the information in your cart, you must pass an array
containing the Row ID and one or more pre-defined properties to the
$this->cart->update() method.

Note

If the quantity is set to zero, the item will be removed from
the cart.

$data = array(
 'rowid' => 'b99ccdf16028f015540f341130b6d8ec',
 'qty' => 3
);

$this->cart->update($data);

// Or a multi-dimensional array

$data = array(
 array(
 'rowid' => 'b99ccdf16028f015540f341130b6d8ec',
 'qty' => 3
),
 array(
 'rowid' => 'xw82g9q3r495893iajdh473990rikw23',
 'qty' => 4
),
 array(
 'rowid' => 'fh4kdkkkaoe30njgoe92rkdkkobec333',
 'qty' => 2
)
);

$this->cart->update($data);

You may also update any property you have previously defined when
inserting the item such as options, price or other custom fields.

$data = array(
 'rowid' => 'b99ccdf16028f015540f341130b6d8ec',
 'qty' => 1,
 'price' => 49.95,
 'coupon' => NULL
);

$this->cart->update($data);

What is a Row ID?

The row ID is a unique identifier that is generated by the cart code
when an item is added to the cart. The reason a unique ID is created
is so that identical products with different options can be managed
by the cart.

For example, let’s say someone buys two identical t-shirts (same product
ID), but in different sizes. The product ID (and other attributes) will
be identical for both sizes because it’s the same shirt. The only
difference will be the size. The cart must therefore have a means of
identifying this difference so that the two sizes of shirts can be
managed independently. It does so by creating a unique “row ID” based on
the product ID and any options associated with it.

In nearly all cases, updating the cart will be something the user does
via the “view cart” page, so as a developer, it is unlikely that you
will ever have to concern yourself with the “row ID”, other than making
sure your “view cart” page contains this information in a hidden form
field, and making sure it gets passed to the update() method when
the update form is submitted. Please examine the construction of the
“view cart” page above for more information.

Class Reference

	
class CI_Cart

	
	
$product_id_rules = '.a-z0-9_-'

	These are the regular expression rules that we use to validate the product
ID - alpha-numeric, dashes, underscores, or periods by default

	
$product_name_rules = 'w -.:'

	These are the regular expression rules that we use to validate the product ID and product name - alpha-numeric, dashes, underscores, colons or periods by
default

	
$product_name_safe = TRUE

	Whether or not to only allow safe product names. Default TRUE.

	
insert([$items = array()])

	

	Parameters:	
	$items (array) – Items to insert into the cart

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Insert items into the cart and save it to the session table. Returns TRUE
on success and FALSE on failure.

	
update([$items = array()])

	

	Parameters:	
	$items (array) – Items to update in the cart

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

This method permits changing the properties of a given item.
Typically it is called from the “view cart” page if a user makes changes
to the quantity before checkout. That array must contain the rowid
for each item.

	
remove($rowid)

	

	Parameters:	
	$rowid (int) – ID of the item to remove from the cart

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Allows you to remove an item from the shopping cart by passing it the
$rowid.

	
total()

	

	Returns:	Total amount

	Return type:	int

Displays the total amount in the cart.

	
total_items()

	

	Returns:	Total amount of items in the cart

	Return type:	int

Displays the total number of items in the cart.

	
contents([$newest_first = FALSE])

	

	Parameters:	
	$newest_first (bool) – Whether to order the array with newest items first

	Returns:	An array of cart contents

	Return type:	array

Returns an array containing everything in the cart. You can sort the
order by which the array is returned by passing it TRUE where the contents
will be sorted from newest to oldest, otherwise it is sorted from oldest
to newest.

	
get_item($row_id)

	

	Parameters:	
	$row_id (int) – Row ID to retrieve

	Returns:	Array of item data

	Return type:	array

Returns an array containing data for the item matching the specified row
ID, or FALSE if no such item exists.

	
has_options($row_id = '')

	

	Parameters:	
	$row_id (int) – Row ID to inspect

	Returns:	TRUE if options exist, FALSE otherwise

	Return type:	bool

Returns TRUE (boolean) if a particular row in the cart contains options.
This method is designed to be used in a loop with contents(), since
you must pass the rowid to this method, as shown in the Displaying
the Cart example above.

	
product_options([$row_id = ''])

	

	Parameters:	
	$row_id (int) – Row ID

	Returns:	Array of product options

	Return type:	array

Returns an array of options for a particular product. This method is
designed to be used in a loop with contents(), since you
must pass the rowid to this method, as shown in the Displaying the
Cart example above.

	
destroy()

	

	Return type:	void

Permits you to destroy the cart. This method will likely be called
when you are finished processing the customer’s order.

Config Class

The Config class provides a means to retrieve configuration preferences.
These preferences can come from the default config file
(application/config/config.php) or from your own custom config files.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

	Working with the Config Class
	Anatomy of a Config File

	Loading a Config File
	Manual Loading

	Auto-loading

	Fetching Config Items

	Setting a Config Item

	Environments

	Class Reference

Working with the Config Class

Anatomy of a Config File

By default, CodeIgniter has one primary config file, located at
application/config/config.php. If you open the file using your text
editor you’ll see that config items are stored in an array called
$config.

You can add your own config items to this file, or if you prefer to keep
your configuration items separate (assuming you even need config items),
simply create your own file and save it in config folder.

Note

If you do create your own config files use the same format as
the primary one, storing your items in an array called $config.
CodeIgniter will intelligently manage these files so there will be no
conflict even though the array has the same name (assuming an array
index is not named the same as another).

Loading a Config File

Note

CodeIgniter automatically loads the primary config file
(application/config/config.php), so you will only need to load a config
file if you have created your own.

There are two ways to load a config file:

Manual Loading

To load one of your custom config files you will use the following
function within the controller that
needs it:

$this->config->load('filename');

Where filename is the name of your config file, without the .php file
extension.

If you need to load multiple config files normally they will be
merged into one master config array. Name collisions can occur,
however, if you have identically named array indexes in different
config files. To avoid collisions you can set the second parameter to
TRUE and each config file will be stored in an array index
corresponding to the name of the config file. Example:

// Stored in an array with this prototype: $this->config['blog_settings'] = $config
$this->config->load('blog_settings', TRUE);

Please see the section entitled Fetching Config Items below to learn
how to retrieve config items set this way.

The third parameter allows you to suppress errors in the event that a
config file does not exist:

$this->config->load('blog_settings', FALSE, TRUE);

Auto-loading

If you find that you need a particular config file globally, you can
have it loaded automatically by the system. To do this, open the
autoload.php file, located at application/config/autoload.php,
and add your config file as indicated in the file.

Fetching Config Items

To retrieve an item from your config file, use the following function:

$this->config->item('item_name');

Where item_name is the $config array index you want to retrieve. For
example, to fetch your language choice you’ll do this:

$lang = $this->config->item('language');

The function returns NULL if the item you are trying to fetch
does not exist.

If you are using the second parameter of the $this->config->load
function in order to assign your config items to a specific index you
can retrieve it by specifying the index name in the second parameter of
the $this->config->item() function. Example:

// Loads a config file named blog_settings.php and assigns it to an index named "blog_settings"
$this->config->load('blog_settings', TRUE);

// Retrieve a config item named site_name contained within the blog_settings array
$site_name = $this->config->item('site_name', 'blog_settings');

// An alternate way to specify the same item:
$blog_config = $this->config->item('blog_settings');
$site_name = $blog_config['site_name'];

Setting a Config Item

If you would like to dynamically set a config item or change an existing
one, you can do so using:

$this->config->set_item('item_name', 'item_value');

Where item_name is the $config array index you want to change, and
item_value is its value.

Environments

You may load different configuration files depending on the current
environment. The ENVIRONMENT constant is defined in index.php, and is
described in detail in the Handling
Environments section.

To create an environment-specific configuration file, create or copy a
configuration file in application/config/{ENVIRONMENT}/{FILENAME}.php

For example, to create a production-only config.php, you would:

	Create the directory application/config/production/

	Copy your existing config.php into the above directory

	Edit application/config/production/config.php so it contains your
production settings

When you set the ENVIRONMENT constant to ‘production’, the settings for
your new production-only config.php will be loaded.

You can place the following configuration files in environment-specific
folders:

	Default CodeIgniter configuration files

	Your own custom configuration files

Note

CodeIgniter always loads the global config file first (i.e., the one in application/config/),
then tries to load the configuration files for the current environment.
This means you are not obligated to place all of your configuration files in an
environment folder. Only the files that change per environment. Additionally you don’t
have to copy all the config items in the environment config file. Only the config items
that you wish to change for your environment. The config items declared in your environment
folders always overwrite those in your global config files.

Class Reference

	
class CI_Config

	
	
$config

	Array of all loaded config values

	
$is_loaded

	Array of all loaded config files

	
item($item[, $index=''])

	

	Parameters:	
	$item (string) – Config item name

	$index (string) – Index name

	Returns:	Config item value or NULL if not found

	Return type:	mixed

Fetch a config file item.

	
set_item($item, $value)

	

	Parameters:	
	$item (string) – Config item name

	$value (string) – Config item value

	Return type:	void

Sets a config file item to the specified value.

	
slash_item($item)

	

	Parameters:	
	$item (string) – config item name

	Returns:	Config item value with a trailing forward slash or NULL if not found

	Return type:	mixed

This method is identical to item(), except it appends a forward
slash to the end of the item, if it exists.

	
load([$file = ''[, $use_sections = FALSE[, $fail_gracefully = FALSE]]])

	

	Parameters:	
	$file (string) – Configuration file name

	$use_sections (bool) – Whether config values should be loaded into their own section (index of the main config array)

	$fail_gracefully (bool) – Whether to return FALSE or to display an error message

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Loads a configuration file.

	
site_url()

	

	Returns:	Site URL

	Return type:	string

This method retrieves the URL to your site, along with the “index” value
you’ve specified in the config file.

This method is normally accessed via the corresponding functions in the
URL Helper.

	
base_url()

	

	Returns:	Base URL

	Return type:	string

This method retrieves the URL to your site, plus an optional path such
as to a stylesheet or image.

This method is normally accessed via the corresponding functions in the
URL Helper.

	
system_url()

	

	Returns:	URL pointing at your CI system/ directory

	Return type:	string

This method retrieves the URL to your CodeIgniter system/ directory.

Note

This method is DEPRECATED because it encourages usage of
insecure coding practices. Your system/ directory shouldn’t
be publicly accessible.

Email Class

CodeIgniter’s robust Email Class supports the following features:

	Multiple Protocols: Mail, Sendmail, and SMTP

	TLS and SSL Encryption for SMTP

	Multiple recipients

	CC and BCCs

	HTML or Plaintext email

	Attachments

	Word wrapping

	Priorities

	BCC Batch Mode, enabling large email lists to be broken into small
BCC batches.

	Email Debugging tools

	Using the Email Library
	Sending Email

	Setting Email Preferences
	Setting Email Preferences in a Config File

	Email Preferences

	Overriding Word Wrapping

	Class Reference

Using the Email Library

Sending Email

Sending email is not only simple, but you can configure it on the fly or
set your preferences in a config file.

Here is a basic example demonstrating how you might send email. Note:
This example assumes you are sending the email from one of your
controllers.

$this->load->library('email');

$this->email->from('your@example.com', 'Your Name');
$this->email->to('someone@example.com');
$this->email->cc('another@another-example.com');
$this->email->bcc('them@their-example.com');

$this->email->subject('Email Test');
$this->email->message('Testing the email class.');

$this->email->send();

Setting Email Preferences

There are 21 different preferences available to tailor how your email
messages are sent. You can either set them manually as described here,
or automatically via preferences stored in your config file, described
below:

Preferences are set by passing an array of preference values to the
email initialize method. Here is an example of how you might set some
preferences:

$config['protocol'] = 'sendmail';
$config['mailpath'] = '/usr/sbin/sendmail';
$config['charset'] = 'iso-8859-1';
$config['wordwrap'] = TRUE;

$this->email->initialize($config);

Note

Most of the preferences have default values that will be used
if you do not set them.

Setting Email Preferences in a Config File

If you prefer not to set preferences using the above method, you can
instead put them into a config file. Simply create a new file called the
email.php, add the $config array in that file. Then save the file at
config/email.php and it will be used automatically. You will NOT need to
use the $this->email->initialize() method if you save your
preferences in a config file.

Email Preferences

The following is a list of all the preferences that can be set when
sending email.

	Preference
	Default Value
	Options
	Description

	useragent
	CodeIgniter
	None
	The “user agent”.

	protocol
	mail
	mail, sendmail, or smtp
	The mail sending protocol.

	mailpath
	/usr/sbin/sendmail
	None
	The server path to Sendmail.

	smtp_host
	No Default
	None
	SMTP Server Address.

	smtp_user
	No Default
	None
	SMTP Username.

	smtp_pass
	No Default
	None
	SMTP Password.

	smtp_port
	25
	None
	SMTP Port.

	smtp_timeout
	5
	None
	SMTP Timeout (in seconds).

	smtp_keepalive
	FALSE
	TRUE or FALSE (boolean)
	Enable persistent SMTP connections.

	smtp_crypto
	No Default
	tls or ssl
	SMTP Encryption

	wordwrap
	TRUE
	TRUE or FALSE (boolean)
	Enable word-wrap.

	wrapchars
	76
	
	Character count to wrap at.

	mailtype
	text
	text or html
	Type of mail. If you send HTML email you must send it as a complete web
page. Make sure you don’t have any relative links or relative image
paths otherwise they will not work.

	charset
	$config['charset']
	
	Character set (utf-8, iso-8859-1, etc.).

	validate
	FALSE
	TRUE or FALSE (boolean)
	Whether to validate the email address.

	priority
	3
	1, 2, 3, 4, 5
	Email Priority. 1 = highest. 5 = lowest. 3 = normal.

	crlf
	\n
	“\r\n” or “\n” or “\r”
	Newline character. (Use “\r\n” to comply with RFC 822).

	newline
	\n
	“\r\n” or “\n” or “\r”
	Newline character. (Use “\r\n” to comply with RFC 822).

	bcc_batch_mode
	FALSE
	TRUE or FALSE (boolean)
	Enable BCC Batch Mode.

	bcc_batch_size
	200
	None
	Number of emails in each BCC batch.

	dsn
	FALSE
	TRUE or FALSE (boolean)
	Enable notify message from server

Overriding Word Wrapping

If you have word wrapping enabled (recommended to comply with RFC 822)
and you have a very long link in your email it can get wrapped too,
causing it to become un-clickable by the person receiving it.
CodeIgniter lets you manually override word wrapping within part of your
message like this:

The text of your email that
gets wrapped normally.

{unwrap}http://example.com/a_long_link_that_should_not_be_wrapped.html{/unwrap}

More text that will be
wrapped normally.

Place the item you do not want word-wrapped between: {unwrap} {/unwrap}

Class Reference

	
class CI_Email

	
	
from($from[, $name = ''[, $return_path = NULL]])

	

	Parameters:	
	$from (string) – “From” e-mail address

	$name (string) – “From” display name

	$return_path (string) – Optional email address to redirect undelivered e-mail to

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the email address and name of the person sending the email:

$this->email->from('you@example.com', 'Your Name');

You can also set a Return-Path, to help redirect undelivered mail:

$this->email->from('you@example.com', 'Your Name', 'returned_emails@example.com');

Note

Return-Path can’t be used if you’ve configured ‘smtp’ as
your protocol.

	
reply_to($replyto[, $name = ''])

	

	Parameters:	
	$replyto (string) – E-mail address for replies

	$name (string) – Display name for the reply-to e-mail address

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the reply-to address. If the information is not provided the
information in the :meth:from method is used. Example:

$this->email->reply_to('you@example.com', 'Your Name');

	
to($to)

	

	Parameters:	
	$to (mixed) – Comma-delimited string or an array of e-mail addresses

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the email address(s) of the recipient(s). Can be a single e-mail,
a comma-delimited list or an array:

$this->email->to('someone@example.com');

$this->email->to('one@example.com, two@example.com, three@example.com');

$this->email->to(
 array('one@example.com', 'two@example.com', 'three@example.com')
);

	
cc($cc)

	

	Parameters:	
	$cc (mixed) – Comma-delimited string or an array of e-mail addresses

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the CC email address(s). Just like the “to”, can be a single e-mail,
a comma-delimited list or an array.

	
bcc($bcc[, $limit = ''])

	

	Parameters:	
	$bcc (mixed) – Comma-delimited string or an array of e-mail addresses

	$limit (int) – Maximum number of e-mails to send per batch

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the BCC email address(s). Just like the to() method, can be a single
e-mail, a comma-delimited list or an array.

If $limit is set, “batch mode” will be enabled, which will send
the emails to batches, with each batch not exceeding the specified
$limit.

	
subject($subject)

	

	Parameters:	
	$subject (string) – E-mail subject line

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the email subject:

$this->email->subject('This is my subject');

	
message($body)

	

	Parameters:	
	$body (string) – E-mail message body

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the e-mail message body:

$this->email->message('This is my message');

	
set_alt_message($str)

	

	Parameters:	
	$str (string) – Alternative e-mail message body

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Sets the alternative e-mail message body:

$this->email->set_alt_message('This is the alternative message');

This is an optional message string which can be used if you send
HTML formatted email. It lets you specify an alternative message
with no HTML formatting which is added to the header string for
people who do not accept HTML email. If you do not set your own
message CodeIgniter will extract the message from your HTML email
and strip the tags.

	
set_header($header, $value)

	

	Parameters:	
	$header (string) – Header name

	$value (string) – Header value

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Appends additional headers to the e-mail:

$this->email->set_header('Header1', 'Value1');
$this->email->set_header('Header2', 'Value2');

	
clear([$clear_attachments = FALSE])

	

	Parameters:	
	$clear_attachments (bool) – Whether or not to clear attachments

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Initializes all the email variables to an empty state. This method
is intended for use if you run the email sending method in a loop,
permitting the data to be reset between cycles.

foreach ($list as $name => $address)
{
 $this->email->clear();

 $this->email->to($address);
 $this->email->from('your@example.com');
 $this->email->subject('Here is your info '.$name);
 $this->email->message('Hi '.$name.' Here is the info you requested.');
 $this->email->send();
}

If you set the parameter to TRUE any attachments will be cleared as
well:

$this->email->clear(TRUE);

	
send([$auto_clear = TRUE])

	

	Parameters:	
	$auto_clear (bool) – Whether to clear message data automatically

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

The e-mail sending method. Returns boolean TRUE or FALSE based on
success or failure, enabling it to be used conditionally:

if (! $this->email->send())
{
 // Generate error
}

This method will automatically clear all parameters if the request was
successful. To stop this behaviour pass FALSE:

if ($this->email->send(FALSE))
{
 // Parameters won't be cleared
}

Note

In order to use the print_debugger() method, you need
to avoid clearing the email parameters.

	
attach($filename[, $disposition = ''[, $newname = NULL[, $mime = '']]])

	

	Parameters:	
	$filename (string) – File name

	$disposition (string) – ‘disposition’ of the attachment. Most
email clients make their own decision regardless of the MIME
specification used here. https://www.iana.org/assignments/cont-disp/cont-disp.xhtml

	$newname (string) – Custom file name to use in the e-mail

	$mime (string) – MIME type to use (useful for buffered data)

	Returns:	CI_Email instance (method chaining)

	Return type:	CI_Email

Enables you to send an attachment. Put the file path/name in the first
parameter. For multiple attachments use the method multiple times.
For example:

$this->email->attach('/path/to/photo1.jpg');
$this->email->attach('/path/to/photo2.jpg');
$this->email->attach('/path/to/photo3.jpg');

To use the default disposition (attachment), leave the second parameter blank,
otherwise use a custom disposition:

$this->email->attach('image.jpg', 'inline');

You can also use a URL:

$this->email->attach('http://example.com/filename.pdf');

If you’d like to use a custom file name, you can use the third parameter:

$this->email->attach('filename.pdf', 'attachment', 'report.pdf');

If you need to use a buffer string instead of a real - physical - file you can
use the first parameter as buffer, the third parameter as file name and the fourth
parameter as mime-type:

$this->email->attach($buffer, 'attachment', 'report.pdf', 'application/pdf');

	
attachment_cid($filename)

	

	Parameters:	
	$filename (string) – Existing attachment filename

	Returns:	Attachment Content-ID or FALSE if not found

	Return type:	string

Sets and returns an attachment’s Content-ID, which enables your to embed an inline
(picture) attachment into HTML. First parameter must be the already attached file name.

$filename = '/img/photo1.jpg';
$this->email->attach($filename);
foreach ($list as $address)
{
 $this->email->to($address);
 $cid = $this->email->attachment_cid($filename);
 $this->email->message('');
 $this->email->send();
}

Note

Content-ID for each e-mail must be re-created for it to be unique.

	
print_debugger([$include = array('headers', 'subject', 'body')])

	

	Parameters:	
	$include (array) – Which parts of the message to print out

	Returns:	Formatted debug data

	Return type:	string

Returns a string containing any server messages, the email headers, and
the email message. Useful for debugging.

You can optionally specify which parts of the message should be printed.
Valid options are: headers, subject, body.

Example:

// You need to pass FALSE while sending in order for the email data
// to not be cleared - if that happens, print_debugger() would have
// nothing to output.
$this->email->send(FALSE);

// Will only print the email headers, excluding the message subject and body
$this->email->print_debugger(array('headers'));

Note

By default, all of the raw data will be printed.

Encrypt Class

The Encrypt Class provides two-way data encryption. It encrypted using
the Mcrypt PHP extension, which is required for the Encrypt Class to run.

Important

This library has been DEPRECATED and is only kept for
backwards compatibility. Please use the new Encryption Library.

	Using the Encrypt Library
	Setting your Key

	Message Length

	Initializing the Class

	Class Reference

Using the Encrypt Library

Setting your Key

A key is a piece of information that controls the cryptographic
process and permits an encrypted string to be decoded. In fact, the key
you chose will provide the only means to decode data that was
encrypted with that key, so not only must you choose the key carefully,
you must never change it if you intend use it for persistent data.

It goes without saying that you should guard your key carefully. Should
someone gain access to your key, the data will be easily decoded. If
your server is not totally under your control it’s impossible to ensure
key security so you may want to think carefully before using it for
anything that requires high security, like storing credit card numbers.

To take maximum advantage of the encryption algorithm, your key should
be 32 characters in length (256 bits). The key should be as random a
string as you can concoct, with numbers and uppercase and lowercase
letters. Your key should not be a simple text string. In order to be
cryptographically secure it needs to be as random as possible.

Your key can be either stored in your application/config/config.php, or
you can design your own storage mechanism and pass the key dynamically
when encoding/decoding.

To save your key to your application/config/config.php, open the file
and set:

$config['encryption_key'] = "YOUR KEY";

Message Length

It’s important for you to know that the encoded messages the encryption
function generates will be approximately 2.6 times longer than the
original message. For example, if you encrypt the string “my super
secret data”, which is 21 characters in length, you’ll end up with an
encoded string that is roughly 55 characters (we say “roughly” because
the encoded string length increments in 64 bit clusters, so it’s not
exactly linear). Keep this information in mind when selecting your data
storage mechanism. Cookies, for example, can only hold 4K of
information.

Initializing the Class

Like most other classes in CodeIgniter, the Encrypt class is
initialized in your controller using the $this->load->library()
method:

$this->load->library('encrypt');

Once loaded, the Encrypt library object will be available using:

$this->encrypt

Class Reference

	
class CI_Encrypt

	
	
encode($string[, $key = ''])

	

	Parameters:	
	$string (string) – Data to encrypt

	$key (string) – Encryption key

	Returns:	Encrypted string

	Return type:	string

Performs the data encryption and returns it as a string. Example:

$msg = 'My secret message';

$encrypted_string = $this->encrypt->encode($msg);

You can optionally pass your encryption key via the second parameter if
you don’t want to use the one in your config file:

$msg = 'My secret message';
$key = 'super-secret-key';

$encrypted_string = $this->encrypt->encode($msg, $key);

	
decode($string[, $key = ''])

	

	Parameters:	
	$string (string) – String to decrypt

	$key (string) – Encryption key

	Returns:	Plain-text string

	Return type:	string

Decrypts an encoded string. Example:

$encrypted_string = 'APANtByIGI1BpVXZTJgcsAG8GZl8pdwwa84';

$plaintext_string = $this->encrypt->decode($encrypted_string);

You can optionally pass your encryption key via the second parameter if
you don’t want to use the one in your config file:

$msg = 'My secret message';
$key = 'super-secret-key';

$encrypted_string = $this->encrypt->decode($msg, $key);

	
set_cipher($cipher)

	

	Parameters:	
	$cipher (int) – Valid PHP MCrypt cypher constant

	Returns:	CI_Encrypt instance (method chaining)

	Return type:	CI_Encrypt

Permits you to set an Mcrypt cipher. By default it uses
MCRYPT_RIJNDAEL_256. Example:

$this->encrypt->set_cipher(MCRYPT_BLOWFISH);

Please visit php.net for a list of available ciphers [http://php.net/mcrypt].

If you’d like to manually test whether your server supports MCrypt you
can use:

echo extension_loaded('mcrypt') ? 'Yup' : 'Nope';

	
set_mode($mode)

	

	Parameters:	
	$mode (int) – Valid PHP MCrypt mode constant

	Returns:	CI_Encrypt instance (method chaining)

	Return type:	CI_Encrypt

Permits you to set an Mcrypt mode. By default it uses MCRYPT_MODE_CBC.
Example:

$this->encrypt->set_mode(MCRYPT_MODE_CFB);

Please visit php.net for a list of available modes [http://php.net/mcrypt].

	
encode_from_legacy($string[, $legacy_mode = MCRYPT_MODE_ECB[, $key = '']])

	

	Parameters:	
	$string (string) – String to encrypt

	$legacy_mode (int) – Valid PHP MCrypt cipher constant

	$key (string) – Encryption key

	Returns:	Newly encrypted string

	Return type:	string

Enables you to re-encode data that was originally encrypted with
CodeIgniter 1.x to be compatible with the Encrypt library in
CodeIgniter 2.x. It is only necessary to use this method if you have
encrypted data stored permanently such as in a file or database and are
on a server that supports Mcrypt. “Light” use encryption such as
encrypted session data or transitory encrypted flashdata require no
intervention on your part. However, existing encrypted Sessions will be
destroyed since data encrypted prior to 2.x will not be decoded.

Important

Why only a method to re-encode the data instead of maintaining legacy
methods for both encoding and decoding? The algorithms in the
Encrypt library have improved in CodeIgniter 2.x both for performance
and security, and we do not wish to encourage continued use of the older
methods. You can of course extend the Encryption library if you wish and
replace the new methods with the old and retain seamless compatibility
with CodeIgniter 1.x encrypted data, but this a decision that a
developer should make cautiously and deliberately, if at all.

$new_data = $this->encrypt->encode_from_legacy($old_encrypted_string);

	Parameter
	Default
	Description

	$orig_data
	n/a
	The original encrypted data from CodeIgniter 1.x’s Encryption library

	$legacy_mode
	MCRYPT_MODE_ECB
	The Mcrypt mode that was used to generate the original encrypted data.
CodeIgniter 1.x’s default was MCRYPT_MODE_ECB, and it will assume that
to be the case unless overridden by this parameter.

	$key
	n/a
	The encryption key. This it typically specified in your config file as
outlined above.

Encryption Library

Important

DO NOT use this or any other encryption library for
user password storage! Passwords must be hashed instead, and you
should do that via PHP’s own Password Hashing extension [http://php.net/password].

The Encryption Library provides two-way data encryption. To do so in
a cryptographically secure way, it utilizes PHP extensions that are
unfortunately not always available on all systems.
You must meet one of the following dependencies in order to use this
library:

	OpenSSL [http://php.net/openssl]

	MCrypt [http://php.net/mcrypt] (and MCRYPT_DEV_URANDOM availability)

If neither of the above dependencies is met, we simply cannot offer
you a good enough implementation to meet the high standards required
for proper cryptography.

	Using the Encryption Library
	Initializing the Class

	Default behavior

	Setting your encryption_key

	Supported encryption ciphers and modes
	Portable ciphers

	Driver-specific ciphers

	Encryption modes

	Message Length

	Configuring the library

	Encrypting and decrypting data
	How it works

	Using custom parameters

	Supported HMAC authentication algorithms

	Class Reference

Using the Encryption Library

Initializing the Class

Like most other classes in CodeIgniter, the Encryption library is
initialized in your controller using the $this->load->library()
method:

$this->load->library('encryption');

Once loaded, the Encryption library object will be available using:

$this->encryption

Default behavior

By default, the Encryption Library will use the AES-128 cipher in CBC
mode, using your configured encryption_key and SHA512 HMAC authentication.

Note

AES-128 is chosen both because it is proven to be strong and
because of its wide availability across different cryptographic
software and programming languages’ APIs.

However, the encryption_key is not used as is.

If you are somewhat familiar with cryptography, you should already know
that a HMAC also requires a secret key and using the same key for both
encryption and authentication is a bad practice.

Because of that, two separate keys are derived from your already configured
encryption_key: one for encryption and one for authentication. This is
done via a technique called HMAC-based Key Derivation Function [http://en.wikipedia.org/wiki/HKDF] (HKDF).

Setting your encryption_key

An encryption key is a piece of information that controls the
cryptographic process and permits a plain-text string to be encrypted,
and afterwards - decrypted. It is the secret “ingredient” in the whole
process that allows you to be the only one who is able to decrypt data
that you’ve decided to hide from the eyes of the public.
After one key is used to encrypt data, that same key provides the only
means to decrypt it, so not only must you chose one carefully, but you
must not lose it or you will also lose access to the data.

It must be noted that to ensure maximum security, such key should not
only be as strong as possible, but also often changed. Such behavior
however is rarely practical or possible to implement, and that is why
CodeIgniter gives you the ability to configure a single key that is to be
used (almost) every time.

It goes without saying that you should guard your key carefully. Should
someone gain access to your key, the data will be easily decrypted. If
your server is not totally under your control it’s impossible to ensure
key security so you may want to think carefully before using it for
anything that requires high security, like storing credit card numbers.

Your encryption key must be as long as the encyption algorithm in use
allows. For AES-128, that’s 128 bits or 16 bytes (charcters) long.
You will find a table below that shows the supported key lengths of
different ciphers.

The key should be as random as possible and it must not be a regular
text string, nor the output of a hashing function, etc. In order to create
a proper key, you must use the Encryption library’s create_key() method

// $key will be assigned a 16-byte (128-bit) random key
$key = $this->encryption->create_key(16);

The key can be either stored in your application/config/config.php, or
you can design your own storage mechanism and pass the key dynamically
when encrypting/decrypting.

To save your key to your application/config/config.php, open the file
and set:

$config['encryption_key'] = 'YOUR KEY';

You’ll notice that the create_key() method outputs binary data, which
is hard to deal with (i.e. a copy-paste may damage it), so you may use
bin2hex(), hex2bin() or Base64-encoding to work with the key in
a more friendly manner. For example:

// Get a hex-encoded representation of the key:
$key = bin2hex($this->encryption->create_key(16));

// Put the same value in your config with hex2bin(),
// so that it is still passed as binary to the library:
$config['encryption_key'] = hex2bin(<your hex-encoded key>);

Supported encryption ciphers and modes

Note

The terms ‘cipher’ and ‘encryption algorithm’ are interchangeable.

Portable ciphers

Because MCrypt and OpenSSL (also called drivers throughout this document)
each support different sets of encryption algorithms and often implement
them in different ways, our Encryption library is designed to use them in
a portable fashion, or in other words - it enables you to use them
interchangeably, at least for the ciphers supported by both drivers.

It is also implemented in a way that aims to match the standard
implementations in other programming languages and libraries.

Here’s a list of the so called “portable” ciphers, where
“CodeIgniter name” is the string value that you’d have to pass to the
Encryption library to use that cipher:

	Cipher name
	CodeIgniter name
	Key lengths (bits / bytes)
	Supported modes

	AES-128 / Rijndael-128
	aes-128
	128 / 16
	CBC, CTR, CFB, CFB8, OFB, ECB

	AES-192
	aes-192
	192 / 24
	CBC, CTR, CFB, CFB8, OFB, ECB

	AES-256
	aes-256
	256 / 32
	CBC, CTR, CFB, CFB8, OFB, ECB

	DES
	des
	56 / 7
	CBC, CFB, CFB8, OFB, ECB

	TripleDES
	tripledes
	56 / 7, 112 / 14, 168 / 21
	CBC, CFB, CFB8, OFB

	Blowfish
	blowfish
	128-448 / 16-56
	CBC, CFB, OFB, ECB

	CAST5 / CAST-128
	cast5
	88-128 / 11-16
	CBC, CFB, OFB, ECB

	RC4 / ARCFour
	rc4
	40-2048 / 5-256
	Stream

Important

Because of how MCrypt works, if you fail to provide a key
with the appropriate length, you might end up using a different
algorithm than the one configured, so be really careful with that!

Note

In case it isn’t clear from the above table, Blowfish, CAST5
and RC4 support variable length keys. That is, any number in the
shown ranges is valid, although in bit terms that only happens
in 8-bit increments.

Note

Even though CAST5 supports key lengths lower than 128 bits
(16 bytes), in fact they will just be zero-padded to the
maximum length, as specified in RFC 2144 [http://tools.ietf.org/rfc/rfc2144.txt].

Note

Blowfish supports key lengths as small as 32 bits (4 bytes), but
our tests have shown that only lengths of 128 bits (16 bytes) or
higher are properly supported by both MCrypt and OpenSSL. It is
also a bad practice to use such low-length keys anyway.

Driver-specific ciphers

As noted above, MCrypt and OpenSSL support different sets of encryption
ciphers. For portability reasons and because we haven’t tested them
properly, we do not advise you to use the ones that are driver-specific,
but regardless, here’s a list of most of them:

	Cipher name
	Driver
	Key lengths (bits / bytes)
	Supported modes

	AES-128
	OpenSSL
	128 / 16
	CBC, CTR, CFB, CFB8, OFB, ECB, XTS

	AES-192
	OpenSSL
	192 / 24
	CBC, CTR, CFB, CFB8, OFB, ECB, XTS

	AES-256
	OpenSSL
	256 / 32
	CBC, CTR, CFB, CFB8, OFB, ECB, XTS

	Rijndael-128
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	Rijndael-192
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	Rijndael-256
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	GOST
	MCrypt
	256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	Twofish
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	CAST-128
	MCrypt
	40-128 / 5-16
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	CAST-256
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	Loki97
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	SaferPlus
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	Serpent
	MCrypt
	128 / 16, 192 / 24, 256 / 32
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	XTEA
	MCrypt
	128 / 16
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	RC2
	MCrypt
	8-1024 / 1-128
	CBC, CTR, CFB, CFB8, OFB, OFB8, ECB

	RC2
	OpenSSL
	8-1024 / 1-128
	CBC, CFB, OFB, ECB

	Camellia-128
	OpenSSL
	128 / 16
	CBC, CFB, CFB8, OFB, ECB

	Camellia-192
	OpenSSL
	192 / 24
	CBC, CFB, CFB8, OFB, ECB

	Camellia-256
	OpenSSL
	256 / 32
	CBC, CFB, CFB8, OFB, ECB

	Seed
	OpenSSL
	128 / 16
	CBC, CFB, OFB, ECB

Note

If you wish to use one of those ciphers, you’d have to pass
its name in lower-case to the Encryption library.

Note

You’ve probably noticed that all AES cipers (and Rijndael-128)
are also listed in the portable ciphers list. This is because
drivers support different modes for these ciphers. Also, it is
important to note that AES-128 and Rijndael-128 are actually
the same cipher, but only when used with a 128-bit key.

Note

CAST-128 / CAST-5 is also listed in both the portable and
driver-specific ciphers list. This is because OpenSSL’s
implementation doesn’t appear to be working correctly with
key sizes of 80 bits and lower.

Note

RC2 is listed as supported by both MCrypt and OpenSSL.
However, both drivers implement them differently and they
are not portable. It is probably worth noting that we only
found one obscure source confirming that it is MCrypt that
is not properly implementing it.

Encryption modes

Different modes of encryption have different characteristics and serve
for different purposes. Some are stronger than others, some are faster
and some offer extra features.
We are not going in depth into that here, we’ll leave that to the
cryptography experts. The table below is to provide brief informational
reference to our more experienced users. If you are a beginner, just
stick to the CBC mode - it is widely accepted as strong and secure for
general purposes.

	Mode name
	CodeIgniter name
	Driver support
	Additional info

	CBC
	cbc
	MCrypt, OpenSSL
	A safe default choice

	CTR
	ctr
	MCrypt, OpenSSL
	Considered as theoretically better than CBC, but not as widely available

	CFB
	cfb
	MCrypt, OpenSSL
	N/A

	CFB8
	cfb8
	MCrypt, OpenSSL
	Same as CFB, but operates in 8-bit mode (not recommended).

	OFB
	ofb
	MCrypt, OpenSSL
	N/A

	OFB8
	ofb8
	MCrypt
	Same as OFB, but operates in 8-bit mode (not recommended).

	ECB
	ecb
	MCrypt, OpenSSL
	Ignores IV (not recommended).

	XTS
	xts
	OpenSSL
	Usually used for encrypting random access data such as RAM or hard-disk storage.

	Stream
	stream
	MCrypt, OpenSSL
	This is not actually a mode, it just says that a stream cipher is being used. Required because of the general cipher+mode initialization process.

Message Length

It’s probably important for you to know that an encrypted string is usually
longer than the original, plain-text string (depending on the cipher).

This is influenced by the cipher algorithm itself, the IV prepended to the
cipher-text and the HMAC authentication message that is also prepended.
Furthermore, the encrypted message is also Base64-encoded so that it is safe
for storage and transmission, regardless of a possible character set in use.

Keep this information in mind when selecting your data storage mechanism.
Cookies, for example, can only hold 4K of information.

Configuring the library

For usability, performance, but also historical reasons tied to our old
Encrypt Class, the Encryption library is designed to
use repeatedly the same driver, encryption cipher, mode and key.

As noted in the “Default behavior” section above, this means using an
auto-detected driver (OpenSSL has a higher priority), the AES-128 ciper
in CBC mode, and your $config['encryption_key'] value.

If you wish to change that however, you need to use the initialize()
method. It accepts an associative array of parameters, all of which are
optional:

	Option
	Possible values

	driver
	‘mcrypt’, ‘openssl’

	cipher
	Cipher name (see Supported encryption ciphers and modes)

	mode
	Encryption mode (see Encryption modes)

	key
	Encryption key

For example, if you were to change the encryption algorithm and
mode to AES-256 in CTR mode, this is what you should do:

$this->encryption->initialize(
 array(
 'cipher' => 'aes-256',
 'mode' => 'ctr',
 'key' => '<a 32-character random string>'
)
);

Note that we only mentioned that you want to change the ciper and mode,
but we also included a key in the example. As previously noted, it is
important that you choose a key with a proper size for the used algorithm.

There’s also the ability to change the driver, if for some reason you
have both, but want to use MCrypt instead of OpenSSL:

// Switch to the MCrypt driver
$this->encryption->initialize(array('driver' => 'mcrypt'));

// Switch back to the OpenSSL driver
$this->encryption->initialize(array('driver' => 'openssl'));

Encrypting and decrypting data

Encrypting and decrypting data with the already configured library
settings is simple. As simple as just passing the string to the
encrypt() and/or decrypt() methods:

$plain_text = 'This is a plain-text message!';
$ciphertext = $this->encryption->encrypt($plain_text);

// Outputs: This is a plain-text message!
echo $this->encryption->decrypt($ciphertext);

And that’s it! The Encryption library will do everything necessary
for the whole process to be cryptographically secure out-of-the-box.
You don’t need to worry about it.

Important

Both methods will return FALSE in case of an error.
While for encrypt() this can only mean incorrect
configuration, you should always check the return value
of decrypt() in production code.

How it works

If you must know how the process works, here’s what happens under
the hood:

	$this->encryption->encrypt($plain_text)
	Derive an encryption key and a HMAC key from your configured
encryption_key via HKDF, using the SHA-512 digest algorithm.

	Generate a random initialization vector (IV).

	Encrypt the data via AES-128 in CBC mode (or another previously
configured cipher and mode), using the above-mentioned derived
encryption key and IV.

	Prepend said IV to the resulting cipher-text.

	Base64-encode the resulting string, so that it can be safely
stored or transferred without worrying about character sets.

	Create a SHA-512 HMAC authentication message using the derived
HMAC key to ensure data integrity and prepend it to the Base64
string.

	$this->encryption->decrypt($ciphertext)
	Derive an encryption key and a HMAC key from your configured
encryption_key via HKDF, using the SHA-512 digest algorithm.
Because your configured encryption_key is the same, this
will produce the same result as in the encrypt() method
above - otherwise you won’t be able to decrypt it.

	Check if the string is long enough, separate the HMAC out of
it and validate if it is correct (this is done in a way that
prevents timing attacks against it). Return FALSE if either of
the checks fails.

	Base64-decode the string.

	Separate the IV out of the cipher-text and decrypt the said
cipher-text using that IV and the derived encryption key.

Using custom parameters

Let’s say you have to interact with another system that is out
of your control and uses another method to encrypt data. A
method that will most certainly not match the above-described
sequence and probably not use all of the steps either.

The Encryption library allows you to change how its encryption
and decryption processes work, so that you can easily tailor a
custom solution for such situations.

Note

It is possible to use the library in this way, without
setting an encryption_key in your configuration file.

All you have to do is to pass an associative array with a few
parameters to either the encrypt() or decrypt() method.
Here’s an example:

// Assume that we have $ciphertext, $key and $hmac_key
// from on outside source

$message = $this->encryption->decrypt(
 $ciphertext,
 array(
 'cipher' => 'blowfish',
 'mode' => 'cbc',
 'key' => $key,
 'hmac_digest' => 'sha256',
 'hmac_key' => $hmac_key
)
);

In the above example, we are decrypting a message that was encrypted
using the Blowfish cipher in CBC mode and authenticated via a SHA-256
HMAC.

Important

Note that both ‘key’ and ‘hmac_key’ are used in this
example. When using custom parameters, encryption and HMAC keys
are not derived like the default behavior of the library is.

Below is a list of the available options.

However, unless you really need to and you know what you are doing,
we advise you to not change the encryption process as this could
impact security, so please do so with caution.

	Option
	Default value
	Mandatory / Optional
	Description

	cipher
	N/A
	Yes
	Encryption algorithm (see Supported encryption ciphers and modes).

	mode
	N/A
	Yes
	Encryption mode (see Encryption modes).

	key
	N/A
	Yes
	Encryption key.

	hmac
	TRUE
	No
	Whether to use a HMAC.
Boolean. If set to FALSE, then hmac_digest and
hmac_key will be ignored.

	hmac_digest
	sha512
	No
	HMAC message digest algorithm (see Supported HMAC authentication algorithms).

	hmac_key
	N/A
	Yes, unless hmac is FALSE
	HMAC key.

	raw_data
	FALSE
	No
	Whether the cipher-text should be raw.
Boolean. If set to TRUE, then Base64 encoding and
decoding will not be performed and HMAC will not
be a hexadecimal string.

Important

encrypt() and decrypt() will return FALSE if
a mandatory parameter is not provided or if a provided
value is incorrect. This includes hmac_key, unless hmac
is set to FALSE.

Supported HMAC authentication algorithms

For HMAC message authentication, the Encryption library supports
usage of the SHA-2 family of algorithms:

	Algorithm
	Raw length (bytes)
	Hex-encoded length (bytes)

	sha512
	64
	128

	sha384
	48
	96

	sha256
	32
	64

	sha224
	28
	56

The reason for not including other popular algorithms, such as
MD5 or SHA1 is that they are no longer considered secure enough
and as such, we don’t want to encourage their usage.
If you absolutely need to use them, it is easy to do so via PHP’s
native hash_hmac() [http://php.net/manual/en/function.hash-hmac.php] function.

Stronger algorithms of course will be added in the future as they
appear and become widely available.

Class Reference

	
class CI_Encryption

	
	
initialize($params)

	

	Parameters:	
	$params (array) – Configuration parameters

	Returns:	CI_Encryption instance (method chaining)

	Return type:	CI_Encryption

Initializes (configures) the library to use a different
driver, cipher, mode or key.

Example:

$this->encryption->initialize(
 array('mode' => 'ctr')
);

Please refer to the Configuring the library section for detailed info.

	
encrypt($data[, $params = NULL])

	

	Parameters:	
	$data (string) – Data to encrypt

	$params (array) – Optional parameters

	Returns:	Encrypted data or FALSE on failure

	Return type:	string

Encrypts the input data and returns its ciphertext.

Example:

$ciphertext = $this->encryption->encrypt('My secret message');

Please refer to the Using custom parameters section for information
on the optional parameters.

	
decrypt($data[, $params = NULL])

	

	Parameters:	
	$data (string) – Data to decrypt

	$params (array) – Optional parameters

	Returns:	Decrypted data or FALSE on failure

	Return type:	string

Decrypts the input data and returns it in plain-text.

Example:

echo $this->encryption->decrypt($ciphertext);

Please refer to the Using custom parameters secrion for information
on the optional parameters.

	
create_key($length)

	

	Parameters:	
	$length (int) – Output length

	Returns:	A pseudo-random cryptographic key with the specified length, or FALSE on failure

	Return type:	string

Creates a cryptographic key by fetching random data from
the operating system’s sources (i.e. /dev/urandom).

	
hkdf($key[, $digest = 'sha512'[, $salt = NULL[, $length = NULL[, $info = '']]]])

	

	Parameters:	
	$key (string) – Input key material

	$digest (string) – A SHA-2 family digest algorithm

	$salt (string) – Optional salt

	$length (int) – Optional output length

	$info (string) – Optional context/application-specific info

	Returns:	A pseudo-random key or FALSE on failure

	Return type:	string

Derives a key from another, presumably weaker key.

This method is used internally to derive an encryption and HMAC key
from your configured encryption_key.

It is publicly available due to its otherwise general purpose. It is
described in RFC 5869 [https://tools.ietf.org/rfc/rfc5869.txt].

However, as opposed to the description in RFC 5869, this implementation
doesn’t support SHA1.

Example:

$hmac_key = $this->encryption->hkdf(
 $key,
 'sha512',
 NULL,
 NULL,
 'authentication'
);

// $hmac_key is a pseudo-random key with a length of 64 bytes

File Uploading Class

CodeIgniter’s File Uploading Class permits files to be uploaded. You can
set various preferences, restricting the type and size of the files.

	The Process
	Creating the Upload Form

	The Success Page

	The Controller

	The Upload Directory

	Try it!

	Reference Guide
	Initializing the Upload Class

	Setting Preferences

	Preferences

	Setting preferences in a config file

	Class Reference

The Process

Uploading a file involves the following general process:

	An upload form is displayed, allowing a user to select a file and
upload it.

	When the form is submitted, the file is uploaded to the destination
you specify.

	Along the way, the file is validated to make sure it is allowed to be
uploaded based on the preferences you set.

	Once uploaded, the user will be shown a success message.

To demonstrate this process here is brief tutorial. Afterward you’ll
find reference information.

Creating the Upload Form

Using a text editor, create a form called upload_form.php. In it, place
this code and save it to your application/views/ directory:

<html>
<head>
<title>Upload Form</title>
</head>
<body>

<?php echo $error;?>

<?php echo form_open_multipart('upload/do_upload');?>

<input type="file" name="userfile" size="20" />

<input type="submit" value="upload" />

</form>

</body>
</html>

You’ll notice we are using a form helper to create the opening form tag.
File uploads require a multipart form, so the helper creates the proper
syntax for you. You’ll also notice we have an $error variable. This is
so we can show error messages in the event the user does something
wrong.

The Success Page

Using a text editor, create a form called upload_success.php. In it,
place this code and save it to your application/views/ directory:

<html>
<head>
<title>Upload Form</title>
</head>
<body>

<h3>Your file was successfully uploaded!</h3>

<?php foreach ($upload_data as $item => $value):?>
<?php echo $item;?>: <?php echo $value;?>
<?php endforeach; ?>

<p><?php echo anchor('upload', 'Upload Another File!'); ?></p>

</body>
</html>

The Controller

Using a text editor, create a controller called Upload.php. In it, place
this code and save it to your application/controllers/ directory:

<?php

class Upload extends CI_Controller {

 public function __construct()
 {
 parent::__construct();
 $this->load->helper(array('form', 'url'));
 }

 public function index()
 {
 $this->load->view('upload_form', array('error' => ' '));
 }

 public function do_upload()
 {
 $config['upload_path'] = './uploads/';
 $config['allowed_types'] = 'gif|jpg|png';
 $config['max_size'] = 100;
 $config['max_width'] = 1024;
 $config['max_height'] = 768;

 $this->load->library('upload', $config);

 if (! $this->upload->do_upload('userfile'))
 {
 $error = array('error' => $this->upload->display_errors());

 $this->load->view('upload_form', $error);
 }
 else
 {
 $data = array('upload_data' => $this->upload->data());

 $this->load->view('upload_success', $data);
 }
 }
}
?>

The Upload Directory

You’ll need a destination directory for your uploaded images. Create a
directory at the root of your CodeIgniter installation called uploads
and set its file permissions to 777.

Try it!

To try your form, visit your site using a URL similar to this one:

example.com/index.php/upload/

You should see an upload form. Try uploading an image file (either a
jpg, gif, or png). If the path in your controller is correct it should
work.

Reference Guide

Initializing the Upload Class

Like most other classes in CodeIgniter, the Upload class is initialized
in your controller using the $this->load->library() method:

$this->load->library('upload');

Once the Upload class is loaded, the object will be available using:
$this->upload

Setting Preferences

Similar to other libraries, you’ll control what is allowed to be upload
based on your preferences. In the controller you built above you set the
following preferences:

$config['upload_path'] = './uploads/';
$config['allowed_types'] = 'gif|jpg|png';
$config['max_size'] = '100';
$config['max_width'] = '1024';
$config['max_height'] = '768';

$this->load->library('upload', $config);

// Alternately you can set preferences by calling the ``initialize()`` method. Useful if you auto-load the class:
$this->upload->initialize($config);

The above preferences should be fairly self-explanatory. Below is a
table describing all available preferences.

Preferences

The following preferences are available. The default value indicates
what will be used if you do not specify that preference.

	Preference
	Default Value
	Options
	Description

	upload_path
	None
	None
	The path to the directory where the upload should be placed. The
directory must be writable and the path can be absolute or relative.

	allowed_types
	None
	None
	The mime types corresponding to the types of files you allow to be
uploaded. Usually the file extension can be used as the mime type.
Can be either an array or a pipe-separated string.

	file_name
	None
	Desired file name
	If set CodeIgniter will rename the uploaded file to this name. The
extension provided in the file name must also be an allowed file type.
If no extension is provided in the original file_name will be used.

	file_ext_tolower
	FALSE
	TRUE/FALSE (boolean)
	If set to TRUE, the file extension will be forced to lower case

	overwrite
	FALSE
	TRUE/FALSE (boolean)
	If set to true, if a file with the same name as the one you are
uploading exists, it will be overwritten. If set to false, a number will
be appended to the filename if another with the same name exists.

	max_size
	0
	None
	The maximum size (in kilobytes) that the file can be. Set to zero for no
limit. Note: Most PHP installations have their own limit, as specified
in the php.ini file. Usually 2 MB (or 2048 KB) by default.

	max_width
	0
	None
	The maximum width (in pixels) that the image can be. Set to zero for no
limit.

	max_height
	0
	None
	The maximum height (in pixels) that the image can be. Set to zero for no
limit.

	min_width
	0
	None
	The minimum width (in pixels) that the image can be. Set to zero for no
limit.

	min_height
	0
	None
	The minimum height (in pixels) that the image can be. Set to zero for no
limit.

	max_filename
	0
	None
	The maximum length that a file name can be. Set to zero for no limit.

	max_filename_increment
	100
	None
	When overwrite is set to FALSE, use this to set the maximum filename
increment for CodeIgniter to append to the filename.

	encrypt_name
	FALSE
	TRUE/FALSE (boolean)
	If set to TRUE the file name will be converted to a random encrypted
string. This can be useful if you would like the file saved with a name
that can not be discerned by the person uploading it.

	remove_spaces
	TRUE
	TRUE/FALSE (boolean)
	If set to TRUE, any spaces in the file name will be converted to
underscores. This is recommended.

	detect_mime
	TRUE
	TRUE/FALSE (boolean)
	If set to TRUE, a server side detection of the file type will be
performed to avoid code injection attacks. DO NOT disable this option
unless you have no other option as that would cause a security risk.

	mod_mime_fix
	TRUE
	TRUE/FALSE (boolean)
	If set to TRUE, multiple filename extensions will be suffixed with an
underscore in order to avoid triggering Apache mod_mime [http://httpd.apache.org/docs/2.0/mod/mod_mime.html#multipleext].
DO NOT turn off this option if your upload directory is public, as this
is a security risk.

Setting preferences in a config file

If you prefer not to set preferences using the above method, you can
instead put them into a config file. Simply create a new file called the
upload.php, add the $config array in that file. Then save the file in:
config/upload.php and it will be used automatically. You will NOT
need to use the $this->upload->initialize() method if you save your
preferences in a config file.

Class Reference

	
class CI_Upload

	
	
initialize([array $config = array()[, $reset = TRUE]])

	

	Parameters:	
	$config (array) – Preferences

	$reset (bool) – Whether to reset preferences (that are not provided in $config) to their defaults

	Returns:	CI_Upload instance (method chaining)

	Return type:	CI_Upload

	
do_upload([$field = 'userfile'])

	

	Parameters:	
	$field (string) – Name of the form field

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Performs the upload based on the preferences you’ve set.

Note

By default the upload routine expects the file to come from
a form field called userfile, and the form must be of type
“multipart”.

<form method="post" action="some_action" enctype="multipart/form-data" />

If you would like to set your own field name simply pass its value to
the do_upload() method:

$field_name = "some_field_name";
$this->upload->do_upload($field_name);

	
display_errors([$open = '<p>'[, $close = '</p>']])

	

	Parameters:	
	$open (string) – Opening markup

	$close (string) – Closing markup

	Returns:	Formatted error message(s)

	Return type:	string

Retrieves any error messages if the do_upload() method returned
false. The method does not echo automatically, it returns the data so
you can assign it however you need.

Formatting Errors

By default the above method wraps any errors within <p> tags. You can
set your own delimiters like this:

$this->upload->display_errors('<p>', '</p>');

	
data([$index = NULL])

	

	Parameters:	
	$data (string) – Element to return instead of the full array

	Returns:	Information about the uploaded file

	Return type:	mixed

This is a helper method that returns an array containing all of the
data related to the file you uploaded. Here is the array prototype:

Array
(
 [file_name] => mypic.jpg
 [file_type] => image/jpeg
 [file_path] => /path/to/your/upload/
 [full_path] => /path/to/your/upload/jpg.jpg
 [raw_name] => mypic
 [orig_name] => mypic.jpg
 [client_name] => mypic.jpg
 [file_ext] => .jpg
 [file_size] => 22.2
 [is_image] => 1
 [image_width] => 800
 [image_height] => 600
 [image_type] => jpeg
 [image_size_str] => width="800" height="200"
)

To return one element from the array:

$this->upload->data('file_name'); // Returns: mypic.jpg

Here’s a table explaining the above-displayed array items:

	Item
	Description

	file_name
	Name of the file that was uploaded, including the filename extension

	file_type
	File MIME type identifier

	file_path
	Absolute server path to the file

	full_path
	Absolute server path, including the file name

	raw_name
	File name, without the extension

	orig_name
	Original file name. This is only useful if you use the encrypted name option.

	client_name
	File name supplied by the client user agent, but possibly sanitized

	file_ext
	Filename extension, period included

	file_size
	File size in kilobytes

	is_image
	Whether the file is an image or not. 1 = image. 0 = not.

	image_width
	Image width

	image_height
	Image height

	image_type
	Image type (usually the file name extension without the period)

	image_size_str
	A string containing the width and height (useful to put into an image tag)

Form Validation

CodeIgniter provides a comprehensive form validation and data prepping
class that helps minimize the amount of code you’ll write.

Page Contents

	Form Validation
	Overview

	Form Validation Tutorial
	The Form

	The Success Page

	The Controller

	Try it!

	Explanation

	Setting Validation Rules

	Setting Rules Using an Array

	Cascading Rules

	Prepping Data

	Re-populating the form

	Callbacks: Your own Validation Methods

	Callable: Use anything as a rule

	Setting Error Messages

	Translating Field Names

	Changing the Error Delimiters

	Showing Errors Individually

	Validating an Array (other than $_POST)

	Saving Sets of Validation Rules to a Config File
	How to save your rules

	Creating Sets of Rules

	Calling a Specific Rule Group

	Associating a Controller Method with a Rule Group

	Using Arrays as Field Names

	Rule Reference

	Prepping Reference

	Class Reference

	Helper Reference

Overview

Before explaining CodeIgniter’s approach to data validation, let’s
describe the ideal scenario:

	A form is displayed.

	You fill it in and submit it.

	If you submitted something invalid, or perhaps missed a required
item, the form is redisplayed containing your data along with an
error message describing the problem.

	This process continues until you have submitted a valid form.

On the receiving end, the script must:

	Check for required data.

	Verify that the data is of the correct type, and meets the correct
criteria. For example, if a username is submitted it must be
validated to contain only permitted characters. It must be of a
minimum length, and not exceed a maximum length. The username can’t
be someone else’s existing username, or perhaps even a reserved word.
Etc.

	Sanitize the data for security.

	Pre-format the data if needed (Does the data need to be trimmed? HTML
encoded? Etc.)

	Prep the data for insertion in the database.

Although there is nothing terribly complex about the above process, it
usually requires a significant amount of code, and to display error
messages, various control structures are usually placed within the form
HTML. Form validation, while simple to create, is generally very messy
and tedious to implement.

Form Validation Tutorial

What follows is a “hands on” tutorial for implementing CodeIgniter’s Form
Validation.

In order to implement form validation you’ll need three things:

	A View file containing a form.

	A View file containing a “success” message to be displayed upon
successful submission.

	A controller method to receive and
process the submitted data.

Let’s create those three things, using a member sign-up form as the
example.

The Form

Using a text editor, create a form called myform.php. In it, place this
code and save it to your application/views/ folder:

<html>
<head>
<title>My Form</title>
</head>
<body>

<?php echo validation_errors(); ?>

<?php echo form_open('form'); ?>

<h5>Username</h5>
<input type="text" name="username" value="" size="50" />

<h5>Password</h5>
<input type="text" name="password" value="" size="50" />

<h5>Password Confirm</h5>
<input type="text" name="passconf" value="" size="50" />

<h5>Email Address</h5>
<input type="text" name="email" value="" size="50" />

<div><input type="submit" value="Submit" /></div>

</form>

</body>
</html>

The Success Page

Using a text editor, create a form called formsuccess.php. In it, place
this code and save it to your application/views/ folder:

<html>
<head>
<title>My Form</title>
</head>
<body>

<h3>Your form was successfully submitted!</h3>

<p><?php echo anchor('form', 'Try it again!'); ?></p>

</body>
</html>

The Controller

Using a text editor, create a controller called Form.php. In it, place
this code and save it to your application/controllers/ folder:

<?php

class Form extends CI_Controller {

 public function index()
 {
 $this->load->helper(array('form', 'url'));

 $this->load->library('form_validation');

 if ($this->form_validation->run() == FALSE)
 {
 $this->load->view('myform');
 }
 else
 {
 $this->load->view('formsuccess');
 }
 }
}

Try it!

To try your form, visit your site using a URL similar to this one:

example.com/index.php/form/

If you submit the form you should simply see the form reload. That’s
because you haven’t set up any validation rules yet.

Since you haven’t told the Form Validation class to validate anything
yet, it returns FALSE (boolean false) by default. ``The run()`` method
only returns TRUE if it has successfully applied your rules without any
of them failing.

Explanation

You’ll notice several things about the above pages:

The form (myform.php) is a standard web form with a couple exceptions:

	It uses a form helper to create the form opening. Technically, this
isn’t necessary. You could create the form using standard HTML.
However, the benefit of using the helper is that it generates the
action URL for you, based on the URL in your config file. This makes
your application more portable in the event your URLs change.

	At the top of the form you’ll notice the following function call:

<?php echo validation_errors(); ?>

This function will return any error messages sent back by the
validator. If there are no messages it returns an empty string.

The controller (Form.php) has one method: index(). This method
initializes the validation class and loads the form helper and URL
helper used by your view files. It also runs the validation routine.
Based on whether the validation was successful it either presents the
form or the success page.

Setting Validation Rules

CodeIgniter lets you set as many validation rules as you need for a
given field, cascading them in order, and it even lets you prep and
pre-process the field data at the same time. To set validation rules you
will use the set_rules() method:

$this->form_validation->set_rules();

The above method takes three parameters as input:

	The field name - the exact name you’ve given the form field.

	A “human” name for this field, which will be inserted into the error
message. For example, if your field is named “user” you might give it
a human name of “Username”.

	The validation rules for this form field.

	(optional) Set custom error messages on any rules given for current field. If not provided will use the default one.

Note

If you would like the field name to be stored in a language
file, please see Translating Field Names.

Here is an example. In your controller (Form.php), add this code just
below the validation initialization method:

$this->form_validation->set_rules('username', 'Username', 'required');
$this->form_validation->set_rules('password', 'Password', 'required');
$this->form_validation->set_rules('passconf', 'Password Confirmation', 'required');
$this->form_validation->set_rules('email', 'Email', 'required');

Your controller should now look like this:

<?php

class Form extends CI_Controller {

 public function index()
 {
 $this->load->helper(array('form', 'url'));

 $this->load->library('form_validation');

 $this->form_validation->set_rules('username', 'Username', 'required');
 $this->form_validation->set_rules('password', 'Password', 'required',
 array('required' => 'You must provide a %s.')
);
 $this->form_validation->set_rules('passconf', 'Password Confirmation', 'required');
 $this->form_validation->set_rules('email', 'Email', 'required');

 if ($this->form_validation->run() == FALSE)
 {
 $this->load->view('myform');
 }
 else
 {
 $this->load->view('formsuccess');
 }
 }
}

Now submit the form with the fields blank and you should see the error
messages. If you submit the form with all the fields populated you’ll
see your success page.

Note

The form fields are not yet being re-populated with the data
when there is an error. We’ll get to that shortly.

Setting Rules Using an Array

Before moving on it should be noted that the rule setting method can
be passed an array if you prefer to set all your rules in one action. If
you use this approach, you must name your array keys as indicated:

$config = array(
 array(
 'field' => 'username',
 'label' => 'Username',
 'rules' => 'required'
),
 array(
 'field' => 'password',
 'label' => 'Password',
 'rules' => 'required',
 'errors' => array(
 'required' => 'You must provide a %s.',
),
),
 array(
 'field' => 'passconf',
 'label' => 'Password Confirmation',
 'rules' => 'required'
),
 array(
 'field' => 'email',
 'label' => 'Email',
 'rules' => 'required'
)
);

$this->form_validation->set_rules($config);

Cascading Rules

CodeIgniter lets you pipe multiple rules together. Let’s try it. Change
your rules in the third parameter of rule setting method, like this:

$this->form_validation->set_rules(
 'username', 'Username',
 'required|min_length[5]|max_length[12]|is_unique[users.username]',
 array(
 'required' => 'You have not provided %s.',
 'is_unique' => 'This %s already exists.'
)
);
$this->form_validation->set_rules('password', 'Password', 'required');
$this->form_validation->set_rules('passconf', 'Password Confirmation', 'required|matches[password]');
$this->form_validation->set_rules('email', 'Email', 'required|valid_email|is_unique[users.email]');

The above code sets the following rules:

	The username field be no shorter than 5 characters and no longer than
12.

	The password field must match the password confirmation field.

	The email field must contain a valid email address.

Give it a try! Submit your form without the proper data and you’ll see
new error messages that correspond to your new rules. There are numerous
rules available which you can read about in the validation reference.

Note

You can also pass an array of rules to set_rules(),
instead of a string. Example:

$this->form_validation->set_rules('username', 'Username', array('required', 'min_length[5]'));

Prepping Data

In addition to the validation method like the ones we used above, you
can also prep your data in various ways. For example, you can set up
rules like this:

$this->form_validation->set_rules('username', 'Username', 'trim|required|min_length[5]|max_length[12]');
$this->form_validation->set_rules('password', 'Password', 'trim|required|min_length[8]');
$this->form_validation->set_rules('passconf', 'Password Confirmation', 'trim|required|matches[password]');
$this->form_validation->set_rules('email', 'Email', 'trim|required|valid_email');

In the above example, we are “trimming” the fields, checking for length
where necessary and making sure that both password fields match.

Any native PHP function that accepts one parameter can be used as a
rule, like ``htmlspecialchars()``, ``trim()``, etc.

Note

You will generally want to use the prepping functions
after the validation rules so if there is an error, the
original data will be shown in the form.

Re-populating the form

Thus far we have only been dealing with errors. It’s time to repopulate
the form field with the submitted data. CodeIgniter offers several
helper functions that permit you to do this. The one you will use most
commonly is:

set_value('field name')

Open your myform.php view file and update the value in each field
using the set_value() function:

Don’t forget to include each field name in the :php:func:`set_value()`
function calls!

<html>
<head>
<title>My Form</title>
</head>
<body>

<?php echo validation_errors(); ?>

<?php echo form_open('form'); ?>

<h5>Username</h5>
<input type="text" name="username" value="<?php echo set_value('username'); ?>" size="50" />

<h5>Password</h5>
<input type="text" name="password" value="<?php echo set_value('password'); ?>" size="50" />

<h5>Password Confirm</h5>
<input type="text" name="passconf" value="<?php echo set_value('passconf'); ?>" size="50" />

<h5>Email Address</h5>
<input type="text" name="email" value="<?php echo set_value('email'); ?>" size="50" />

<div><input type="submit" value="Submit" /></div>

</form>

</body>
</html>

Now reload your page and submit the form so that it triggers an error.
Your form fields should now be re-populated

Note

The Class Reference section below
contains methods that permit you to re-populate <select> menus,
radio buttons, and checkboxes.

Important

If you use an array as the name of a form field, you
must supply it as an array to the function. Example:

<input type="text" name="colors[]" value="<?php echo set_value('colors[]'); ?>" size="50" />

For more info please see the Using Arrays as Field Names section below.

Callbacks: Your own Validation Methods

The validation system supports callbacks to your own validation
methods. This permits you to extend the validation class to meet your
needs. For example, if you need to run a database query to see if the
user is choosing a unique username, you can create a callback method
that does that. Let’s create an example of this.

In your controller, change the “username” rule to this:

$this->form_validation->set_rules('username', 'Username', 'callback_username_check');

Then add a new method called username_check() to your controller.
Here’s how your controller should now look:

<?php

class Form extends CI_Controller {

 public function index()
 {
 $this->load->helper(array('form', 'url'));

 $this->load->library('form_validation');

 $this->form_validation->set_rules('username', 'Username', 'callback_username_check');
 $this->form_validation->set_rules('password', 'Password', 'required');
 $this->form_validation->set_rules('passconf', 'Password Confirmation', 'required');
 $this->form_validation->set_rules('email', 'Email', 'required|is_unique[users.email]');

 if ($this->form_validation->run() == FALSE)
 {
 $this->load->view('myform');
 }
 else
 {
 $this->load->view('formsuccess');
 }
 }

 public function username_check($str)
 {
 if ($str == 'test')
 {
 $this->form_validation->set_message('username_check', 'The {field} field can not be the word "test"');
 return FALSE;
 }
 else
 {
 return TRUE;
 }
 }

}

Reload your form and submit it with the word “test” as the username. You
can see that the form field data was passed to your callback method
for you to process.

To invoke a callback just put the method name in a rule, with
“callback_” as the rule prefix. If you need to receive an extra
parameter in your callback method, just add it normally after the
method name between square brackets, as in: callback_foo[bar],
then it will be passed as the second argument of your callback method.

Note

You can also process the form data that is passed to your
callback and return it. If your callback returns anything other than a
boolean TRUE/FALSE it is assumed that the data is your newly processed
form data.

Callable: Use anything as a rule

If callback rules aren’t good enough for you (for example, because they are
limited to your controller), don’t get disappointed, there’s one more way
to create custom rules: anything that is_callable() would return TRUE for.

Consider the following example:

$this->form_validation->set_rules(
 'username', 'Username',
 array(
 'required',
 array($this->users_model, 'valid_username')
)
);

The above code would use the valid_username() method from your
Users_model object.

This is just an example of course, and callbacks aren’t limited to models.
You can use any object/method that accepts the field value as its’ first
parameter. You can also use an anonymous function:

$this->form_validation->set_rules(
 'username', 'Username',
 array(
 'required',
 function($value)
 {
 // Check $value
 }
)
);

Of course, since a Callable rule by itself is not a string, it isn’t
a rule name either. That is a problem when you want to set error messages
for them. In order to get around that problem, you can put such rules as
the second element of an array, with the first one being the rule name:

$this->form_validation->set_rules(
 'username', 'Username',
 array(
 'required',
 array('username_callable', array($this->users_model, 'valid_username'))
)
);

Anonymous function version:

$this->form_validation->set_rules(
 'username', 'Username',
 array(
 'required',
 array(
 'username_callable',
 function($str)
 {
 // Check validity of $str and return TRUE or FALSE
 }
)
)
);

Setting Error Messages

All of the native error messages are located in the following language
file: system/language/english/form_validation_lang.php

To set your own global custom message for a rule, you can either
extend/override the language file by creating your own in
application/language/english/form_validation_lang.php (read more
about this in the Language Class documentation),
or use the following method:

$this->form_validation->set_message('rule', 'Error Message');

If you need to set a custom error message for a particular field on
some particular rule, use the set_rules() method:

$this->form_validation->set_rules('field_name', 'Field Label', 'rule1|rule2|rule3',
 array('rule2' => 'Error Message on rule2 for this field_name')
);

Where rule corresponds to the name of a particular rule, and Error
Message is the text you would like displayed.

If you’d like to include a field’s “human” name, or the optional
parameter some rules allow for (such as max_length), you can add the
{field} and {param} tags to your message, respectively:

$this->form_validation->set_message('min_length', '{field} must have at least {param} characters.');

On a field with the human name Username and a rule of min_length[5], an
error would display: “Username must have at least 5 characters.”

Note

The old sprintf() method of using %s in your error messages
will still work, however it will override the tags above. You should
use one or the other.

In the callback rule example above, the error message was set by passing
the name of the method (without the “callback_” prefix):

$this->form_validation->set_message('username_check')

Translating Field Names

If you would like to store the “human” name you passed to the
set_rules() method in a language file, and therefore make the name
able to be translated, here’s how:

First, prefix your “human” name with lang:, as in this example:

$this->form_validation->set_rules('first_name', 'lang:first_name', 'required');

Then, store the name in one of your language file arrays (without the
prefix):

$lang['first_name'] = 'First Name';

Note

If you store your array item in a language file that is not
loaded automatically by CI, you’ll need to remember to load it in your
controller using:

$this->lang->load('file_name');

See the Language Class page for more info regarding
language files.

Changing the Error Delimiters

By default, the Form Validation class adds a paragraph tag (<p>) around
each error message shown. You can either change these delimiters
globally, individually, or change the defaults in a config file.

	Changing delimiters Globally
To globally change the error delimiters, in your controller method,
just after loading the Form Validation class, add this:

$this->form_validation->set_error_delimiters('<div class="error">', '</div>');

In this example, we’ve switched to using div tags.

	Changing delimiters Individually
Each of the two error generating functions shown in this tutorial can
be supplied their own delimiters as follows:

<?php echo form_error('field name', '<div class="error">', '</div>'); ?>

Or:

<?php echo validation_errors('<div class="error">', '</div>'); ?>

	Set delimiters in a config file
You can add your error delimiters in application/config/form_validation.php as follows:

$config['error_prefix'] = '<div class="error_prefix">';
$config['error_suffix'] = '</div>';

Showing Errors Individually

If you prefer to show an error message next to each form field, rather
than as a list, you can use the form_error() function.

Try it! Change your form so that it looks like this:

<h5>Username</h5>
<?php echo form_error('username'); ?>
<input type="text" name="username" value="<?php echo set_value('username'); ?>" size="50" />

<h5>Password</h5>
<?php echo form_error('password'); ?>
<input type="text" name="password" value="<?php echo set_value('password'); ?>" size="50" />

<h5>Password Confirm</h5>
<?php echo form_error('passconf'); ?>
<input type="text" name="passconf" value="<?php echo set_value('passconf'); ?>" size="50" />

<h5>Email Address</h5>
<?php echo form_error('email'); ?>
<input type="text" name="email" value="<?php echo set_value('email'); ?>" size="50" />

If there are no errors, nothing will be shown. If there is an error, the
message will appear.

Important

If you use an array as the name of a form field, you
must supply it as an array to the function. Example:

<?php echo form_error('options[size]'); ?>
<input type="text" name="options[size]" value="<?php echo set_value("options[size]"); ?>" size="50" />

For more info please see the Using Arrays as Field Names section below.

Validating an Array (other than $_POST)

Sometimes you may want to validate an array that does not originate from $_POST data.

In this case, you can specify the array to be validated:

$data = array(
 'username' => 'johndoe',
 'password' => 'mypassword',
 'passconf' => 'mypassword'
);

$this->form_validation->set_data($data);

Creating validation rules, running the validation, and retrieving error
messages works the same whether you are validating $_POST data or
another array of your choice.

Important

You have to call the set_data() method before defining
any validation rules.

Important

If you want to validate more than one array during a single
execution, then you should call the reset_validation() method
before setting up rules and validating the new array.

For more info please see the Class Reference section below.

Saving Sets of Validation Rules to a Config File

A nice feature of the Form Validation class is that it permits you to
store all your validation rules for your entire application in a config
file. You can organize these rules into “groups”. These groups can
either be loaded automatically when a matching controller/method is
called, or you can manually call each set as needed.

How to save your rules

To store your validation rules, simply create a file named
form_validation.php in your application/config/ folder. In that file
you will place an array named $config with your rules. As shown earlier,
the validation array will have this prototype:

$config = array(
 array(
 'field' => 'username',
 'label' => 'Username',
 'rules' => 'required'
),
 array(
 'field' => 'password',
 'label' => 'Password',
 'rules' => 'required'
),
 array(
 'field' => 'passconf',
 'label' => 'Password Confirmation',
 'rules' => 'required'
),
 array(
 'field' => 'email',
 'label' => 'Email',
 'rules' => 'required'
)
);

Your validation rule file will be loaded automatically and used when you
call the run() method.

Please note that you MUST name your $config array.

Creating Sets of Rules

In order to organize your rules into “sets” requires that you place them
into “sub arrays”. Consider the following example, showing two sets of
rules. We’ve arbitrarily called these two rules “signup” and “email”.
You can name your rules anything you want:

$config = array(
 'signup' => array(
 array(
 'field' => 'username',
 'label' => 'Username',
 'rules' => 'required'
),
 array(
 'field' => 'password',
 'label' => 'Password',
 'rules' => 'required'
),
 array(
 'field' => 'passconf',
 'label' => 'Password Confirmation',
 'rules' => 'required'
),
 array(
 'field' => 'email',
 'label' => 'Email',
 'rules' => 'required'
)
),
 'email' => array(
 array(
 'field' => 'emailaddress',
 'label' => 'EmailAddress',
 'rules' => 'required|valid_email'
),
 array(
 'field' => 'name',
 'label' => 'Name',
 'rules' => 'required|alpha'
),
 array(
 'field' => 'title',
 'label' => 'Title',
 'rules' => 'required'
),
 array(
 'field' => 'message',
 'label' => 'MessageBody',
 'rules' => 'required'
)
)
);

Calling a Specific Rule Group

In order to call a specific group, you will pass its name to the run()
method. For example, to call the signup rule you will do this:

if ($this->form_validation->run('signup') == FALSE)
{
 $this->load->view('myform');
}
else
{
 $this->load->view('formsuccess');
}

Associating a Controller Method with a Rule Group

An alternate (and more automatic) method of calling a rule group is to
name it according to the controller class/method you intend to use it
with. For example, let’s say you have a controller named Member and a
method named signup. Here’s what your class might look like:

<?php

class Member extends CI_Controller {

 public function signup()
 {
 $this->load->library('form_validation');

 if ($this->form_validation->run() == FALSE)
 {
 $this->load->view('myform');
 }
 else
 {
 $this->load->view('formsuccess');
 }
 }
}

In your validation config file, you will name your rule group
member/signup:

$config = array(
 'member/signup' => array(
 array(
 'field' => 'username',
 'label' => 'Username',
 'rules' => 'required'
),
 array(
 'field' => 'password',
 'label' => 'Password',
 'rules' => 'required'
),
 array(
 'field' => 'passconf',
 'label' => 'PasswordConfirmation',
 'rules' => 'required'
),
 array(
 'field' => 'email',
 'label' => 'Email',
 'rules' => 'required'
)
)
);

When a rule group is named identically to a controller class/method it
will be used automatically when the run() method is invoked from that
class/method.

Using Arrays as Field Names

The Form Validation class supports the use of arrays as field names.
Consider this example:

<input type="text" name="options[]" value="" size="50" />

If you do use an array as a field name, you must use the EXACT array
name in the Helper Functions that require the
field name, and as your Validation Rule field name.

For example, to set a rule for the above field you would use:

$this->form_validation->set_rules('options[]', 'Options', 'required');

Or, to show an error for the above field you would use:

<?php echo form_error('options[]'); ?>

Or to re-populate the field you would use:

<input type="text" name="options[]" value="<?php echo set_value('options[]'); ?>" size="50" />

You can use multidimensional arrays as field names as well. For example:

<input type="text" name="options[size]" value="" size="50" />

Or even:

<input type="text" name="sports[nba][basketball]" value="" size="50" />

As with our first example, you must use the exact array name in the
helper functions:

<?php echo form_error('sports[nba][basketball]'); ?>

If you are using checkboxes (or other fields) that have multiple
options, don’t forget to leave an empty bracket after each option, so
that all selections will be added to the POST array:

<input type="checkbox" name="options[]" value="red" />
<input type="checkbox" name="options[]" value="blue" />
<input type="checkbox" name="options[]" value="green" />

Or if you use a multidimensional array:

<input type="checkbox" name="options[color][]" value="red" />
<input type="checkbox" name="options[color][]" value="blue" />
<input type="checkbox" name="options[color][]" value="green" />

When you use a helper function you’ll include the bracket as well:

<?php echo form_error('options[color][]'); ?>

Rule Reference

The following is a list of all the native rules that are available to
use:

	Rule
	Parameter
	Description
	Example

	required
	No
	Returns FALSE if the form element is empty.
	

	matches
	Yes
	Returns FALSE if the form element does not match the one in the parameter.
	matches[form_item]

	regex_match
	Yes
	Returns FALSE if the form element does not match the regular expression.
	regex_match[/regex/]

	differs
	Yes
	Returns FALSE if the form element does not differ from the one in the parameter.
	differs[form_item]

	is_unique
	Yes
	Returns FALSE if the form element is not unique to the table and field name in the
parameter. Note: This rule requires Query Builder to be
enabled in order to work.
	is_unique[table.field]

	min_length
	Yes
	Returns FALSE if the form element is shorter than the parameter value.
	min_length[3]

	max_length
	Yes
	Returns FALSE if the form element is longer than the parameter value.
	max_length[12]

	exact_length
	Yes
	Returns FALSE if the form element is not exactly the parameter value.
	exact_length[8]

	greater_than
	Yes
	Returns FALSE if the form element is less than or equal to the parameter value or not
numeric.
	greater_than[8]

	greater_than_equal_to
	Yes
	Returns FALSE if the form element is less than the parameter value,
or not numeric.
	greater_than_equal_to[8]

	less_than
	Yes
	Returns FALSE if the form element is greater than or equal to the parameter value or
not numeric.
	less_than[8]

	less_than_equal_to
	Yes
	Returns FALSE if the form element is greater than the parameter value,
or not numeric.
	less_than_equal_to[8]

	in_list
	Yes
	Returns FALSE if the form element is not within a predetermined list.
	in_list[red,blue,green]

	alpha
	No
	Returns FALSE if the form element contains anything other than alphabetical characters.
	

	alpha_numeric
	No
	Returns FALSE if the form element contains anything other than alpha-numeric characters.
	

	alpha_numeric_spaces
	No
	Returns FALSE if the form element contains anything other than alpha-numeric characters
or spaces. Should be used after trim to avoid spaces at the beginning or end.
	

	alpha_dash
	No
	Returns FALSE if the form element contains anything other than alpha-numeric characters,
underscores or dashes.
	

	numeric
	No
	Returns FALSE if the form element contains anything other than numeric characters.
	

	integer
	No
	Returns FALSE if the form element contains anything other than an integer.
	

	decimal
	No
	Returns FALSE if the form element contains anything other than a decimal number.
	

	is_natural
	No
	Returns FALSE if the form element contains anything other than a natural number:
0, 1, 2, 3, etc.
	

	is_natural_no_zero
	No
	Returns FALSE if the form element contains anything other than a natural
number, but not zero: 1, 2, 3, etc.
	

	valid_url
	No
	Returns FALSE if the form element does not contain a valid URL.
	

	valid_email
	No
	Returns FALSE if the form element does not contain a valid email address.
	

	valid_emails
	No
	Returns FALSE if any value provided in a comma separated list is not a valid email.
	

	valid_ip
	Yes
	Returns FALSE if the supplied IP address is not valid.
Accepts an optional parameter of ‘ipv4’ or ‘ipv6’ to specify an IP format.
	

	valid_base64
	No
	Returns FALSE if the supplied string contains anything other than valid Base64 characters.
	

Note

These rules can also be called as discrete methods. For
example:

$this->form_validation->required($string);

Note

You can also use any native PHP functions that permit up
to two parameters, where at least one is required (to pass
the field data).

Prepping Reference

The following is a list of all the prepping methods that are available
to use:

	Name
	Parameter
	Description

	prep_for_form
	No
	DEPRECATED: Converts special characters so that HTML data can be shown in a form field without breaking it.

	prep_url
	No
	Adds “http://” to URLs if missing.

	strip_image_tags
	No
	Strips the HTML from image tags leaving the raw URL.

	encode_php_tags
	No
	Converts PHP tags to entities.

Note

You can also use any native PHP functions that permits one
parameter, like trim(), htmlspecialchars(), urldecode(),
etc.

Class Reference

	
class CI_Form_validation

	
	
set_rules($field[, $label = ''[, $rules = ''[, $errors = array()]]])

	

	Parameters:	
	$field (string) – Field name

	$label (string) – Field label

	$rules (mixed) – Validation rules, as a string list separated by a pipe “|”, or as an array or rules

	$errors (array) – A list of custom error messages

	Returns:	CI_Form_validation instance (method chaining)

	Return type:	CI_Form_validation

Permits you to set validation rules, as described in the tutorial
sections above:

	Setting Validation Rules

	Saving Sets of Validation Rules to a Config File

	
run([$group = ''])

	

	Parameters:	
	$group (string) – The name of the validation group to run

	Returns:	TRUE on success, FALSE if validation failed

	Return type:	bool

Runs the validation routines. Returns boolean TRUE on success and FALSE
on failure. You can optionally pass the name of the validation group via
the method, as described in: Saving Sets of Validation Rules to a Config File

	
set_message($lang[, $val = ''])

	

	Parameters:	
	$lang (string) – The rule the message is for

	$val (string) – The message

	Returns:	CI_Form_validation instance (method chaining)

	Return type:	CI_Form_validation

Permits you to set custom error messages. See Setting Error Messages

	
set_error_delimiters([$prefix = '<p>'[, $suffix = '</p>']])

	

	Parameters:	
	$prefix (string) – Error message prefix

	$suffix (string) – Error message suffix

	Returns:	CI_Form_validation instance (method chaining)

	Return type:	CI_Form_validation

Sets the default prefix and suffix for error messages.

	
set_data($data)

	

	Parameters:	
	$data (array) – Array of data validate

	Returns:	CI_Form_validation instance (method chaining)

	Return type:	CI_Form_validation

Permits you to set an array for validation, instead of using the default
$_POST array.

	
reset_validation()

	

	Returns:	CI_Form_validation instance (method chaining)

	Return type:	CI_Form_validation

Permits you to reset the validation when you validate more than one array.
This method should be called before validating each new array.

	
error_array()

	

	Returns:	Array of error messages

	Return type:	array

Returns the error messages as an array.

	
error_string([$prefix = ''[, $suffix = '']])

	

	Parameters:	
	$prefix (string) – Error message prefix

	$suffix (string) – Error message suffix

	Returns:	Error messages as a string

	Return type:	string

Returns all error messages (as returned from error_array()) formatted as a
string and separated by a newline character.

	
error($field[, $prefix = ''[, $suffix = '']])

	

	Parameters:	
	$field (string) – Field name

	$prefix (string) – Optional prefix

	$suffix (string) – Optional suffix

	Returns:	Error message string

	Return type:	string

Returns the error message for a specific field, optionally adding a
prefix and/or suffix to it (usually HTML tags).

	
has_rule($field)

	

	Parameters:	
	$field (string) – Field name

	Returns:	TRUE if the field has rules set, FALSE if not

	Return type:	bool

Checks to see if there is a rule set for the specified field.

Helper Reference

Please refer to the Form Helper manual for
the following functions:

	form_error()

	validation_errors()

	set_value()

	set_select()

	set_checkbox()

	set_radio()

Note that these are procedural functions, so they do not require you
to prepend them with $this->form_validation.

FTP Class

CodeIgniter’s FTP Class permits files to be transferred to a remote
server. Remote files can also be moved, renamed, and deleted. The FTP
class also includes a “mirroring” function that permits an entire local
directory to be recreated remotely via FTP.

Note

SFTP and SSL FTP protocols are not supported, only standard
FTP.

	Working with the FTP Class
	Initializing the Class

	Usage Examples

	Class Reference

Working with the FTP Class

Initializing the Class

Like most other classes in CodeIgniter, the FTP class is initialized in
your controller using the $this->load->library function:

$this->load->library('ftp');

Once loaded, the FTP object will be available using: $this->ftp

Usage Examples

In this example a connection is opened to the FTP server, and a local
file is read and uploaded in ASCII mode. The file permissions are set to
755.

$this->load->library('ftp');

$config['hostname'] = 'ftp.example.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['debug'] = TRUE;

$this->ftp->connect($config);

$this->ftp->upload('/local/path/to/myfile.html', '/public_html/myfile.html', 'ascii', 0775);

$this->ftp->close();

In this example a list of files is retrieved from the server.

$this->load->library('ftp');

$config['hostname'] = 'ftp.example.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['debug'] = TRUE;

$this->ftp->connect($config);

$list = $this->ftp->list_files('/public_html/');

print_r($list);

$this->ftp->close();

In this example a local directory is mirrored on the server.

$this->load->library('ftp');

$config['hostname'] = 'ftp.example.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['debug'] = TRUE;

$this->ftp->connect($config);

$this->ftp->mirror('/path/to/myfolder/', '/public_html/myfolder/');

$this->ftp->close();

Class Reference

	
class CI_FTP

	
	
connect([$config = array()])

	

	Parameters:	
	$config (array) – Connection values

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Connects and logs into to the FTP server. Connection preferences are set
by passing an array to the function, or you can store them in a config
file.

Here is an example showing how you set preferences manually:

$this->load->library('ftp');

$config['hostname'] = 'ftp.example.com';
$config['username'] = 'your-username';
$config['password'] = 'your-password';
$config['port'] = 21;
$config['passive'] = FALSE;
$config['debug'] = TRUE;

$this->ftp->connect($config);

Setting FTP Preferences in a Config File

If you prefer you can store your FTP preferences in a config file.
Simply create a new file called the ftp.php, add the $config array in
that file. Then save the file at application/config/ftp.php and it
will be used automatically.

Available connection options

	Option name
	Default value
	Description

	hostname
	n/a
	FTP hostname (usually something like: ftp.example.com)

	username
	n/a
	FTP username

	password
	n/a
	FTP password

	port
	21
	FTP server port number

	debug
	FALSE
	TRUE/FALSE (boolean): Whether to enable debugging to display error messages

	passive
	TRUE
	TRUE/FALSE (boolean): Whether to use passive mode

	
upload($locpath, $rempath[, $mode = 'auto'[, $permissions = NULL]])

	

	Parameters:	
	$locpath (string) – Local file path

	$rempath (string) – Remote file path

	$mode (string) – FTP mode, defaults to ‘auto’ (options are: ‘auto’, ‘binary’, ‘ascii’)

	$permissions (int) – File permissions (octal)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Uploads a file to your server. You must supply the local path and the
remote path, and you can optionally set the mode and permissions.
Example:

$this->ftp->upload('/local/path/to/myfile.html', '/public_html/myfile.html', 'ascii', 0775);

If ‘auto’ mode is used it will base the mode on the file extension of the source file.

If set, permissions have to be passed as an octal value.

	
download($rempath, $locpath[, $mode = 'auto'])

	

	Parameters:	
	$rempath (string) – Remote file path

	$locpath (string) – Local file path

	$mode (string) – FTP mode, defaults to ‘auto’ (options are: ‘auto’, ‘binary’, ‘ascii’)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Downloads a file from your server. You must supply the remote path and
the local path, and you can optionally set the mode. Example:

$this->ftp->download('/public_html/myfile.html', '/local/path/to/myfile.html', 'ascii');

If ‘auto’ mode is used it will base the mode on the file extension of the source file.

Returns FALSE if the download does not execute successfully
(including if PHP does not have permission to write the local file).

	
rename($old_file, $new_file[, $move = FALSE])

	

	Parameters:	
	$old_file (string) – Old file name

	$new_file (string) – New file name

	$move (bool) – Whether a move is being performed

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Permits you to rename a file. Supply the source file name/path and the new file name/path.

// Renames green.html to blue.html
$this->ftp->rename('/public_html/foo/green.html', '/public_html/foo/blue.html');

	
move($old_file, $new_file)

	

	Parameters:	
	$old_file (string) – Old file name

	$new_file (string) – New file name

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Lets you move a file. Supply the source and destination paths:

// Moves blog.html from "joe" to "fred"
$this->ftp->move('/public_html/joe/blog.html', '/public_html/fred/blog.html');

Note

If the destination file name is different the file will be renamed.

	
delete_file($filepath)

	

	Parameters:	
	$filepath (string) – Path to file to delete

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Lets you delete a file. Supply the source path with the file name.

$this->ftp->delete_file('/public_html/joe/blog.html');

	
delete_dir($filepath)

	

	Parameters:	
	$filepath (string) – Path to directory to delete

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Lets you delete a directory and everything it contains. Supply the
source path to the directory with a trailing slash.

Important

Be VERY careful with this method!
It will recursively delete everything within the supplied path,
including sub-folders and all files. Make absolutely sure your path
is correct. Try using list_files() first to verify that your path is correct.

$this->ftp->delete_dir('/public_html/path/to/folder/');

	
list_files([$path = '.'])

	

	Parameters:	
	$path (string) – Directory path

	Returns:	An array list of files or FALSE on failure

	Return type:	array

Permits you to retrieve a list of files on your server returned as an
array. You must supply the path to the desired directory.

$list = $this->ftp->list_files('/public_html/');
print_r($list);

	
mirror($locpath, $rempath)

	

	Parameters:	
	$locpath (string) – Local path

	$rempath (string) – Remote path

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Recursively reads a local folder and everything it contains (including
sub-folders) and creates a mirror via FTP based on it. Whatever the
directory structure of the original file path will be recreated on the
server. You must supply a source path and a destination path:

$this->ftp->mirror('/path/to/myfolder/', '/public_html/myfolder/');

	
mkdir($path[, $permissions = NULL])

	

	Parameters:	
	$path (string) – Path to directory to create

	$permissions (int) – Permissions (octal)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Lets you create a directory on your server. Supply the path ending in
the folder name you wish to create, with a trailing slash.

Permissions can be set by passing an octal value in the second parameter.

// Creates a folder named "bar"
$this->ftp->mkdir('/public_html/foo/bar/', 0755);

	
chmod($path, $perm)

	

	Parameters:	
	$path (string) – Path to alter permissions for

	$perm (int) – Permissions (octal)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Permits you to set file permissions. Supply the path to the file or
directory you wish to alter permissions on:

// Chmod "bar" to 755
$this->ftp->chmod('/public_html/foo/bar/', 0755);

	
changedir($path[, $suppress_debug = FALSE])

	

	Parameters:	
	$path (string) – Directory path

	$suppress_debug (bool) – Whether to turn off debug messages for this command

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Changes the current working directory to the specified path.

The $suppress_debug parameter is useful in case you want to use this method
as an is_dir() alternative for FTP.

	
close()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Closes the connection to your server. It’s recommended that you use this
when you are finished uploading.

Image Manipulation Class

CodeIgniter’s Image Manipulation class lets you perform the following
actions:

	Image Resizing

	Thumbnail Creation

	Image Cropping

	Image Rotating

	Image Watermarking

All three major image libraries are supported: GD/GD2, NetPBM, and
ImageMagick

Note

Watermarking is only available using the GD/GD2 library. In
addition, even though other libraries are supported, GD is required in
order for the script to calculate the image properties. The image
processing, however, will be performed with the library you specify.

	Initializing the Class
	Processing an Image

	Processing Methods

	Preferences

	Setting preferences in a config file

	Image Watermarking
	Two Types of Watermarking

	Watermarking an Image

	Watermarking Preferences
	Text Preferences

	Overlay Preferences

	Class Reference

Initializing the Class

Like most other classes in CodeIgniter, the image class is initialized
in your controller using the $this->load->library function:

$this->load->library('image_lib');

Once the library is loaded it will be ready for use. The image library
object you will use to call all functions is: $this->image_lib

Processing an Image

Regardless of the type of processing you would like to perform
(resizing, cropping, rotation, or watermarking), the general process is
identical. You will set some preferences corresponding to the action you
intend to perform, then call one of four available processing functions.
For example, to create an image thumbnail you’ll do this:

$config['image_library'] = 'gd2';
$config['source_image'] = '/path/to/image/mypic.jpg';
$config['create_thumb'] = TRUE;
$config['maintain_ratio'] = TRUE;
$config['width'] = 75;
$config['height'] = 50;

$this->load->library('image_lib', $config);

$this->image_lib->resize();

The above code tells the image_resize function to look for an image
called mypic.jpg located in the source_image folder, then create a
thumbnail that is 75 X 50 pixels using the GD2 image_library. Since the
maintain_ratio option is enabled, the thumb will be as close to the
target width and height as possible while preserving the original aspect
ratio. The thumbnail will be called mypic_thumb.jpg and located at
the same level as source_image.

Note

In order for the image class to be allowed to do any
processing, the folder containing the image files must have write
permissions.

Note

Image processing can require a considerable amount of server
memory for some operations. If you are experiencing out of memory errors
while processing images you may need to limit their maximum size, and/or
adjust PHP memory limits.

Processing Methods

There are four available processing methods:

	$this->image_lib->resize()

	$this->image_lib->crop()

	$this->image_lib->rotate()

	$this->image_lib->watermark()

These methods return boolean TRUE upon success and FALSE for failure.
If they fail you can retrieve the error message using this function:

echo $this->image_lib->display_errors();

A good practice is to use the processing function conditionally, showing an
error upon failure, like this:

if (! $this->image_lib->resize())
{
 echo $this->image_lib->display_errors();
}

Note

You can optionally specify the HTML formatting to be applied to
the errors, by submitting the opening/closing tags in the function,
like this:

$this->image_lib->display_errors('<p>', '</p>');

Preferences

The preferences described below allow you to tailor the image processing
to suit your needs.

Note that not all preferences are available for every function. For
example, the x/y axis preferences are only available for image cropping.
Likewise, the width and height preferences have no effect on cropping.
The “availability” column indicates which functions support a given
preference.

Availability Legend:

	R - Image Resizing

	C - Image Cropping

	X - Image Rotation

	W - Image Watermarking

	Preference
	Default Value
	Options
	Description
	Availability

	image_library
	GD2
	GD, GD2, ImageMagick, NetPBM
	Sets the image library to be used.
	R, C, X, W

	library_path
	None
	None
	Sets the server path to your ImageMagick or NetPBM library. If you use
either of those libraries you must supply the path.
	R, C, X
R, C, S, W

	source_image
	None
	None
	Sets the source image name/path. The path must be a relative or absolute
server path, not a URL.
	

	dynamic_output
	FALSE
	TRUE/FALSE (boolean)
	Determines whether the new image file should be written to disk or
generated dynamically. Note: If you choose the dynamic setting, only one
image can be shown at a time, and it can’t be positioned on the page. It
simply outputs the raw image dynamically to your browser, along with
image headers.
	R, C, X, W

	file_permissions
	0644
	(integer)
	File system permissions to apply on the resulting image file,
writing it to the disk. WARNING: Use octal integer notation!
	R, C, X, W

	quality
	90%
	1 - 100%
	Sets the quality of the image. The higher the quality the larger the
file size.
	R, C, X, W

	new_image
	None
	None
	Sets the destination image name/path. You’ll use this preference when
creating an image copy. The path must be a relative or absolute server
path, not a URL.
	R, C, X, W

	width
	None
	None
	Sets the width you would like the image set to.
	R, C

	height
	None
	None
	Sets the height you would like the image set to.
	R, C

	create_thumb
	FALSE
	TRUE/FALSE (boolean)
	Tells the image processing function to create a thumb.
	R

	thumb_marker
	_thumb
	None
	Specifies the thumbnail indicator. It will be inserted just before the
file extension, so mypic.jpg would become mypic_thumb.jpg
	R

	maintain_ratio
	TRUE
	TRUE/FALSE (boolean)
	Specifies whether to maintain the original aspect ratio when resizing or
use hard values.
	R, C

	master_dim
	auto
	auto, width, height
	Specifies what to use as the master axis when resizing or creating
thumbs. For example, let’s say you want to resize an image to 100 X 75
pixels. If the source image size does not allow perfect resizing to
those dimensions, this setting determines which axis should be used as
the hard value. “auto” sets the axis automatically based on whether the
image is taller than wider, or vice versa.
	R

	rotation_angle
	None
	90, 180, 270, vrt, hor
	Specifies the angle of rotation when rotating images. Note that PHP
rotates counter-clockwise, so a 90 degree rotation to the right must be
specified as 270.
	X

	x_axis
	None
	None
	Sets the X coordinate in pixels for image cropping. For example, a
setting of 30 will crop an image 30 pixels from the left.
	C

	y_axis
	None
	None
	Sets the Y coordinate in pixels for image cropping. For example, a
setting of 30 will crop an image 30 pixels from the top.
	C

Setting preferences in a config file

If you prefer not to set preferences using the above method, you can
instead put them into a config file. Simply create a new file called
image_lib.php, add the $config array in that file. Then save the file
in config/image_lib.php and it will be used automatically. You will
NOT need to use the $this->image_lib->initialize() method if you save
your preferences in a config file.

Image Watermarking

The Watermarking feature requires the GD/GD2 library.

Two Types of Watermarking

There are two types of watermarking that you can use:

	Text: The watermark message will be generated using text, either
with a True Type font that you specify, or using the native text
output that the GD library supports. If you use the True Type version
your GD installation must be compiled with True Type support (most
are, but not all).

	Overlay: The watermark message will be generated by overlaying an
image (usually a transparent PNG or GIF) containing your watermark
over the source image.

Watermarking an Image

Just as with the other methods (resizing, cropping, and rotating) the
general process for watermarking involves setting the preferences
corresponding to the action you intend to perform, then calling the
watermark function. Here is an example:

$config['source_image'] = '/path/to/image/mypic.jpg';
$config['wm_text'] = 'Copyright 2006 - John Doe';
$config['wm_type'] = 'text';
$config['wm_font_path'] = './system/fonts/texb.ttf';
$config['wm_font_size'] = '16';
$config['wm_font_color'] = 'ffffff';
$config['wm_vrt_alignment'] = 'bottom';
$config['wm_hor_alignment'] = 'center';
$config['wm_padding'] = '20';

$this->image_lib->initialize($config);

$this->image_lib->watermark();

The above example will use a 16 pixel True Type font to create the text
“Copyright 2006 - John Doe”. The watermark will be positioned at the
bottom/center of the image, 20 pixels from the bottom of the image.

Note

In order for the image class to be allowed to do any
processing, the image file must have “write” file permissions
For example, 777.

Watermarking Preferences

This table shows the preferences that are available for both types of
watermarking (text or overlay)

	Preference
	Default Value
	Options
	Description

	wm_type
	text
	text, overlay
	Sets the type of watermarking that should be used.

	source_image
	None
	None
	Sets the source image name/path. The path must be a relative or absolute
server path, not a URL.

	dynamic_output
	FALSE
	TRUE/FALSE (boolean)
	Determines whether the new image file should be written to disk or
generated dynamically. Note: If you choose the dynamic setting, only one
image can be shown at a time, and it can’t be positioned on the page. It
simply outputs the raw image dynamically to your browser, along with
image headers.

	quality
	90%
	1 - 100%
	Sets the quality of the image. The higher the quality the larger the
file size.

	wm_padding
	None
	A number
	The amount of padding, set in pixels, that will be applied to the
watermark to set it away from the edge of your images.

	wm_vrt_alignment
	bottom
	top, middle, bottom
	Sets the vertical alignment for the watermark image.

	wm_hor_alignment
	center
	left, center, right
	Sets the horizontal alignment for the watermark image.

	wm_hor_offset
	None
	None
	You may specify a horizontal offset (in pixels) to apply to the
watermark position. The offset normally moves the watermark to the
right, except if you have your alignment set to “right” then your offset
value will move the watermark toward the left of the image.

	wm_vrt_offset
	None
	None
	You may specify a vertical offset (in pixels) to apply to the watermark
position. The offset normally moves the watermark down, except if you
have your alignment set to “bottom” then your offset value will move the
watermark toward the top of the image.

Text Preferences

This table shows the preferences that are available for the text type of
watermarking.

	Preference
	Default Value
	Options
	Description

	wm_text
	None
	None
	The text you would like shown as the watermark. Typically this will be a
copyright notice.

	wm_font_path
	None
	None
	The server path to the True Type Font you would like to use. If you do
not use this option, the native GD font will be used.

	wm_font_size
	16
	None
	The size of the text. Note: If you are not using the True Type option
above, the number is set using a range of 1 - 5. Otherwise, you can use
any valid pixel size for the font you’re using.

	wm_font_color
	ffffff
	None
	The font color, specified in hex. Both the full 6-length (ie, 993300) and
the short three character abbreviated version (ie, fff) are supported.

	wm_shadow_color
	None
	None
	The color of the drop shadow, specified in hex. If you leave this blank
a drop shadow will not be used. Both the full 6-length (ie, 993300) and
the short three character abbreviated version (ie, fff) are supported.

	wm_shadow_distance
	3
	None
	The distance (in pixels) from the font that the drop shadow should
appear.

Overlay Preferences

This table shows the preferences that are available for the overlay type
of watermarking.

	Preference
	Default Value
	Options
	Description

	wm_overlay_path
	None
	None
	The server path to the image you wish to use as your watermark. Required
only if you are using the overlay method.

	wm_opacity
	50
	1 - 100
	Image opacity. You may specify the opacity (i.e. transparency) of your
watermark image. This allows the watermark to be faint and not
completely obscure the details from the original image behind it. A 50%
opacity is typical.

	wm_x_transp
	4
	A number
	If your watermark image is a PNG or GIF image, you may specify a color
on the image to be “transparent”. This setting (along with the next)
will allow you to specify that color. This works by specifying the “X”
and “Y” coordinate pixel (measured from the upper left) within the image
that corresponds to a pixel representative of the color you want to be
transparent.

	wm_y_transp
	4
	A number
	Along with the previous setting, this allows you to specify the
coordinate to a pixel representative of the color you want to be
transparent.

Class Reference

	
class CI_Image_lib

	
	
initialize([$props = array()])

	

	Parameters:	
	$props (array) – Image processing preferences

	Returns:	TRUE on success, FALSE in case of invalid settings

	Return type:	bool

Initializes the class for processing an image.

	
resize()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

The image resizing method lets you resize the original image, create a
copy (with or without resizing), or create a thumbnail image.

For practical purposes there is no difference between creating a copy
and creating a thumbnail except a thumb will have the thumbnail marker
as part of the name (i.e. mypic_thumb.jpg).

All preferences listed in the Preferences table are available for this
method except these three: rotation_angle, x_axis and y_axis.

Creating a Thumbnail

The resizing method will create a thumbnail file (and preserve the
original) if you set this preference to TRUE:

$config['create_thumb'] = TRUE;

This single preference determines whether a thumbnail is created or not.

Creating a Copy

The resizing method will create a copy of the image file (and preserve
the original) if you set a path and/or a new filename using this
preference:

$config['new_image'] = '/path/to/new_image.jpg';

Notes regarding this preference:

	If only the new image name is specified it will be placed in the same
folder as the original

	If only the path is specified, the new image will be placed in the
destination with the same name as the original.

	If both the path and image name are specified it will placed in its
own destination and given the new name.

Resizing the Original Image

If neither of the two preferences listed above (create_thumb, and
new_image) are used, the resizing method will instead target the
original image for processing.

	
crop()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

The cropping method works nearly identically to the resizing function
except it requires that you set preferences for the X and Y axis (in
pixels) specifying where to crop, like this:

$config['x_axis'] = 100;
$config['y_axis'] = 40;

All preferences listed in the Preferences table are available for this
method except these: rotation_angle, create_thumb and new_image.

Here’s an example showing how you might crop an image:

$config['image_library'] = 'imagemagick';
$config['library_path'] = '/usr/X11R6/bin/';
$config['source_image'] = '/path/to/image/mypic.jpg';
$config['x_axis'] = 100;
$config['y_axis'] = 60;

$this->image_lib->initialize($config);

if (! $this->image_lib->crop())
{
 echo $this->image_lib->display_errors();
}

Note

Without a visual interface it is difficult to crop images, so this
method is not very useful unless you intend to build such an
interface. That’s exactly what we did using for the photo gallery module
in ExpressionEngine, the CMS we develop. We added a JavaScript UI that
lets the cropping area be selected.

	
rotate()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

The image rotation method requires that the angle of rotation be set
via its preference:

$config['rotation_angle'] = '90';

There are 5 rotation options:

	90 - rotates counter-clockwise by 90 degrees.

	180 - rotates counter-clockwise by 180 degrees.

	270 - rotates counter-clockwise by 270 degrees.

	hor - flips the image horizontally.

	vrt - flips the image vertically.

Here’s an example showing how you might rotate an image:

$config['image_library'] = 'netpbm';
$config['library_path'] = '/usr/bin/';
$config['source_image'] = '/path/to/image/mypic.jpg';
$config['rotation_angle'] = 'hor';

$this->image_lib->initialize($config);

if (! $this->image_lib->rotate())
{
 echo $this->image_lib->display_errors();
}

	
watermark()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Creates a watermark over an image, please refer to the Watermarking an Image
section for more info.

	
clear()

	

	Return type:	void

The clear method resets all of the values used when processing an
image. You will want to call this if you are processing images in a
loop.

$this->image_lib->clear();

	
display_errors([$open = '<p>[, $close = '</p>']])

	

	Parameters:	
	$open (string) – Error message opening tag

	$close (string) – Error message closing tag

	Returns:	Error messages

	Return type:	string

Returns all detected errors formatted as a string.

echo $this->image_lib->display_errors();

Input Class

The Input Class serves two purposes:

	It pre-processes global input data for security.

	It provides some helper methods for fetching input data and pre-processing it.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

	Input Filtering
	Security Filtering

	XSS Filtering

	Accessing form data
	Using POST, GET, COOKIE, or SERVER Data

	Using the php://input stream

	Class Reference

Input Filtering

Security Filtering

The security filtering method is called automatically when a new
controller is invoked. It does the
following:

	If $config['allow_get_array'] is FALSE (default is TRUE), destroys
the global GET array.

	Destroys all global variables in the event register_globals is
turned on.

	Filters the GET/POST/COOKIE array keys, permitting only alpha-numeric
(and a few other) characters.

	Provides XSS (Cross-site Scripting Hacks) filtering. This can be
enabled globally, or upon request.

	Standardizes newline characters to PHP_EOL (\n in UNIX-based OSes,
\r\n under Windows). This is configurable.

XSS Filtering

The Input class has the ability to filter input automatically to prevent
cross-site scripting attacks. If you want the filter to run
automatically every time it encounters POST or COOKIE data you can
enable it by opening your application/config/config.php file and setting
this:

$config['global_xss_filtering'] = TRUE;

Please refer to the Security class documentation for
information on using XSS Filtering in your application.

Important

The ‘global_xss_filtering’ setting is DEPRECATED and kept
solely for backwards-compatibility purposes. XSS escaping should
be performed on output, not input!

Accessing form data

Using POST, GET, COOKIE, or SERVER Data

CodeIgniter comes with helper methods that let you fetch POST, GET,
COOKIE or SERVER items. The main advantage of using the provided
methods rather than fetching an item directly ($_POST['something'])
is that the methods will check to see if the item is set and return
NULL if not. This lets you conveniently use data without
having to test whether an item exists first. In other words, normally
you might do something like this:

$something = isset($_POST['something']) ? $_POST['something'] : NULL;

With CodeIgniter’s built in methods you can simply do this:

$something = $this->input->post('something');

The main methods are:

	$this->input->post()

	$this->input->get()

	$this->input->cookie()

	$this->input->server()

Using the php://input stream

If you want to utilize the PUT, DELETE, PATCH or other exotic request
methods, they can only be accessed via a special input stream, that
can only be read once. This isn’t as easy as just reading from e.g.
the $_POST array, because it will always exist and you can try
and access multiple variables without caring that you might only have
one shot at all of the POST data.

CodeIgniter will take care of that for you, and you can read the data
from the php://input stream at any time, just by using the
$raw_input_stream property:

$this->input->raw_input_stream;

Additionally if the input stream is form-encoded like $_POST you can
access its values by calling the
input_stream() method:

$this->input->input_stream('key');

Similar to other methods such as get() and post(), if the
requested data is not found, it will return NULL and you can also
decide whether to run the data through xss_clean() by passing
a boolean value as the second parameter:

$this->input->input_stream('key', TRUE); // XSS Clean
$this->input->input_stream('key', FALSE); // No XSS filter

Note

You can utilize method() in order to know if you’re reading
PUT, DELETE or PATCH data.

Class Reference

	
class CI_Input

	
	
$raw_input_stream

	Read only property that will return php://input data as is.

The property can be read multiple times.

	
post([$index = NULL[, $xss_clean = NULL]])

	

	Parameters:	
	$index (mixed) – POST parameter name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	$_POST if no parameters supplied, otherwise the POST value if found or NULL if not

	Return type:	mixed

The first parameter will contain the name of the POST item you are
looking for:

$this->input->post('some_data');

The method returns NULL if the item you are attempting to retrieve
does not exist.

The second optional parameter lets you run the data through the XSS
filter. It’s enabled by setting the second parameter to boolean TRUE
or by setting your $config['global_xss_filtering'] to TRUE.

$this->input->post('some_data', TRUE);

To return an array of all POST items call without any parameters.

To return all POST items and pass them through the XSS filter set the
first parameter NULL while setting the second parameter to boolean TRUE.

$this->input->post(NULL, TRUE); // returns all POST items with XSS filter
$this->input->post(NULL, FALSE); // returns all POST items without XSS filter

To return an array of multiple POST parameters, pass all the required keys
as an array.

$this->input->post(array('field1', 'field2'));

Same rule applied here, to retrieve the parameters with XSS filtering enabled, set the
second parameter to boolean TRUE.

$this->input->post(array('field1', 'field2'), TRUE);

	
get([$index = NULL[, $xss_clean = NULL]])

	

	Parameters:	
	$index (mixed) – GET parameter name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	$_GET if no parameters supplied, otherwise the GET value if found or NULL if not

	Return type:	mixed

This method is identical to post(), only it fetches GET data.

$this->input->get('some_data', TRUE);

To return an array of all GET items call without any parameters.

To return all GET items and pass them through the XSS filter set the
first parameter NULL while setting the second parameter to boolean TRUE.

$this->input->get(NULL, TRUE); // returns all GET items with XSS filter
$this->input->get(NULL, FALSE); // returns all GET items without XSS filtering

To return an array of multiple GET parameters, pass all the required keys
as an array.

$this->input->get(array('field1', 'field2'));

Same rule applied here, to retrieve the parameters with XSS filtering enabled, set the
second parameter to boolean TRUE.

$this->input->get(array('field1', 'field2'), TRUE);

	
post_get($index[, $xss_clean = NULL])

	

	Parameters:	
	$index (string) – POST/GET parameter name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	POST/GET value if found, NULL if not

	Return type:	mixed

This method works pretty much the same way as post() and get(),
only combined. It will search through both POST and GET streams for data,
looking in POST first, and then in GET:

$this->input->post_get('some_data', TRUE);

	
get_post($index[, $xss_clean = NULL])

	

	Parameters:	
	$index (string) – GET/POST parameter name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	GET/POST value if found, NULL if not

	Return type:	mixed

This method works the same way as post_get() only it looks for GET
data first.

$this->input->get_post(‘some_data’, TRUE);

Note

This method used to act EXACTLY like post_get(), but it’s
behavior has changed in CodeIgniter 3.0.

	
cookie([$index = NULL[, $xss_clean = NULL]])

	

	Parameters:	
	$index (mixed) – COOKIE name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	$_COOKIE if no parameters supplied, otherwise the COOKIE value if found or NULL if not

	Return type:	mixed

This method is identical to post() and get(), only it fetches cookie
data:

$this->input->cookie('some_cookie');
$this->input->cookie('some_cookie', TRUE); // with XSS filter

To return an array of multiple cookie values, pass all the required keys
as an array.

$this->input->cookie(array('some_cookie', 'some_cookie2'));

Note

Unlike the Cookie Helper
function get_cookie(), this method does NOT prepend
your configured $config['cookie_prefix'] value.

	
server($index[, $xss_clean = NULL])

	

	Parameters:	
	$index (mixed) – Value name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	$_SERVER item value if found, NULL if not

	Return type:	mixed

This method is identical to the post(), get() and cookie()
methods, only it fetches server data ($_SERVER):

$this->input->server('some_data');

To return an array of multiple $_SERVER values, pass all the required keys
as an array.

$this->input->server(array('SERVER_PROTOCOL', 'REQUEST_URI'));

	
input_stream([$index = NULL[, $xss_clean = NULL]])

	

	Parameters:	
	$index (mixed) – Key name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	Input stream array if no parameters supplied, otherwise the specified value if found or NULL if not

	Return type:	mixed

This method is identical to get(), post() and cookie(),
only it fetches the php://input stream data.

	
set_cookie($name = ''[, $value = ''[, $expire = ''[, $domain = ''[, $path = '/'[, $prefix = ''[, $secure = NULL[, $httponly = NULL]]]]]]])

	

	Parameters:	
	$name (mixed) – Cookie name or an array of parameters

	$value (string) – Cookie value

	$expire (int) – Cookie expiration time in seconds

	$domain (string) – Cookie domain

	$path (string) – Cookie path

	$prefix (string) – Cookie name prefix

	$secure (bool) – Whether to only transfer the cookie through HTTPS

	$httponly (bool) – Whether to only make the cookie accessible for HTTP requests (no JavaScript)

	Return type:	void

Sets a cookie containing the values you specify. There are two ways to
pass information to this method so that a cookie can be set: Array
Method, and Discrete Parameters:

Array Method

Using this method, an associative array is passed to the first
parameter:

$cookie = array(
 'name' => 'The Cookie Name',
 'value' => 'The Value',
 'expire' => '86500',
 'domain' => '.some-domain.com',
 'path' => '/',
 'prefix' => 'myprefix_',
 'secure' => TRUE
);

$this->input->set_cookie($cookie);

Notes

Only the name and value are required. To delete a cookie set it with the
expiration blank.

The expiration is set in seconds, which will be added to the current
time. Do not include the time, but rather only the number of seconds
from now that you wish the cookie to be valid. If the expiration is
set to zero the cookie will only last as long as the browser is open.

For site-wide cookies regardless of how your site is requested, add your
URL to the domain starting with a period, like this:
.your-domain.com

The path is usually not needed since the method sets a root path.

The prefix is only needed if you need to avoid name collisions with
other identically named cookies for your server.

The httponly and secure flags, when omitted, will default to your
$config['cookie_httponly'] and $config['cookie_secure'] settings.

Discrete Parameters

If you prefer, you can set the cookie by passing data using individual
parameters:

$this->input->set_cookie($name, $value, $expire, $domain, $path, $prefix, $secure);

	
ip_address()

	

	Returns:	Visitor’s IP address or ‘0.0.0.0’ if not valid

	Return type:	string

Returns the IP address for the current user. If the IP address is not
valid, the method will return ‘0.0.0.0’:

echo $this->input->ip_address();

Important

This method takes into account the $config['proxy_ips']
setting and will return the reported HTTP_X_FORWARDED_FOR,
HTTP_CLIENT_IP, HTTP_X_CLIENT_IP or HTTP_X_CLUSTER_CLIENT_IP
address for the allowed IP addresses.

	
valid_ip($ip[, $which = ''])

	

	Parameters:	
	$ip (string) – IP address

	$which (string) – IP protocol (‘ipv4’ or ‘ipv6’)

	Returns:	TRUE if the address is valid, FALSE if not

	Return type:	bool

Takes an IP address as input and returns TRUE or FALSE (boolean) depending
on whether it is valid or not.

Note

The $this->input->ip_address() method above automatically
validates the IP address.

if (! $this->input->valid_ip($ip))
{
 echo 'Not Valid';
}
else
{
 echo 'Valid';
}

Accepts an optional second string parameter of ‘ipv4’ or ‘ipv6’ to specify
an IP format. The default checks for both formats.

	
user_agent([$xss_clean = NULL])

	

	Returns:	User agent string or NULL if not set

	Parameters:	
	$xss_clean (bool) – Whether to apply XSS filtering

	Return type:	mixed

Returns the user agent string (web browser) being used by the current user,
or NULL if it’s not available.

echo $this->input->user_agent();

See the User Agent Class for methods which extract
information from the user agent string.

	
request_headers([$xss_clean = FALSE])

	

	Parameters:	
	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	An array of HTTP request headers

	Return type:	array

Returns an array of HTTP request headers.
Useful if running in a non-Apache environment where
apache_request_headers() [http://php.net/apache_request_headers]
will not be supported.

$headers = $this->input->request_headers();

	
get_request_header($index[, $xss_clean = FALSE])

	

	Parameters:	
	$index (string) – HTTP request header name

	$xss_clean (bool) – Whether to apply XSS filtering

	Returns:	An HTTP request header or NULL if not found

	Return type:	string

Returns a single member of the request headers array or NULL
if the searched header is not found.

$this->input->get_request_header('some-header', TRUE);

	
is_ajax_request()

	

	Returns:	TRUE if it is an Ajax request, FALSE if not

	Return type:	bool

Checks to see if the HTTP_X_REQUESTED_WITH server header has been
set, and returns boolean TRUE if it is or FALSE if not.

	
is_cli_request()

	

	Returns:	TRUE if it is a CLI request, FALSE if not

	Return type:	bool

Checks to see if the application was run from the command-line
interface.

Note

This method checks both the PHP SAPI name currently in use
and if the STDIN constant is defined, which is usually a
failsafe way to see if PHP is being run via the command line.

$this->input->is_cli_request()

Note

This method is DEPRECATED and is now just an alias for the
is_cli() function.

	
method([$upper = FALSE])

	

	Parameters:	
	$upper (bool) – Whether to return the request method name in upper or lower case

	Returns:	HTTP request method

	Return type:	string

Returns the $_SERVER['REQUEST_METHOD'], with the option to set it
in uppercase or lowercase.

echo $this->input->method(TRUE); // Outputs: POST
echo $this->input->method(FALSE); // Outputs: post
echo $this->input->method(); // Outputs: post

Javascript Class

CodeIgniter provides a library to help you with certain common functions
that you may want to use with Javascript. Please note that CodeIgniter
does not require the jQuery library to run, and that any scripting
library will work equally well. The jQuery library is simply presented
as a convenience if you choose to use it.

Important

This library is DEPRECATED and should not be used. It has always
been with an ‘experimental’ status and is now no longer supported.
Currently only kept for backwards compatibility.

	Using the Javascript Class
	Initializing the Class

	Setup and Configuration
	Set these variables in your view

	Set the path to the librarys with config items

	The jQuery Class

	jQuery Events

	Effects
	hide() / show()

	toggle()

	animate()

	fadeIn() / fadeOut()

	toggleClass()

	fadeIn() / fadeOut()

	slideUp() / slideDown() / slideToggle()

	Plugins
	corner()

	tablesorter()

	modal()

	calendar()

Using the Javascript Class

Initializing the Class

To initialize the Javascript class manually in your controller
constructor, use the $this->load->library() method. Currently,
the only available library is jQuery, which will automatically be
loaded like this:

$this->load->library('javascript');

The Javascript class also accepts parameters:

	js_library_driver (string) default: ‘jquery’

	autoload (bool) default: TRUE

You may override the defaults by sending an associative array:

$this->load->library(
 'javascript',
 array(
 'js_library_driver' => 'scripto',
 'autoload' => FALSE
)
);

Again, presently only ‘jquery’ is available. You may wish to set
autoload to FALSE, though, if you do not want the jQuery library to
automatically include a script tag for the main jQuery script file. This
is useful if you are loading it from a location outside of CodeIgniter,
or already have the script tag in your markup.

Once loaded, the jQuery library object will be available using:

$this->javascript

Setup and Configuration

Set these variables in your view

As a Javascript library, your files must be available to your
application.

As Javascript is a client side language, the library must be able to
write content into your final output. This generally means a view.
You’ll need to include the following variables in the <head>
sections of your output.

<?php echo $library_src;?>
<?php echo $script_head;?>

$library_src, is where the actual library file will be loaded, as
well as any subsequent plugin script calls; $script_head is where
specific events, functions and other commands will be rendered.

Set the path to the librarys with config items

There are some configuration items in Javascript library. These can
either be set in application/config.php, within its own
config/javascript.php file, or within any controller usings the
set_item() function.

An image to be used as an “ajax loader”, or progress indicator. Without
one, the simple text message of “loading” will appear when Ajax calls
need to be made.

$config['javascript_location'] = 'http://localhost/codeigniter/themes/js/jquery/';
$config['javascript_ajax_img'] = 'images/ajax-loader.gif';

If you keep your files in the same directories they were downloaded
from, then you need not set this configuration items.

The jQuery Class

To initialize the jQuery class manually in your controller constructor,
use the $this->load->library() method:

$this->load->library('javascript/jquery');

You may send an optional parameter to determine whether or not a script
tag for the main jQuery file will be automatically included when loading
the library. It will be created by default. To prevent this, load the
library as follows:

$this->load->library('javascript/jquery', FALSE);

Once loaded, the jQuery library object will be available using:

$this->jquery

jQuery Events

Events are set using the following syntax.

$this->jquery->event('element_path', code_to_run());

In the above example:

	“event” is any of blur, change, click, dblclick, error, focus, hover,
keydown, keyup, load, mousedown, mouseup, mouseover, mouseup, resize,
scroll, or unload.

	“element_path” is any valid jQuery selector [http://api.jquery.com/category/selectors/]. Due to jQuery’s unique
selector syntax, this is usually an element id, or CSS selector. For
example “#notice_area” would effect <div id="notice_area">, and
“#content a.notice” would effect all anchors with a class of “notice”
in the div with id “content”.

	“code_to_run()” is script your write yourself, or an action such as
an effect from the jQuery library below.

Effects

The query library supports a powerful
Effects [http://api.jquery.com/category/effects/] repertoire. Before an effect
can be used, it must be loaded:

$this->jquery->effect([optional path] plugin name); // for example $this->jquery->effect('bounce');

hide() / show()

Each of this functions will affect the visibility of an item on your
page. hide() will set an item invisible, show() will reveal it.

$this->jquery->hide(target, optional speed, optional extra information);
$this->jquery->show(target, optional speed, optional extra information);

	“target” will be any valid jQuery selector or selectors.

	“speed” is optional, and is set to either slow, normal, fast, or
alternatively a number of milliseconds.

	“extra information” is optional, and could include a callback, or
other additional information.

toggle()

toggle() will change the visibility of an item to the opposite of its
current state, hiding visible elements, and revealing hidden ones.

$this->jquery->toggle(target);

	“target” will be any valid jQuery selector or selectors.

animate()

$this->jquery->animate(target, parameters, optional speed, optional extra information);

	“target” will be any valid jQuery selector or selectors.

	“parameters” in jQuery would generally include a series of CSS
properties that you wish to change.

	“speed” is optional, and is set to either slow, normal, fast, or
alternatively a number of milliseconds.

	“extra information” is optional, and could include a callback, or
other additional information.

For a full summary, see
http://api.jquery.com/animate/

Here is an example of an animate() called on a div with an id of “note”,
and triggered by a click using the jQuery library’s click() event.

$params = array(
'height' => 80,
'width' => '50%',
'marginLeft' => 125
);
$this->jquery->click('#trigger', $this->jquery->animate('#note', $params, 'normal'));

fadeIn() / fadeOut()

$this->jquery->fadeIn(target, optional speed, optional extra information);
$this->jquery->fadeOut(target, optional speed, optional extra information);

	“target” will be any valid jQuery selector or selectors.

	“speed” is optional, and is set to either slow, normal, fast, or
alternatively a number of milliseconds.

	“extra information” is optional, and could include a callback, or
other additional information.

toggleClass()

This function will add or remove a CSS class to its target.

$this->jquery->toggleClass(target, class)

	“target” will be any valid jQuery selector or selectors.

	“class” is any CSS classname. Note that this class must be defined
and available in a CSS that is already loaded.

fadeIn() / fadeOut()

These effects cause an element(s) to disappear or reappear over time.

$this->jquery->fadeIn(target, optional speed, optional extra information);
$this->jquery->fadeOut(target, optional speed, optional extra information);

	“target” will be any valid jQuery selector or selectors.

	“speed” is optional, and is set to either slow, normal, fast, or
alternatively a number of milliseconds.

	“extra information” is optional, and could include a callback, or
other additional information.

slideUp() / slideDown() / slideToggle()

These effects cause an element(s) to slide.

$this->jquery->slideUp(target, optional speed, optional extra information);
$this->jquery->slideDown(target, optional speed, optional extra information);
$this->jquery->slideToggle(target, optional speed, optional extra information);

	“target” will be any valid jQuery selector or selectors.

	“speed” is optional, and is set to either slow, normal, fast, or
alternatively a number of milliseconds.

	“extra information” is optional, and could include a callback, or
other additional information.

Plugins

Some select jQuery plugins are made available using this library.

corner()

Used to add distinct corners to page elements. For full details see
http://malsup.com/jquery/corner/

$this->jquery->corner(target, corner_style);

	“target” will be any valid jQuery selector or selectors.

	“corner_style” is optional, and can be set to any valid style such
as round, sharp, bevel, bite, dog, etc. Individual corners can be set
by following the style with a space and using “tl” (top left), “tr”
(top right), “bl” (bottom left), or “br” (bottom right).

$this->jquery->corner("#note", "cool tl br");

tablesorter()

description to come

modal()

description to come

calendar()

description to come

Language Class

The Language Class provides functions to retrieve language files and
lines of text for purposes of internationalization.

In your CodeIgniter system folder, you will find a language sub-directory
containing a set of language files for the english idiom.
The files in this directory (system/language/english/) define the regular messages,
error messages, and other generally output terms or expressions, for the different parts
of the CodeIgniter framework.

You can create or incorporate your own language files, as needed, in order to provide
application-specific error and other messages, or to provide translations of the core
messages into other languages. These translations or additional messages would go inside
your application/language/ directory, with separate sub-directories for each idiom
(for instance, ‘french’ or ‘german’).

The CodeIgniter framework comes with a set of language files for the “english” idiom.
Additional approved translations for different idioms may be found in the
CodeIgniter 3 Translations repositories [https://github.com/bcit-ci/codeigniter3-translations].
Each repository deals with a single idiom.

When CodeIgniter loads language files, it will load the one in system/language/
first and will then look for an override in your application/language/ directory.

Note

Each language should be stored in its own folder. For example,
the English files are located at: system/language/english

	Handling Multiple Languages
	Sample Language Files

	Example of switching languages

	Internationalization

	Using the Language Class
	Creating Language Files

	Loading A Language File

	Fetching a Line of Text
	Using language lines as form labels

	Auto-loading Languages

	Class Reference

Handling Multiple Languages

If you want to support multiple languages in your application, you would provide folders inside
your application/language/ directory for each of them, and you would specify the default
language in your application/config/config.php.

The application/language/english/ directory would contain any additional language files
needed by your application, for instance for error messages.

Each of the other idiom-specific directories would contain the core language files that you
obtained from the translations repositories, or that you translated yourself, as well as
any additional ones needed by your application.

You would store the language you are currently using, for instance in a session variable.

Sample Language Files

system/
 language/
 english/
 ...
 email_lang.php
 form_validation_lang.php
 ...

application/
 language/
 english/
 error_messages_lang.php
 french/
 ...
 email_lang.php
 error_messages_lang.php
 form_validation_lang.php
 ...

Example of switching languages

$idiom = $this->session->get_userdata('language');
$this->lang->load('error_messages', $idiom);
$oops = $this->lang->line('message_key');

Internationalization

The Language class in CodeIgniter is meant to provide an easy and lightweight
way to support multiplelanguages in your application. It is not meant to be a
full implementation of what is commonly called internationalization and localization [http://en.wikipedia.org/wiki/Internationalization_and_localization].

We use the term “idiom” to refer to a language using its common name,
rather than using any of the international standards, such as “en”, “en-US”,
or “en-CA-x-ca” for English and some of its variants.

Note

There is nothing to prevent you from using those abbreviations in your application!

Using the Language Class

Creating Language Files

Language files must be named with _lang.php as the filename extension.
For example, let’s say you want to create a file containing error messages.
You might name it: error_lang.php

Within the file you will assign each line of text to an array called
$lang with this prototype:

$lang['language_key'] = 'The actual message to be shown';

Note

It’s a good practice to use a common prefix for all messages
in a given file to avoid collisions with similarly named items in other
files. For example, if you are creating error messages you might prefix
them with error_

$lang['error_email_missing'] = 'You must submit an email address';
$lang['error_url_missing'] = 'You must submit a URL';
$lang['error_username_missing'] = 'You must submit a username';

Loading A Language File

In order to fetch a line from a particular file you must load the file
first. Loading a language file is done with the following code:

$this->lang->load('filename', 'language');

Where filename is the name of the file you wish to load (without the
file extension), and language is the language set containing it (ie,
english). If the second parameter is missing, the default language set
in your application/config/config.php file will be used.

You can also load multiple language files at the same time by passing an array of language files as first parameter.

$this->lang->load(array('filename1', 'filename2'));

Note

The language parameter can only consist of letters.

Fetching a Line of Text

Once your desired language file is loaded you can access any line of
text using this function:

$this->lang->line('language_key');

Where language_key is the array key corresponding to the line you wish
to show.

You can optionally pass FALSE as the second argument of that method to
disable error logging, in case you’re not sure if the line exists:

$this->lang->line('misc_key', FALSE);

Note

This method simply returns the line. It does not echo it.

Using language lines as form labels

This feature has been deprecated from the language library and moved to
the lang() function of the Language Helper.

Auto-loading Languages

If you find that you need a particular language globally throughout your
application, you can tell CodeIgniter to auto-load it during system initialization. This is done
by opening the application/config/autoload.php file and adding the
language(s) to the autoload array.

Class Reference

	
class CI_Lang

	
	
load($langfile[, $idiom = ''[, $return = FALSE[, $add_suffix = TRUE[, $alt_path = '']]]])

	

	Parameters:	
	$langfile (mixed) – Language file to load or array with multiple files

	$idiom (string) – Language name (i.e. ‘english’)

	$return (bool) – Whether to return the loaded array of translations

	$add_suffix (bool) – Whether to add the ‘_lang’ suffix to the language file name

	$alt_path (string) – An alternative path to look in for the language file

	Returns:	Array of language lines if $return is set to TRUE, otherwise void

	Return type:	mixed

Loads a language file.

	
line($line[, $log_errors = TRUE])

	

	Parameters:	
	$line (string) – Language line key name

	$log_errors (bool) – Whether to log an error if the line isn’t found

	Returns:	Language line string or FALSE on failure

	Return type:	string

Fetches a single translation line from the already loaded language files,
based on the line’s name.

Loader Class

Loader, as the name suggests, is used to load elements. These elements
can be libraries (classes) View files,
Drivers,
Helpers,
Models, or your own files.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

	Application “Packages”
	Package view files

	Class Reference

Application “Packages”

An application package allows for the easy distribution of complete sets
of resources in a single directory, complete with its own libraries,
models, helpers, config, and language files. It is recommended that
these packages be placed in the application/third_party directory. Below
is a sample map of an package directory.

The following is an example of a directory for an application package
named “Foo Bar”.

/application/third_party/foo_bar

config/
helpers/
language/
libraries/
models/

Whatever the purpose of the “Foo Bar” application package, it has its
own config files, helpers, language files, libraries, and models. To use
these resources in your controllers, you first need to tell the Loader
that you are going to be loading resources from a package, by adding the
package path via the add_package_path() method.

Package view files

By Default, package view files paths are set when add_package_path()
is called. View paths are looped through, and once a match is
encountered that view is loaded.

In this instance, it is possible for view naming collisions within
packages to occur, and possibly the incorrect package being loaded. To
ensure against this, set an optional second parameter of FALSE when
calling add_package_path().

$this->load->add_package_path(APPPATH.'my_app', FALSE);
$this->load->view('my_app_index'); // Loads
$this->load->view('welcome_message'); // Will not load the default welcome_message b/c the second param to add_package_path is FALSE

// Reset things
$this->load->remove_package_path(APPPATH.'my_app');

// Again without the second parameter:
$this->load->add_package_path(APPPATH.'my_app');
$this->load->view('my_app_index'); // Loads
$this->load->view('welcome_message'); // Loads

Class Reference

	
class CI_Loader

	
	
library($library[, $params = NULL[, $object_name = NULL]])

	

	Parameters:	
	$library (mixed) – Library name as a string or an array with multiple libraries

	$params (array) – Optional array of parameters to pass to the loaded library’s constructor

	$object_name (string) – Optional object name to assign the library to

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

This method is used to load core classes.

Note

We use the terms “class” and “library” interchangeably.

For example, if you would like to send email with CodeIgniter, the first
step is to load the email class within your controller:

$this->load->library('email');

Once loaded, the library will be ready for use, using $this->email.

Library files can be stored in subdirectories within the main
“libraries” directory, or within your personal application/libraries
directory. To load a file located in a subdirectory, simply include the
path, relative to the “libraries” directory. For example, if you have
file located at:

libraries/flavors/Chocolate.php

You will load it using:

$this->load->library('flavors/chocolate');

You may nest the file in as many subdirectories as you want.

Additionally, multiple libraries can be loaded at the same time by
passing an array of libraries to the load method.

$this->load->library(array('email', 'table'));

Setting options

The second (optional) parameter allows you to optionally pass
configuration setting. You will typically pass these as an array:

$config = array (
 'mailtype' => 'html',
 'charset' => 'utf-8',
 'priority' => '1'
);

$this->load->library('email', $config);

Config options can usually also be set via a config file. Each library
is explained in detail in its own page, so please read the information
regarding each one you would like to use.

Please take note, when multiple libraries are supplied in an array for
the first parameter, each will receive the same parameter information.

Assigning a Library to a different object name

If the third (optional) parameter is blank, the library will usually be
assigned to an object with the same name as the library. For example, if
the library is named Calendar, it will be assigned to a variable named
$this->calendar.

If you prefer to set your own class names you can pass its value to the
third parameter:

$this->load->library('calendar', NULL, 'my_calendar');

// Calendar class is now accessed using:
$this->my_calendar

Please take note, when multiple libraries are supplied in an array for
the first parameter, this parameter is discarded.

	
driver($library[, $params = NULL[, $object_name]])

	

	Parameters:	
	$library (mixed) – Library name as a string or an array with multiple libraries

	$params (array) – Optional array of parameters to pass to the loaded library’s constructor

	$object_name (string) – Optional object name to assign the library to

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

This method is used to load driver libraries, acts very much like the
library() method.

As an example, if you would like to use sessions with CodeIgniter, the first
step is to load the session driver within your controller:

$this->load->driver('session');

Once loaded, the library will be ready for use, using $this->session.

Driver files must be stored in a subdirectory within the main
“libraries” directory, or within your personal application/libraries
directory. The subdirectory must match the parent class name. Read the
Drivers description for details.

Additionally, multiple driver libraries can be loaded at the same time by
passing an array of drivers to the load method.

$this->load->driver(array('session', 'cache'));

Setting options

The second (optional) parameter allows you to optionally pass
configuration settings. You will typically pass these as an array:

$config = array(
 'sess_driver' => 'cookie',
 'sess_encrypt_cookie' => true,
 'encryption_key' => 'mysecretkey'
);

$this->load->driver('session', $config);

Config options can usually also be set via a config file. Each library
is explained in detail in its own page, so please read the information
regarding each one you would like to use.

Assigning a Driver to a different object name

If the third (optional) parameter is blank, the library will be assigned
to an object with the same name as the parent class. For example, if
the library is named Session, it will be assigned to a variable named
$this->session.

If you prefer to set your own class names you can pass its value to the
third parameter:

$this->load->library('session', '', 'my_session');

// Session class is now accessed using:
$this->my_session

	
view($view[, $vars = array()[, return = FALSE]])

	

	Parameters:	
	$view (string) – View name

	$vars (array) – An associative array of variables

	$return (bool) – Whether to return the loaded view

	Returns:	View content string if $return is set to TRUE, otherwise CI_Loader instance (method chaining)

	Return type:	mixed

This method is used to load your View files. If you haven’t read the
Views section of the user guide it is
recommended that you do since it shows you how this method is
typically used.

The first parameter is required. It is the name of the view file you
would like to load.

Note

The .php file extension does not need to be specified unless
you use something other than .php.

The second optional parameter can take an associative array or an
object as input, which it runs through the PHP
extract() [http://php.net/extract] function to convert to variables
that can be used in your view files. Again, read the
Views page to learn how this might be useful.

The third optional parameter lets you change the behavior of the
method so that it returns data as a string rather than sending it to
your browser. This can be useful if you want to process the data in some
way. If you set the parameter to TRUE (boolean) it will return data. The
default behavior is FALSE, which sends it to your browser. Remember to
assign it to a variable if you want the data returned:

$string = $this->load->view('myfile', '', TRUE);

	
vars($vars[, $val = ''])

	

	Parameters:	
	$vars (mixed) – An array of variables or a single variable name

	$val (mixed) – Optional variable value

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

This method takes an associative array as input and generates
variables using the PHP extract() [http://php.net/extract]
function. This method produces the same result as using the second
parameter of the $this->load->view() method above. The reason you
might want to use this method independently is if you would like to
set some global variables in the constructor of your controller and have
them become available in any view file loaded from any method. You can
have multiple calls to this method. The data get cached and merged
into one array for conversion to variables.

	
get_var($key)

	

	Parameters:	
	$key (string) – Variable name key

	Returns:	Value if key is found, NULL if not

	Return type:	mixed

This method checks the associative array of variables available to
your views. This is useful if for any reason a var is set in a library
or another controller method using $this->load->vars().

	
get_vars()

	

	Returns:	An array of all assigned view variables

	Return type:	array

This method retrieves all variables available to your views.

	
clear_vars()

	

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

Clears cached view variables.

	
model($model[, $name = ''[, $db_conn = FALSE]])

	

	Parameters:	
	$model (mixed) – Model name or an array containing multiple models

	$name (string) – Optional object name to assign the model to

	$db_conn (string) – Optional database configuration group to load

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

$this->load->model('model_name');

If your model is located in a subdirectory, include the relative path
from your models directory. For example, if you have a model located at
application/models/blog/Queries.php you’ll load it using:

$this->load->model('blog/queries');

If you would like your model assigned to a different object name you can
specify it via the second parameter of the loading method:

$this->load->model('model_name', 'fubar');
$this->fubar->method();

	
database([$params = ''[, $return = FALSE[, $query_builder = NULL]]])

	

	Parameters:	
	$params (mixed) – Database group name or configuration options

	$return (bool) – Whether to return the loaded database object

	$query_builder (bool) – Whether to load the Query Builder

	Returns:	Loaded CI_DB instance or FALSE on failure if $return is set to TRUE, otherwise CI_Loader instance (method chaining)

	Return type:	mixed

This method lets you load the database class. The two parameters are
optional. Please see the database
section for more info.

	
dbforge([$db = NULL[, $return = FALSE]])

	

	Parameters:	
	$db (object) – Database object

	$return (bool) – Whether to return the Database Forge instance

	Returns:	Loaded CI_DB_forge instance if $return is set to TRUE, otherwise CI_Loader instance (method chaining)

	Return type:	mixed

Loads the Database Forge class, please refer
to that manual for more info.

	
dbutil([$db = NULL[, $return = FALSE]])

	

	Parameters:	
	$db (object) – Database object

	$return (bool) – Whether to return the Database Utilities instance

	Returns:	Loaded CI_DB_utility instance if $return is set to TRUE, otherwise CI_Loader instance (method chaining)

	Return type:	mixed

Loads the Database Utilities class, please
refer to that manual for more info.

	
helper($helpers)

	

	Parameters:	
	$helpers (mixed) – Helper name as a string or an array containing multiple helpers

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

This method loads helper files, where file_name is the name of the
file, without the _helper.php extension.

	
file($path[, $return = FALSE])

	

	Parameters:	
	$path (string) – File path

	$return (bool) – Whether to return the loaded file

	Returns:	File contents if $return is set to TRUE, otherwise CI_Loader instance (method chaining)

	Return type:	mixed

This is a generic file loading method. Supply the filepath and name in
the first parameter and it will open and read the file. By default the
data is sent to your browser, just like a View file, but if you set the
second parameter to boolean TRUE it will instead return the data as a
string.

	
language($files[, $lang = ''])

	

	Parameters:	
	$files (mixed) – Language file name or an array of multiple language files

	$lang (string) – Language name

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

This method is an alias of the language loading
method: $this->lang->load().

	
config($file[, $use_sections = FALSE[, $fail_gracefully = FALSE]])

	

	Parameters:	
	$file (string) – Configuration file name

	$use_sections (bool) – Whether configuration values should be loaded into their own section

	$fail_gracefully (bool) – Whether to just return FALSE in case of failure

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

This method is an alias of the config file loading
method: $this->config->load()

	
is_loaded($class)

	

	Parameters:	
	$class (string) – Class name

	Returns:	Singleton property name if found, FALSE if not

	Return type:	mixed

Allows you to check if a class has already been loaded or not.

Note

The word “class” here refers to libraries and drivers.

If the requested class has been loaded, the method returns its assigned
name in the CI Super-object and FALSE if it’s not:

$this->load->library('form_validation');
$this->load->is_loaded('Form_validation'); // returns 'form_validation'

$this->load->is_loaded('Nonexistent_library'); // returns FALSE

Important

If you have more than one instance of a class (assigned to
different properties), then the first one will be returned.

$this->load->library('form_validation', $config, 'fv');
$this->load->library('form_validation');

$this->load->is_loaded('Form_validation'); // returns 'fv'

	
add_package_path($path[, $view_cascade = TRUE])

	

	Parameters:	
	$path (string) – Path to add

	$view_cascade (bool) – Whether to use cascading views

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

Adding a package path instructs the Loader class to prepend a given path
for subsequent requests for resources. As an example, the “Foo Bar”
application package above has a library named Foo_bar.php. In our
controller, we’d do the following:

$this->load->add_package_path(APPPATH.'third_party/foo_bar/')
 ->library('foo_bar');

	
remove_package_path([$path = ''])

	

	Parameters:	
	$path (string) – Path to remove

	Returns:	CI_Loader instance (method chaining)

	Return type:	CI_Loader

When your controller is finished using resources from an application
package, and particularly if you have other application packages you
want to work with, you may wish to remove the package path so the Loader
no longer looks in that directory for resources. To remove the last path
added, simply call the method with no parameters.

Or to remove a specific package path, specify the same path previously
given to add_package_path() for a package.:

$this->load->remove_package_path(APPPATH.'third_party/foo_bar/');

	
get_package_paths([$include_base = TRUE])

	

	Parameters:	
	$include_base (bool) – Whether to include BASEPATH

	Returns:	An array of package paths

	Return type:	array

Returns all currently available package paths.

Migrations Class

Migrations are a convenient way for you to alter your database in a
structured and organized manner. You could edit fragments of SQL by hand
but you would then be responsible for telling other developers that they
need to go and run them. You would also have to keep track of which changes
need to be run against the production machines next time you deploy.

The database table migration tracks which migrations have already been
run so all you have to do is update your application files and
call $this->migration->current() to work out which migrations should be run.
The current version is found in application/config/migration.php.

	Migration file names

	Create a Migration

	Usage Example

	Migration Preferences

	Class Reference

Migration file names

Each Migration is run in numeric order forward or backwards depending on the
method taken. Two numbering styles are available:

	Sequential: each migration is numbered in sequence, starting with 001.
Each number must be three digits, and there must not be any gaps in the
sequence. (This was the numbering scheme prior to CodeIgniter 3.0.)

	Timestamp: each migration is numbered using the timestamp when the migration
was created, in YYYYMMDDHHIISS format (e.g. 20121031100537). This
helps prevent numbering conflicts when working in a team environment, and is
the preferred scheme in CodeIgniter 3.0 and later.

The desired style may be selected using the $config['migration_type']
setting in your application/config/migration.php file.

Regardless of which numbering style you choose to use, prefix your migration
files with the migration number followed by an underscore and a descriptive
name for the migration. For example:

	001_add_blog.php (sequential numbering)

	20121031100537_add_blog.php (timestamp numbering)

Create a Migration

This will be the first migration for a new site which has a blog. All
migrations go in the application/migrations/ directory and have names such
as 20121031100537_add_blog.php.

<?php

defined('BASEPATH') OR exit('No direct script access allowed');

class Migration_Add_blog extends CI_Migration {

 public function up()
 {
 $this->dbforge->add_field(array(
 'blog_id' => array(
 'type' => 'INT',
 'constraint' => 5,
 'unsigned' => TRUE,
 'auto_increment' => TRUE
),
 'blog_title' => array(
 'type' => 'VARCHAR',
 'constraint' => '100',
),
 'blog_description' => array(
 'type' => 'TEXT',
 'null' => TRUE,
),
));
 $this->dbforge->add_key('blog_id', TRUE);
 $this->dbforge->create_table('blog');
 }

 public function down()
 {
 $this->dbforge->drop_table('blog');
 }
}

Then in application/config/migration.php set $config['migration_version'] = 20121031100537;.

Usage Example

In this example some simple code is placed in application/controllers/Migrate.php
to update the schema.:

<?php

class Migrate extends CI_Controller
{

 public function index()
 {
 $this->load->library('migration');

 if ($this->migration->current() === FALSE)
 {
 show_error($this->migration->error_string());
 }
 }

}

Migration Preferences

The following is a table of all the config options for migrations.

	Preference
	Default
	Options
	Description

	migration_enabled
	FALSE
	TRUE / FALSE
	Enable or disable migrations.

	migration_path
	APPPATH.’migrations/’
	None
	The path to your migrations folder.

	migration_version
	0
	None
	The current version your database should use.

	migration_table
	migrations
	None
	The table name for storing the schema
version number.

	migration_auto_latest
	FALSE
	TRUE / FALSE
	Enable or disable automatically
running migrations.

	migration_type
	‘timestamp’
	‘timestamp’ / ‘sequential’
	The type of numeric identifier used to name
migration files.

Class Reference

	
class CI_Migration

	
	
current()

	

	Returns:	TRUE if no migrations are found, current version string on success, FALSE on failure

	Return type:	mixed

Migrates up to the current version (whatever is set for
$config['migration_version'] in application/config/migration.php).

	
error_string()

	

	Returns:	Error messages

	Return type:	string

This returns a string of errors that were detected while performing a migration.

	
find_migrations()

	

	Returns:	An array of migration files

	Return type:	array

An array of migration filenames are returned that are found in the migration_path property.

	
latest()

	

	Returns:	Current version string on success, FALSE on failure

	Return type:	mixed

This works much the same way as current() but instead of looking for
the $config['migration_version'] the Migration class will use the very
newest migration found in the filesystem.

	
version($target_version)

	

	Parameters:	
	$target_version (mixed) – Migration version to process

	Returns:	TRUE if no migrations are found, current version string on success, FALSE on failure

	Return type:	mixed

Version can be used to roll back changes or step forwards programmatically to
specific versions. It works just like current() but ignores $config['migration_version'].

$this->migration->version(5);

Output Class

The Output class is a core class with one main function: To send the
finalized web page to the requesting browser. It is also responsible for
caching your web pages, if you use that
feature.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

Under normal circumstances you won’t even notice the Output class since
it works transparently without your intervention. For example, when you
use the Loader class to load a view file,
it’s automatically passed to the Output class, which will be called
automatically by CodeIgniter at the end of system execution. It is
possible, however, for you to manually intervene with the output if you
need to.

	Class Reference

Class Reference

	
class CI_Output

	
	
$parse_exec_vars = TRUE;

	Enables/disables parsing of the {elapsed_time} and {memory_usage} pseudo-variables.

CodeIgniter will parse those tokens in your output by default. To disable this, set
this property to FALSE in your controller.

$this->output->parse_exec_vars = FALSE;

	
set_output($output)

	

	Parameters:	
	$output (string) – String to set the output to

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to manually set the final output string. Usage example:

$this->output->set_output($data);

Important

If you do set your output manually, it must be the last thing done
in the function you call it from. For example, if you build a page in one
of your controller methods, don’t set the output until the end.

	
set_content_type($mime_type[, $charset = NULL])

	

	Parameters:	
	$mime_type (string) – MIME Type idenitifer string

	$charset (string) – Character set

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to set the mime-type of your page so you can serve JSON data, JPEG’s, XML, etc easily.

$this->output
 ->set_content_type('application/json')
 ->set_output(json_encode(array('foo' => 'bar')));

$this->output
 ->set_content_type('jpeg') // You could also use ".jpeg" which will have the full stop removed before looking in config/mimes.php
 ->set_output(file_get_contents('files/something.jpg'));

Important

Make sure any non-mime string you pass to this method
exists in application/config/mimes.php or it will have no effect.

You can also set the character set of the document, by passing a second argument:

$this->output->set_content_type('css', 'utf-8');

	
get_content_type()

	

	Returns:	Content-Type string

	Return type:	string

Returns the Content-Type HTTP header that’s currently in use, excluding the character set value.

$mime = $this->output->get_content_type();

Note

If not set, the default return value is ‘text/html’.

	
get_header($header)

	

	Parameters:	
	$header (string) – HTTP header name

	Returns:	HTTP response header or NULL if not found

	Return type:	mixed

Returns the requested HTTP header value, or NULL if the requested header is not set.
Example:

$this->output->set_content_type('text/plain', 'UTF-8');
echo $this->output->get_header('content-type');
// Outputs: text/plain; charset=utf-8

Note

The header name is compared in a case-insensitive manner.

Note

Raw headers sent via PHP’s native header() function are also detected.

	
get_output()

	

	Returns:	Output string

	Return type:	string

Permits you to manually retrieve any output that has been sent for
storage in the output class. Usage example:

$string = $this->output->get_output();

Note that data will only be retrievable from this function if it has
been previously sent to the output class by one of the CodeIgniter
functions like $this->load->view().

	
append_output($output)

	

	Parameters:	
	$output (string) – Additional output data to append

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Appends data onto the output string.

$this->output->append_output($data);

	
set_header($header[, $replace = TRUE])

	

	Parameters:	
	$header (string) – HTTP response header

	$replace (bool) – Whether to replace the old header value, if it is already set

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to manually set server headers, which the output class will
send for you when outputting the final rendered display. Example:

$this->output->set_header('HTTP/1.0 200 OK');
$this->output->set_header('HTTP/1.1 200 OK');
$this->output->set_header('Last-Modified: '.gmdate('D, d M Y H:i:s', $last_update).' GMT');
$this->output->set_header('Cache-Control: no-store, no-cache, must-revalidate');
$this->output->set_header('Cache-Control: post-check=0, pre-check=0');
$this->output->set_header('Pragma: no-cache');

	
set_status_header([$code = 200[, $text = '']])

	

	Parameters:	
	$code (int) – HTTP status code

	$text (string) – Optional message

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to manually set a server status header. Example:

$this->output->set_status_header(401);
// Sets the header as: Unauthorized

See here [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html] for a full list of headers.

Note

This method is an alias for Common function
set_status_header().

	
enable_profiler([$val = TRUE])

	

	Parameters:	
	$val (bool) – Whether to enable or disable the Profiler

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to enable/disable the Profiler, which will display benchmark
and other data at the bottom of your pages for debugging and optimization purposes.

To enable the profiler place the following line anywhere within your
Controller methods:

$this->output->enable_profiler(TRUE);

When enabled a report will be generated and inserted at the bottom of your pages.

To disable the profiler you would use:

$this->output->enable_profiler(FALSE);

	
set_profiler_sections($sections)

	

	Parameters:	
	$sections (array) – Profiler sections

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Permits you to enable/disable specific sections of the Profiler when it is enabled.
Please refer to the Profiler documentation for further information.

	
cache($time)

	

	Parameters:	
	$time (int) – Cache expiration time in minutes

	Returns:	CI_Output instance (method chaining)

	Return type:	CI_Output

Caches the current page for the specified amount of minutes.

For more information, please see the caching documentation.

	
_display([$output = ''])

	

	Parameters:	
	$output (string) – Output data override

	Returns:	void

	Return type:	void

Sends finalized output data to the browser along with any server headers. It also stops benchmark
timers.

Note

This method is called automatically at the end of script execution, you won’t need to
call it manually unless you are aborting script execution using exit() or die() in your code.

Example:

$response = array('status' => 'OK');

$this->output
 ->set_status_header(200)
 ->set_content_type('application/json', 'utf-8')
 ->set_output(json_encode($response, JSON_PRETTY_PRINT | JSON_UNESCAPED_UNICODE | JSON_UNESCAPED_SLASHES))
 ->_display();
exit;

Note

Calling this method manually without aborting script execution will result in duplicated output.

Pagination Class

CodeIgniter’s Pagination class is very easy to use, and it is 100%
customizable, either dynamically or via stored preferences.

	Example
	Notes

	Setting preferences in a config file

	Customizing the Pagination

	Adding Enclosing Markup

	Customizing the First Link

	Customizing the Last Link

	Customizing the “Next” Link

	Customizing the “Previous” Link

	Customizing the “Current Page” Link

	Customizing the “Digit” Link

	Hiding the Pages

	Adding attributes to anchors

	Disabling the “rel” attribute

	Class Reference

If you are not familiar with the term “pagination”, it refers to links
that allows you to navigate from page to page, like this:

« First < 1 2 3 4 5 > Last »

Example

Here is a simple example showing how to create pagination in one of your
controller methods:

$this->load->library('pagination');

$config['base_url'] = 'http://example.com/index.php/test/page/';
$config['total_rows'] = 200;
$config['per_page'] = 20;

$this->pagination->initialize($config);

echo $this->pagination->create_links();

Notes

The $config array contains your configuration variables. It is passed to
the $this->pagination->initialize() method as shown above. Although
there are some twenty items you can configure, at minimum you need the
three shown. Here is a description of what those items represent:

	base_url This is the full URL to the controller class/function
containing your pagination. In the example above, it is pointing to a
controller called “Test” and a function called “page”. Keep in mind
that you can re-route your URI if you
need a different structure.

	total_rows This number represents the total rows in the result
set you are creating pagination for. Typically this number will be
the total rows that your database query returned.

	per_page The number of items you intend to show per page. In the
above example, you would be showing 20 items per page.

The create_links() method returns an empty string when there is no
pagination to show.

Setting preferences in a config file

If you prefer not to set preferences using the above method, you can
instead put them into a config file. Simply create a new file called
pagination.php, add the $config array in that file. Then save the file
in application/config/pagination.php and it will be used automatically.
You will NOT need to use $this->pagination->initialize() if you save
your preferences in a config file.

Customizing the Pagination

The following is a list of all the preferences you can pass to the
initialization function to tailor the display.

$config[‘uri_segment’] = 3;

The pagination function automatically determines which segment of your
URI contains the page number. If you need something different you can
specify it.

$config[‘num_links’] = 2;

The number of “digit” links you would like before and after the selected
page number. For example, the number 2 will place two digits on either
side, as in the example links at the very top of this page.

$config[‘use_page_numbers’] = TRUE;

By default, the URI segment will use the starting index for the items
you are paginating. If you prefer to show the the actual page number,
set this to TRUE.

$config[‘page_query_string’] = TRUE;

By default, the pagination library assume you are using URI
Segments, and constructs your links something
like:

http://example.com/index.php/test/page/20

If you have $config['enable_query_strings'] set to TRUE your links
will automatically be re-written using Query Strings. This option can
also be explicitly set. Using $config['page_query_string'] set to TRUE,
the pagination link will become:

http://example.com/index.php?c=test&m=page&per_page=20

Note that “per_page” is the default query string passed, however can be
configured using $config['query_string_segment'] = 'your_string'

$config[‘reuse_query_string’] = FALSE;

By default your Query String arguments (nothing to do with other
query string options) will be ignored. Setting this config to
TRUE will add existing query string arguments back into the
URL after the URI segment and before the suffix.:

http://example.com/index.php/test/page/20?query=search%term

This helps you mix together normal URI Segments
as well as query string arguments, which until 3.0 was not possible.

$config[‘prefix’] = ‘’;

A custom prefix added to the path. The prefix value will be right before
the offset segment.

$config[‘suffix’] = ‘’;

A custom suffix added to the path. The suffix value will be right after
the offset segment.

$config[‘use_global_url_suffix’] = FALSE;

When set to TRUE, it will override the $config['suffix'] value and
instead set it to the one that you have in $config['url_suffix'] in
your application/config/config.php file.

Adding Enclosing Markup

If you would like to surround the entire pagination with some markup you
can do it with these two preferences:

$config[‘full_tag_open’] = ‘<p>’;

The opening tag placed on the left side of the entire result.

$config[‘full_tag_close’] = ‘</p>’;

The closing tag placed on the right side of the entire result.

Customizing the First Link

$config[‘first_link’] = ‘First’;

The text you would like shown in the “first” link on the left. If you do
not want this link rendered, you can set its value to FALSE.

Note

This value can also be translated via a language file.

$config[‘first_tag_open’] = ‘<div>’;

The opening tag for the “first” link.

$config[‘first_tag_close’] = ‘</div>’;

The closing tag for the “first” link.

$config[‘first_url’] = ‘’;

An alternative URL to use for the “first page” link.

Customizing the Last Link

$config[‘last_link’] = ‘Last’;

The text you would like shown in the “last” link on the right. If you do
not want this link rendered, you can set its value to FALSE.

Note

This value can also be translated via a language file.

$config[‘last_tag_open’] = ‘<div>’;

The opening tag for the “last” link.

$config[‘last_tag_close’] = ‘</div>’;

The closing tag for the “last” link.

Customizing the “Next” Link

$config[‘next_link’] = ‘>’;

The text you would like shown in the “next” page link. If you do not
want this link rendered, you can set its value to FALSE.

Note

This value can also be translated via a language file.

$config[‘next_tag_open’] = ‘<div>’;

The opening tag for the “next” link.

$config[‘next_tag_close’] = ‘</div>’;

The closing tag for the “next” link.

Customizing the “Previous” Link

$config[‘prev_link’] = ‘<’;

The text you would like shown in the “previous” page link. If you do not
want this link rendered, you can set its value to FALSE.

Note

This value can also be translated via a language file.

$config[‘prev_tag_open’] = ‘<div>’;

The opening tag for the “previous” link.

$config[‘prev_tag_close’] = ‘</div>’;

The closing tag for the “previous” link.

Customizing the “Current Page” Link

$config[‘cur_tag_open’] = ‘’;

The opening tag for the “current” link.

$config[‘cur_tag_close’] = ‘’;

The closing tag for the “current” link.

Customizing the “Digit” Link

$config[‘num_tag_open’] = ‘<div>’;

The opening tag for the “digit” link.

$config[‘num_tag_close’] = ‘</div>’;

The closing tag for the “digit” link.

Hiding the Pages

If you wanted to not list the specific pages (for example, you only want
“next” and “previous” links), you can suppress their rendering by
adding:

$config['display_pages'] = FALSE;

Adding attributes to anchors

If you want to add an extra attribute to be added to every link rendered
by the pagination class, you can set them as key/value pairs in the
“attributes” config:

// Produces: class="myclass"
$config['attributes'] = array('class' => 'myclass');

Note

Usage of the old method of setting classes via “anchor_class”
is deprecated.

Disabling the “rel” attribute

By default the rel attribute is dynamically generated and appended to
the appropriate anchors. If for some reason you want to turn it off,
you can pass boolean FALSE as a regular attribute

$config['attributes']['rel'] = FALSE;

Class Reference

	
class CI_Pagination

	
	
initialize([$params = array()])

	

	Parameters:	
	$params (array) – Configuration parameters

	Returns:	CI_Pagination instance (method chaining)

	Return type:	CI_Pagination

Initializes the Pagination class with your preferred options.

	
create_links()

	

	Returns:	HTML-formatted pagination

	Return type:	string

Returns a “pagination” bar, containing the generated links or an empty string if there’s just a single page.

Template Parser Class

The Template Parser Class can perform simple text substitution for
pseudo-variables contained within your view files.
It can parse simple variables or variable tag pairs.

If you’ve never used a template engine,
pseudo-variable names are enclosed in braces, like this:

<html>
 <head>
 <title>{blog_title}</title>
 </head>
 <body>
 <h3>{blog_heading}</h3>

 {blog_entries}
 <h5>{title}</h5>
 <p>{body}</p>
 {/blog_entries}

 </body>
</html>

These variables are not actual PHP variables, but rather plain text
representations that allow you to eliminate PHP from your templates
(view files).

Note

CodeIgniter does not require you to use this class since
using pure PHP in your view pages lets them run a little faster.
However, some developers prefer to use a template engine if
they work with designers who they feel would find some
confusion working with PHP.

Important

The Template Parser Class is not a full-blown
template parsing solution. We’ve kept it very lean on purpose in order
to maintain maximum performance.

	Using the Template Parser Class
	Initializing the Class

	Parsing templates

	Variable Pairs

	Usage Notes

	View Fragments

	Class Reference

Using the Template Parser Class

Initializing the Class

Like most other classes in CodeIgniter, the Parser class is initialized
in your controller using the $this->load->library() method:

$this->load->library('parser');

Once loaded, the Parser library object will be available using:
$this->parser

Parsing templates

You can use the parse() method to parse (or render) simple templates,
like this:

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading'
);

$this->parser->parse('blog_template', $data);

The first parameter contains the name of the view
file (in this example the file would be called
blog_template.php), and the second parameter contains an associative
array of data to be replaced in the template. In the above example, the
template would contain two variables: {blog_title} and {blog_heading}

There is no need to “echo” or do something with the data returned by
$this->parser->parse(). It is automatically passed to the output class
to be sent to the browser. However, if you do want the data returned
instead of sent to the output class you can pass TRUE (boolean) as the
third parameter:

$string = $this->parser->parse('blog_template', $data, TRUE);

Variable Pairs

The above example code allows simple variables to be replaced. What if
you would like an entire block of variables to be repeated, with each
iteration containing new values? Consider the template example we showed
at the top of the page:

<html>
 <head>
 <title>{blog_title}</title>
 </head>
 <body>
 <h3>{blog_heading}</h3>

 {blog_entries}
 <h5>{title}</h5>
 <p>{body}</p>
 {/blog_entries}

 </body>
</html>

In the above code you’ll notice a pair of variables: {blog_entries}
data… {/blog_entries}. In a case like this, the entire chunk of data
between these pairs would be repeated multiple times, corresponding to
the number of rows in the “blog_entries” element of the parameters array.

Parsing variable pairs is done using the identical code shown above to
parse single variables, except, you will add a multi-dimensional array
corresponding to your variable pair data. Consider this example:

$this->load->library('parser');

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entries' => array(
 array('title' => 'Title 1', 'body' => 'Body 1'),
 array('title' => 'Title 2', 'body' => 'Body 2'),
 array('title' => 'Title 3', 'body' => 'Body 3'),
 array('title' => 'Title 4', 'body' => 'Body 4'),
 array('title' => 'Title 5', 'body' => 'Body 5')
)
);

$this->parser->parse('blog_template', $data);

If your “pair” data is coming from a database result, which is already a
multi-dimensional array, you can simply use the database result_array()
method:

$query = $this->db->query("SELECT * FROM blog");

$this->load->library('parser');

$data = array(
 'blog_title' => 'My Blog Title',
 'blog_heading' => 'My Blog Heading',
 'blog_entries' => $query->result_array()
);

$this->parser->parse('blog_template', $data);

Usage Notes

If you include substitution parameters that are not referenced in your
template, they are ignored:

$template = 'Hello, {firstname} {lastname}';
$data = array(
 'title' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe'
);
$this->parser->parse_string($template, $data);

// Result: Hello, John Doe

If you do not include a substitution parameter that is referenced in your
template, the original pseudo-variable is shown in the result:

$template = 'Hello, {firstname} {initials} {lastname}';
$data = array(
 'title' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe'
);
$this->parser->parse_string($template, $data);

// Result: Hello, John {initials} Doe

If you provide a string substitution parameter when an array is expected,
i.e. for a variable pair, the substitution is done for the opening variable
pair tag, but the closing variable pair tag is not rendered properly:

$template = 'Hello, {firstname} {lastname} ({degrees}{degree} {/degrees})';
$data = array(
 'degrees' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe',
 'titles' => array(
 array('degree' => 'BSc'),
 array('degree' => 'PhD')
)
);
$this->parser->parse_string($template, $data);

// Result: Hello, John Doe (Mr{degree} {/degrees})

If you name one of your individual substitution parameters the same as one
used inside a variable pair, the results may not be as expected:

$template = 'Hello, {firstname} {lastname} ({degrees}{degree} {/degrees})';
$data = array(
 'degree' => 'Mr',
 'firstname' => 'John',
 'lastname' => 'Doe',
 'degrees' => array(
 array('degree' => 'BSc'),
 array('degree' => 'PhD')
)
);
$this->parser->parse_string($template, $data);

// Result: Hello, John Doe (Mr Mr)

View Fragments

You do not have to use variable pairs to get the effect of iteration in
your views. It is possible to use a view fragment for what would be inside
a variable pair, and to control the iteration in your controller instead
of in the view.

An example with the iteration controlled in the view:

$template = '{menuitems}
 {title}
{/menuitems}';

$data = array(
 'menuitems' => array(
 array('title' => 'First Link', 'link' => '/first'),
 array('title' => 'Second Link', 'link' => '/second'),
)
);
$this->parser->parse_string($template, $data);

Result:

 First Link
 Second Link

An example with the iteration controlled in the controller,
using a view fragment:

$temp = '';
$template1 = '{title}';
$data1 = array(
 array('title' => 'First Link', 'link' => '/first'),
 array('title' => 'Second Link', 'link' => '/second'),
);

foreach ($data1 as $menuitem)
{
 $temp .= $this->parser->parse_string($template1, $menuitem, TRUE);
}

$template = '{menuitems}';
$data = array(
 'menuitems' => $temp
);
$this->parser->parse_string($template, $data);

Result:

 First Link
 Second Link

Class Reference

	
class CI_Parser

	
	
parse($template, $data[, $return = FALSE])

	

	Parameters:	
	$template (string) – Path to view file

	$data (array) – Variable data

	$return (bool) – Whether to only return the parsed template

	Returns:	Parsed template string

	Return type:	string

Parses a template from the provided path and variables.

	
parse_string($template, $data[, $return = FALSE])

	

	Parameters:	
	$template (string) – Path to view file

	$data (array) – Variable data

	$return (bool) – Whether to only return the parsed template

	Returns:	Parsed template string

	Return type:	string

This method works exactly like parse(), only it accepts
the template as a string instead of loading a view file.

	
set_delimiters([$l = '{'[, $r = '}']])

	

	Parameters:	
	$l (string) – Left delimiter

	$r (string) – Right delimiter

	Return type:	void

Sets the delimiters (opening and closing) for a
pseudo-variable “tag” in a template.

Security Class

The Security Class contains methods that help you create a secure
application, processing input data for security.

	XSS Filtering

	Cross-site request forgery (CSRF)

	Class Reference

XSS Filtering

CodeIgniter comes with a Cross Site Scripting prevention filter, which
looks for commonly used techniques to trigger JavaScript or other types
of code that attempt to hijack cookies or do other malicious things.
If anything disallowed is encountered it is rendered safe by converting
the data to character entities.

To filter data through the XSS filter use the xss_clean() method:

$data = $this->security->xss_clean($data);

An optional second parameter, is_image, allows this function to be used
to test images for potential XSS attacks, useful for file upload
security. When this second parameter is set to TRUE, instead of
returning an altered string, the function returns TRUE if the image is
safe, and FALSE if it contained potentially malicious information that a
browser may attempt to execute.

if ($this->security->xss_clean($file, TRUE) === FALSE)
{
 // file failed the XSS test
}

Important

If you want to filter HTML attribute values, use
html_escape() instead!

Cross-site request forgery (CSRF)

You can enable CSRF protection by altering your application/config/config.php
file in the following way:

$config['csrf_protection'] = TRUE;

If you use the form helper, then
form_open() will automatically insert a hidden csrf field in
your forms. If not, then you can use get_csrf_token_name()
and get_csrf_hash()

$csrf = array(
 'name' => $this->security->get_csrf_token_name(),
 'hash' => $this->security->get_csrf_hash()
);

...

<input type="hidden" name="<?=$csrf['name'];?>" value="<?=$csrf['hash'];?>" />

Tokens may be either regenerated on every submission (default) or
kept the same throughout the life of the CSRF cookie. The default
regeneration of tokens provides stricter security, but may result
in usability concerns as other tokens become invalid (back/forward
navigation, multiple tabs/windows, asynchronous actions, etc). You
may alter this behavior by editing the following config parameter

$config['csrf_regenerate'] = TRUE;

Select URIs can be whitelisted from csrf protection (for example API
endpoints expecting externally POSTed content). You can add these URIs
by editing the ‘csrf_exclude_uris’ config parameter:

$config['csrf_exclude_uris'] = array('api/person/add');

Regular expressions are also supported (case-insensitive):

$config['csrf_exclude_uris'] = array(
 'api/record/[0-9]+',
 'api/title/[a-z]+'
);

Class Reference

	
class CI_Security

	
	
xss_clean($str[, $is_image = FALSE])

	

	Parameters:	
	$str (mixed) – Input string or an array of strings

	Returns:	XSS-clean data

	Return type:	mixed

Tries to remove XSS exploits from the input data and returns the cleaned string.
If the optional second parameter is set to true, it will return boolean TRUE if
the image is safe to use and FALSE if malicious data was detected in it.

Important

This method is not suitable for filtering HTML attribute values!
Use html_escape() for that instead.

	
sanitize_filename($str[, $relative_path = FALSE])

	

	Parameters:	
	$str (string) – File name/path

	$relative_path (bool) – Whether to preserve any directories in the file path

	Returns:	Sanitized file name/path

	Return type:	string

Tries to sanitize filenames in order to prevent directory traversal attempts
and other security threats, which is particularly useful for files that were supplied via user input.

$filename = $this->security->sanitize_filename($this->input->post('filename'));

If it is acceptable for the user input to include relative paths, e.g.
file/in/some/approved/folder.txt, you can set the second optional parameter, $relative_path to TRUE.

$filename = $this->security->sanitize_filename($this->input->post('filename'), TRUE);

	
get_csrf_token_name()

	

	Returns:	CSRF token name

	Return type:	string

Returns the CSRF token name (the $config['csrf_token_name'] value).

	
get_csrf_hash()

	

	Returns:	CSRF hash

	Return type:	string

Returns the CSRF hash value. Useful in combination with get_csrf_token_name()
for manually building forms or sending valid AJAX POST requests.

	
entity_decode($str[, $charset = NULL])

	

	Parameters:	
	$str (string) – Input string

	$charset (string) – Character set of the input string

	Returns:	Entity-decoded string

	Return type:	string

This method acts a lot like PHP’s own native html_entity_decode() function in ENT_COMPAT mode, only
it tries to detect HTML entities that don’t end in a semicolon because some browsers allow that.

If the $charset parameter is left empty, then your configured $config['charset'] value will be used.

	
get_random_bytes($length)

	

	Parameters:	
	$length (int) – Output length

	Returns:	A binary stream of random bytes or FALSE on failure

	Return type:	string

A convenience method for getting proper random bytes via mcrypt_create_iv(),
/dev/urandom or openssl_random_pseudo_bytes() (in that order), if one
of them is available.

Used for generating CSRF and XSS tokens.

Note

The output is NOT guaranteed to be cryptographically secure,
just the best attempt at that.

Session Library

The Session class permits you maintain a user’s “state” and track their
activity while they browse your site.

CodeIgniter comes with a few session storage drivers:

	files (default; file-system based)

	database

	redis

	memcached

In addition, you may create your own, custom session drivers based on other
kinds of storage, while still taking advantage of the features of the
Session class.

	Using the Session Class
	Initializing a Session

	How do Sessions work?
	A note about concurrency

	What is Session Data?

	Retrieving Session Data

	Adding Session Data

	Removing Session Data

	Flashdata

	Tempdata

	Destroying a Session

	Accessing session metadata

	Session Preferences

	Session Drivers
	Files Driver
	Bonus Tip

	Database Driver

	Redis Driver

	Memcached Driver
	Bonus Tip

	Custom Drivers

	Class Reference

Using the Session Class

Initializing a Session

Sessions will typically run globally with each page load, so the Session
class should either be initialized in your controller constructors, or it can be auto-loaded by the system.
For the most part the session class will run unattended in the background,
so simply initializing the class will cause it to read, create, and update
sessions when necessary.

To initialize the Session class manually in your controller constructor,
use the $this->load->library() method:

$this->load->library('session');

Once loaded, the Sessions library object will be available using:

$this->session

Important

Because the Loader Class is instantiated
by CodeIgniter’s base controller, make sure to call
parent::__construct() before trying to load a library from
inside a controller constructor.

How do Sessions work?

When a page is loaded, the session class will check to see if valid
session cookie is sent by the user’s browser. If a sessions cookie does
not exist (or if it doesn’t match one stored on the server or has
expired) a new session will be created and saved.

If a valid session does exist, its information will be updated. With each
update, the session ID may be regenerated if configured to do so.

It’s important for you to understand that once initialized, the Session
class runs automatically. There is nothing you need to do to cause the
above behavior to happen. You can, as you’ll see below, work with session
data, but the process of reading, writing, and updating a session is
automatic.

Note

Under CLI, the Session library will automatically halt itself,
as this is a concept based entirely on the HTTP protocol.

A note about concurrency

Unless you’re developing a website with heavy AJAX usage, you can skip this
section. If you are, however, and if you’re experiencing performance
issues, then this note is exactly what you’re looking for.

Sessions in previous versions of CodeIgniter didn’t implement locking,
which meant that two HTTP requests using the same session could run exactly
at the same time. To use a more appropriate technical term - requests were
non-blocking.

However, non-blocking requests in the context of sessions also means
unsafe, because modifications to session data (or session ID regeneration)
in one request can interfere with the execution of a second, concurrent
request. This detail was at the root of many issues and the main reason why
CodeIgniter 3.0 has a completely re-written Session library.

Why are we telling you this? Because it is likely that after trying to
find the reason for your performance issues, you may conclude that locking
is the issue and therefore look into how to remove the locks …

DO NOT DO THAT! Removing locks would be wrong and it will cause you
more problems!

Locking is not the issue, it is a solution. Your issue is that you still
have the session open, while you’ve already processed it and therefore no
longer need it. So, what you need is to close the session for the
current request after you no longer need it.

Long story short - call session_write_close() once you no longer need
anything to do with session variables.

What is Session Data?

Session data is simply an array associated with a particular session ID
(cookie).

If you’ve used sessions in PHP before, you should be familiar with PHP’s
$_SESSION superglobal [http://php.net/manual/en/reserved.variables.session.php]
(if not, please read the content on that link).

CodeIgniter gives access to its session data through the same means, as it
uses the session handlers’ mechanism provided by PHP. Using session data is
as simple as manipulating (read, set and unset values) the $_SESSION
array.

In addition, CodeIgniter also provides 2 special types of session data
that are further explained below: flashdata and tempdata.

Note

In previous versions, regular session data in CodeIgniter was
referred to as ‘userdata’. Have this in mind if that term is used
elsewhere in the manual. Most of it is written to explain how
the custom ‘userdata’ methods work.

Retrieving Session Data

Any piece of information from the session array is available through the
$_SESSION superglobal:

$_SESSION['item']

Or through the magic getter:

$this->session->item

And for backwards compatibility, through the userdata() method:

$this->session->userdata('item');

Where item is the array key corresponding to the item you wish to fetch.
For example, to assign a previously stored ‘name’ item to the $name
variable, you will do this:

$name = $_SESSION['name'];

// or:

$name = $this->session->name

// or:

$name = $this->session->userdata('name');

Note

The userdata() method returns NULL if the item you are trying
to access does not exist.

If you want to retrieve all of the existing userdata, you can simply
omit the item key (magic getter only works for properties):

$_SESSION

// or:

$this->session->userdata();

Adding Session Data

Let’s say a particular user logs into your site. Once authenticated, you
could add their username and e-mail address to the session, making that
data globally available to you without having to run a database query when
you need it.

You can simply assign data to the $_SESSION array, as with any other
variable. Or as a property of $this->session.

Alternatively, the old method of assigning it as “userdata” is also
available. That however passing an array containing your new data to the
set_userdata() method:

$this->session->set_userdata($array);

Where $array is an associative array containing your new data. Here’s
an example:

$newdata = array(
 'username' => 'johndoe',
 'email' => 'johndoe@some-site.com',
 'logged_in' => TRUE
);

$this->session->set_userdata($newdata);

If you want to add userdata one value at a time, set_userdata() also
supports this syntax:

$this->session->set_userdata('some_name', 'some_value');

If you want to verify that a session value exists, simply check with
isset():

// returns FALSE if the 'some_name' item doesn't exist or is NULL,
// TRUE otherwise:
isset($_SESSION['some_name'])

Or you can call has_userdata():

$this->session->has_userdata('some_name');

Removing Session Data

Just as with any other variable, unsetting a value in $_SESSION can be
done through unset():

unset($_SESSION['some_name']);

// or multiple values:

unset(
 $_SESSION['some_name'],
 $_SESSION['another_name']
);

Also, just as set_userdata() can be used to add information to a
session, unset_userdata() can be used to remove it, by passing the
session key. For example, if you wanted to remove ‘some_name’ from your
session data array:

$this->session->unset_userdata('some_name');

This method also accepts an array of item keys to unset:

$array_items = array('username', 'email');

$this->session->unset_userdata($array_items);

Note

In previous versions, the unset_userdata() method used
to accept an associative array of key => 'dummy value'
pairs. This is no longer supported.

Flashdata

CodeIgniter supports “flashdata”, or session data that will only be
available for the next request, and is then automatically cleared.

This can be very useful, especially for one-time informational, error or
status messages (for example: “Record 2 deleted”).

It should be noted that flashdata variables are regular session vars,
only marked in a specific way under the ‘__ci_vars’ key (please don’t touch
that one, you’ve been warned).

To mark an existing item as “flashdata”:

$this->session->mark_as_flash('item');

If you want to mark multiple items as flashdata, simply pass the keys as an
array:

$this->session->mark_as_flash(array('item', 'item2'));

To add flashdata:

$_SESSION['item'] = 'value';
$this->session->mark_as_flash('item');

Or alternatively, using the set_flashdata() method:

$this->session->set_flashdata('item', 'value');

You can also pass an array to set_flashdata(), in the same manner as
set_userdata().

Reading flashdata variables is the same as reading regular session data
through $_SESSION:

$_SESSION['item']

Important

The userdata() method will NOT return flashdata items.

However, if you want to be sure that you’re reading “flashdata” (and not
any other kind), you can also use the flashdata() method:

$this->session->flashdata('item');

Or to get an array with all flashdata, simply omit the key parameter:

$this->session->flashdata();

Note

The flashdata() method returns NULL if the item cannot be
found.

If you find that you need to preserve a flashdata variable through an
additional request, you can do so using the keep_flashdata() method.
You can either pass a single item or an array of flashdata items to keep.

$this->session->keep_flashdata('item');
$this->session->keep_flashdata(array('item1', 'item2', 'item3'));

Tempdata

CodeIgniter also supports “tempdata”, or session data with a specific
expiration time. After the value expires, or the session expires or is
deleted, the value is automatically removed.

Similarly to flashdata, tempdata variables are regular session vars that
are marked in a specific way under the ‘__ci_vars’ key (again, don’t touch
that one).

To mark an existing item as “tempdata”, simply pass its key and expiry time
(in seconds!) to the mark_as_temp() method:

// 'item' will be erased after 300 seconds
$this->session->mark_as_temp('item', 300);

You can mark multiple items as tempdata in two ways, depending on whether
you want them all to have the same expiry time or not:

// Both 'item' and 'item2' will expire after 300 seconds
$this->session->mark_as_temp(array('item', 'item2'), 300);

// 'item' will be erased after 300 seconds, while 'item2'
// will do so after only 240 seconds
$this->session->mark_as_temp(array(
 'item' => 300,
 'item2' => 240
));

To add tempdata:

$_SESSION['item'] = 'value';
$this->session->mark_as_temp('item', 300); // Expire in 5 minutes

Or alternatively, using the set_tempdata() method:

$this->session->set_tempdata('item', 'value', 300);

You can also pass an array to set_tempdata():

$tempdata = array('newuser' => TRUE, 'message' => 'Thanks for joining!');

$this->session->set_tempdata($tempdata, NULL, $expire);

Note

If the expiration is omitted or set to 0, the default
time-to-live value of 300 seconds (or 5 minutes) will be used.

To read a tempdata variable, again you can just access it through the
$_SESSION superglobal array:

$_SESSION['item']

Important

The userdata() method will NOT return tempdata items.

Or if you want to be sure that you’re reading “tempdata” (and not any
other kind), you can also use the tempdata() method:

$this->session->tempdata('item');

And of course, if you want to retrieve all existing tempdata:

$this->session->tempdata();

Note

The tempdata() method returns NULL if the item cannot be
found.

If you need to remove a tempdata value before it expires, you can directly
unset it from the $_SESSION array:

unset($_SESSION['item']);

However, this won’t remove the marker that makes this specific item to be
tempdata (it will be invalidated on the next HTTP request), so if you
intend to reuse that same key in the same request, you’d want to use
unset_tempdata():

$this->session->unset_tempdata('item');

Destroying a Session

To clear the current session (for example, during a logout), you may
simply use either PHP’s session_destroy() [http://php.net/session_destroy]
function, or the sess_destroy() method. Both will work in exactly the
same way:

session_destroy();

// or

$this->session->sess_destroy();

Note

This must be the last session-related operation that you do
during the same request. All session data (including flashdata and
tempdata) will be destroyed permanently and functions will be
unusable during the same request after you destroy the session.

Accessing session metadata

In previous CodeIgniter versions, the session data array included 4 items
by default: ‘session_id’, ‘ip_address’, ‘user_agent’, ‘last_activity’.

This was due to the specifics of how sessions worked, but is now no longer
necessary with our new implementation. However, it may happen that your
application relied on these values, so here are alternative methods of
accessing them:

	session_id: session_id()

	ip_address: $_SERVER['REMOTE_ADDR']

	user_agent: $this->input->user_agent() (unused by sessions)

	last_activity: Depends on the storage, no straightforward way. Sorry!

Session Preferences

CodeIgniter will usually make everything work out of the box. However,
Sessions are a very sensitive component of any application, so some
careful configuration must be done. Please take your time to consider
all of the options and their effects.

You’ll find the following Session related preferences in your
application/config/config.php file:

	Preference
	Default
	Options
	Description

	sess_driver
	files
	files/database/redis/memcached/custom
	The session storage driver to use.

	sess_cookie_name
	ci_session
	[A-Za-z_-] characters only
	The name used for the session cookie.

	sess_expiration
	7200 (2 hours)
	Time in seconds (integer)
	The number of seconds you would like the session to last.
If you would like a non-expiring session (until browser is closed) set the value to zero: 0

	sess_save_path
	NULL
	None
	Specifies the storage location, depends on the driver being used.

	sess_match_ip
	FALSE
	TRUE/FALSE (boolean)
	Whether to validate the user’s IP address when reading the session cookie.
Note that some ISPs dynamically changes the IP, so if you want a non-expiring session you
will likely set this to FALSE.

	sess_time_to_update
	300
	Time in seconds (integer)
	This option controls how often the session class will regenerate itself and create a new
session ID. Setting it to 0 will disable session ID regeneration.

	sess_regenerate_destroy
	FALSE
	TRUE/FALSE (boolean)
	Whether to destroy session data associated with the old session ID when auto-regenerating
the session ID. When set to FALSE, the data will be later deleted by the garbage collector.

Note

As a last resort, the Session library will try to fetch PHP’s
session related INI settings, as well as legacy CI settings such as
‘sess_expire_on_close’ when any of the above is not configured.
However, you should never rely on this behavior as it can cause
unexpected results or be changed in the future. Please configure
everything properly.

In addition to the values above, the cookie and native drivers apply the
following configuration values shared by the Input and
Security classes:

	Preference
	Default
	Description

	cookie_domain
	‘’
	The domain for which the session is applicable

	cookie_path
	/
	The path to which the session is applicable

	cookie_secure
	FALSE
	Whether to create the session cookie only on encrypted (HTTPS) connections

Note

The ‘cookie_httponly’ setting doesn’t have an effect on sessions.
Instead the HttpOnly parameter is always enabled, for security
reasons. Additionally, the ‘cookie_prefix’ setting is completely
ignored.

Session Drivers

As already mentioned, the Session library comes with 4 drivers, or storage
engines, that you can use:

	files

	database

	redis

	memcached

By default, the Files Driver will be used when a session is initialized,
because it is the most safe choice and is expected to work everywhere
(virtually every environment has a file system).

However, any other driver may be selected via the $config['sess_driver']
line in your application/config/config.php file, if you chose to do so.
Have it in mind though, every driver has different caveats, so be sure to
get yourself familiar with them (below) before you make that choice.

In addition, you may also create and use Custom Drivers, if the ones
provided by default don’t satisfy your use case.

Note

In previous CodeIgniter versions, a different, “cookie driver”
was the only option and we have received negative feedback on not
providing that option. While we do listen to feedback from the
community, we want to warn you that it was dropped because it is
unsafe and we advise you NOT to try to replicate it via a
custom driver.

Files Driver

The ‘files’ driver uses your file system for storing session data.

It can safely be said that it works exactly like PHP’s own default session
implementation, but in case this is an important detail for you, have it
mind that it is in fact not the same code and it has some limitations
(and advantages).

To be more specific, it doesn’t support PHP’s directory level and mode
formats used in session.save_path [http://php.net/manual/en/session.configuration.php#ini.session.save-path],
and it has most of the options hard-coded for safety. Instead, only
absolute paths are supported for $config['sess_save_path'].

Another important thing that you should know, is to make sure that you
don’t use a publicly-readable or shared directory for storing your session
files. Make sure that only you have access to see the contents of your
chosen sess_save_path directory. Otherwise, anybody who can do that, can
also steal any of the current sessions (also known as “session fixation”
attack).

On UNIX-like operating systems, this is usually achieved by setting the
0700 mode permissions on that directory via the chmod command, which
allows only the directory’s owner to perform read and write operations on
it. But be careful because the system user running the script is usually
not your own, but something like ‘www-data’ instead, so only setting those
permissions will probable break your application.

Instead, you should do something like this, depending on your environment

mkdir /<path to your application directory>/sessions/
chmod 0700 /<path to your application directory>/sessions/
chown www-data /<path to your application directory>/sessions/

Bonus Tip

Some of you will probably opt to choose another session driver because
file storage is usually slower. This is only half true.

A very basic test will probably trick you into believing that an SQL
database is faster, but in 99% of the cases, this is only true while you
only have a few current sessions. As the sessions count and server loads
increase - which is the time when it matters - the file system will
consistently outperform almost all relational database setups.

In addition, if performance is your only concern, you may want to look
into using tmpfs [http://eddmann.com/posts/storing-php-sessions-file-caches-in-memory-using-tmpfs/],
(warning: external resource), which can make your sessions blazing fast.

Database Driver

The ‘database’ driver uses a relational database such as MySQL or
PostgreSQL to store sessions. This is a popular choice among many users,
because it allows the developer easy access to the session data within
an application - it is just another table in your database.

However, there are some conditions that must be met:

	Only your default database connection (or the one that you access
as $this->db from your controllers) can be used.

	You must have the Query Builder
enabled.

	You can NOT use a persistent connection.

	You can NOT use a connection with the cache_on setting enabled.

In order to use the ‘database’ session driver, you must also create this
table that we already mentioned and then set it as your
$config['sess_save_path'] value.
For example, if you would like to use ‘ci_sessions’ as your table name,
you would do this:

$config['sess_driver'] = 'database';
$config['sess_save_path'] = 'ci_sessions';

Note

If you’ve upgraded from a previous version of CodeIgniter and
you don’t have ‘sess_save_path’ configured, then the Session
library will look for the old ‘sess_table_name’ setting and use
it instead. Please don’t rely on this behavior as it will get
removed in the future.

And then of course, create the database table …

For MySQL:

CREATE TABLE IF NOT EXISTS `ci_sessions` (
 `id` varchar(128) NOT NULL,
 `ip_address` varchar(45) NOT NULL,
 `timestamp` int(10) unsigned DEFAULT 0 NOT NULL,
 `data` blob NOT NULL,
 KEY `ci_sessions_timestamp` (`timestamp`)
);

For PostgreSQL:

CREATE TABLE "ci_sessions" (
 "id" varchar(128) NOT NULL,
 "ip_address" varchar(45) NOT NULL,
 "timestamp" bigint DEFAULT 0 NOT NULL,
 "data" text DEFAULT '' NOT NULL
);

CREATE INDEX "ci_sessions_timestamp" ON "ci_sessions" ("timestamp");

You will also need to add a PRIMARY KEY depending on your ‘sess_match_ip’
setting. The examples below work both on MySQL and PostgreSQL:

// When sess_match_ip = TRUE
ALTER TABLE ci_sessions ADD PRIMARY KEY (id, ip_address);

// When sess_match_ip = FALSE
ALTER TABLE ci_sessions ADD PRIMARY KEY (id);

// To drop a previously created primary key (use when changing the setting)
ALTER TABLE ci_sessions DROP PRIMARY KEY;

Important

Only MySQL and PostgreSQL databases are officially
supported, due to lack of advisory locking mechanisms on other
platforms. Using sessions without locks can cause all sorts of
problems, especially with heavy usage of AJAX, and we will not
support such cases. Use session_write_close() after you’ve
done processing session data if you’re having performance
issues.

Redis Driver

Note

Since Redis doesn’t have a locking mechanism exposed, locks for
this driver are emulated by a separate value that is kept for up
to 300 seconds.

Redis is a storage engine typically used for caching and popular because
of its high performance, which is also probably your reason to use the
‘redis’ session driver.

The downside is that it is not as ubiquitous as relational databases and
requires the phpredis [https://github.com/phpredis/phpredis] PHP
extension to be installed on your system, and that one doesn’t come
bundled with PHP.
Chances are, you’re only be using the ‘redis’ driver only if you’re already
both familiar with Redis and using it for other purposes.

Just as with the ‘files’ and ‘database’ drivers, you must also configure
the storage location for your sessions via the
$config['sess_save_path'] setting.
The format here is a bit different and complicated at the same time. It is
best explained by the phpredis extension’s README file, so we’ll simply
link you to it:

https://github.com/phpredis/phpredis#php-session-handler

Warning

CodeIgniter’s Session library does NOT use the actual ‘redis’
session.save_handler. Take note only of the path format in
the link above.

For the most common case however, a simple host:port pair should be
sufficient:

$config['sess_driver'] = 'redis';
$config['sess_save_path'] = 'tcp://localhost:6379';

Memcached Driver

Note

Since Memcache doesn’t have a locking mechanism exposed, locks
for this driver are emulated by a separate value that is kept for
up to 300 seconds.

The ‘memcached’ driver is very similar to the ‘redis’ one in all of its
properties, except perhaps for availability, because PHP’s Memcached [http://php.net/memcached] extension is distributed via PECL and some
Linux distrubutions make it available as an easy to install package.

Other than that, and without any intentional bias towards Redis, there’s
not much different to be said about Memcached - it is also a popular
product that is usually used for caching and famed for its speed.

However, it is worth noting that the only guarantee given by Memcached
is that setting value X to expire after Y seconds will result in it being
deleted after Y seconds have passed (but not necessarily that it won’t
expire earlier than that time). This happens very rarely, but should be
considered as it may result in loss of sessions.

The $config['sess_save_path'] format is fairly straightforward here,
being just a host:port pair:

$config['sess_driver'] = 'memcached';
$config['sess_save_path'] = 'localhost:11211';

Bonus Tip

Multi-server configuration with an optional weight parameter as the
third colon-separated (:weight) value is also supported, but we have
to note that we haven’t tested if that is reliable.

If you want to experiment with this feature (on your own risk), simply
separate the multiple server paths with commas:

// localhost will be given higher priority (5) here,
// compared to 192.0.2.1 with a weight of 1.
$config['sess_save_path'] = 'localhost:11211:5,192.0.2.1:11211:1';

Custom Drivers

You may also create your own, custom session drivers. However, have it in
mind that this is typically not an easy task, as it takes a lot of
knowledge to do it properly.

You need to know not only how sessions work in general, but also how they
work specifically in PHP, how the underlying storage mechanism works, how
to handle concurrency, avoid deadlocks (but NOT through lack of locks) and
last but not least - how to handle the potential security issues, which
is far from trivial.

Long story short - if you don’t know how to do that already in raw PHP,
you shouldn’t be trying to do it within CodeIgniter either. You’ve been
warned.

If you only want to add some extra functionality to your sessions, just
extend the base Session class, which is a lot more easier. Read the
Creating Libraries article to
learn how to do that.

Now, to the point - there are three general rules that you must follow
when creating a session driver for CodeIgniter:

	Put your driver’s file under application/libraries/Session/drivers/
and follow the naming conventions used by the Session class.

For example, if you were to create a ‘dummy’ driver, you would have
a Session_dummy_driver class name, that is declared in
application/libraries/Session/drivers/Session_dummy_driver.php.

	Extend the CI_Session_driver class.

This is just a basic class with a few internal helper methods. It is
also extendable like any other library, if you really need to do that,
but we are not going to explain how … if you’re familiar with how
class extensions/overrides work in CI, then you already know how to do
it. If not, well, you shouldn’t be doing it in the first place.

	Implement the SessionHandlerInterface [http://php.net/sessionhandlerinterface] interface.

Note

You may notice that SessionHandlerInterface is provided
by PHP since version 5.4.0. CodeIgniter will automatically declare
the same interface if you’re running an older PHP version.

The link will explain why and how.

So, based on our ‘dummy’ driver example above, you’d end up with something
like this:

// application/libraries/Session/drivers/Session_dummy_driver.php:

class CI_Session_dummy_driver extends CI_Session_driver implements SessionHandlerInterface
{

 public function __construct(&$params)
 {
 // DO NOT forget this
 parent::__construct($params);

 // Configuration & other initializations
 }

 public function open($save_path, $name)
 {
 // Initialize storage mechanism (connection)
 }

 public function read($session_id)
 {
 // Read session data (if exists), acquire locks
 }

 public function write($session_id, $session_data)
 {
 // Create / update session data (it might not exist!)
 }

 public function close()
 {
 // Free locks, close connections / streams / etc.
 }

 public function destroy($session_id)
 {
 // Call close() method & destroy data for current session (order may differ)
 }

 public function gc($maxlifetime)
 {
 // Erase data for expired sessions
 }

}

If you’ve done everything properly, you can now set your sess_driver
configuration value to ‘dummy’ and use your own driver. Congratulations!

Class Reference

	
class CI_Session

	
	
userdata([$key = NULL])

	

	Parameters:	
	$key (mixed) – Session item key or NULL

	Returns:	Value of the specified item key, or an array of all userdata

	Return type:	mixed

Gets the value for a specific $_SESSION item, or an
array of all “userdata” items if not key was specified.

Note

This is a legacy method kept only for backwards
compatibility with older applications. You should
directly access $_SESSION instead.

	
all_userdata()

	

	Returns:	An array of all userdata

	Return type:	array

Returns an array containing all “userdata” items.

Note

This method is DEPRECATED. Use userdata()
with no parameters instead.

	
&get_userdata()

	

	Returns:	A reference to $_SESSION

	Return type:	array

Returns a reference to the $_SESSION array.

Note

This is a legacy method kept only for backwards
compatibility with older applications.

	
has_userdata($key)

	

	Parameters:	
	$key (string) – Session item key

	Returns:	TRUE if the specified key exists, FALSE if not

	Return type:	bool

Checks if an item exists in $_SESSION.

Note

This is a legacy method kept only for backwards
compatibility with older applications. It is just
an alias for isset($_SESSION[$key]) - please
use that instead.

	
set_userdata($data[, $value = NULL])

	

	Parameters:	
	$data (mixed) – An array of key/value pairs to set as session data, or the key for a single item

	$value (mixed) – The value to set for a specific session item, if $data is a key

	Return type:	void

Assigns data to the $_SESSION superglobal.

Note

This is a legacy method kept only for backwards
compatibility with older applications.

	
unset_userdata($key)

	

	Parameters:	
	$key (mixed) – Key for the session data item to unset, or an array of multiple keys

	Return type:	void

Unsets the specified key(s) from the $_SESSION
superglobal.

Note

This is a legacy method kept only for backwards
compatibility with older applications. It is just
an alias for unset($_SESSION[$key]) - please
use that instead.

	
mark_as_flash($key)

	

	Parameters:	
	$key (mixed) – Key to mark as flashdata, or an array of multiple keys

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Marks a $_SESSION item key (or multiple ones) as
“flashdata”.

	
get_flash_keys()

	

	Returns:	Array containing the keys of all “flashdata” items.

	Return type:	array

Gets a list of all $_SESSION that have been marked as
“flashdata”.

	
unmark_flash($key)

	

	Parameters:	
	$key (mixed) – Key to be un-marked as flashdata, or an array of multiple keys

	Return type:	void

Unmarks a $_SESSION item key (or multiple ones) as
“flashdata”.

	
flashdata([$key = NULL])

	

	Parameters:	
	$key (mixed) – Flashdata item key or NULL

	Returns:	Value of the specified item key, or an array of all flashdata

	Return type:	mixed

Gets the value for a specific $_SESSION item that has
been marked as “flashdata”, or an array of all “flashdata”
items if no key was specified.

Note

This is a legacy method kept only for backwards
compatibility with older applications. You should
directly access $_SESSION instead.

	
keep_flashdata($key)

	

	Parameters:	
	$key (mixed) – Flashdata key to keep, or an array of multiple keys

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Retains the specified session data key(s) as “flashdata”
through the next request.

Note

This is a legacy method kept only for backwards
compatibility with older applications. It is just
an alias for the mark_as_flash() method.

	
set_flashdata($data[, $value = NULL])

	

	Parameters:	
	$data (mixed) – An array of key/value pairs to set as flashdata, or the key for a single item

	$value (mixed) – The value to set for a specific session item, if $data is a key

	Return type:	void

Assigns data to the $_SESSION superglobal and marks it
as “flashdata”.

Note

This is a legacy method kept only for backwards
compatibility with older applications.

	
mark_as_temp($key[, $ttl = 300])

	

	Parameters:	
	$key (mixed) – Key to mark as tempdata, or an array of multiple keys

	$ttl (int) – Time-to-live value for the tempdata, in seconds

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Marks a $_SESSION item key (or multiple ones) as
“tempdata”.

	
get_temp_keys()

	

	Returns:	Array containing the keys of all “tempdata” items.

	Return type:	array

Gets a list of all $_SESSION that have been marked as
“tempdata”.

	
unmark_temp($key)

	

	Parameters:	
	$key (mixed) – Key to be un-marked as tempdata, or an array of multiple keys

	Return type:	void

Unmarks a $_SESSION item key (or multiple ones) as
“tempdata”.

	
tempdata([$key = NULL])

	

	Parameters:	
	$key (mixed) – Tempdata item key or NULL

	Returns:	Value of the specified item key, or an array of all tempdata

	Return type:	mixed

Gets the value for a specific $_SESSION item that has
been marked as “tempdata”, or an array of all “tempdata”
items if no key was specified.

Note

This is a legacy method kept only for backwards
compatibility with older applications. You should
directly access $_SESSION instead.

	
set_tempdata($data[, $value = NULL])

	

	Parameters:	
	$data (mixed) – An array of key/value pairs to set as tempdata, or the key for a single item

	$value (mixed) – The value to set for a specific session item, if $data is a key

	$ttl (int) – Time-to-live value for the tempdata item(s), in seconds

	Return type:	void

Assigns data to the $_SESSION superglobal and marks it
as “tempdata”.

Note

This is a legacy method kept only for backwards
compatibility with older applications.

	
sess_regenerate([$destroy = FALSE])

	

	Parameters:	
	$destroy (bool) – Whether to destroy session data

	Return type:	void

Regenerate session ID, optionally destroying the current
session’s data.

Note

This method is just an alias for PHP’s native
session_regenerate_id() [http://php.net/session_regenerate_id] function.

	
sess_destroy()

	

	Return type:	void

Destroys the current session.

Note

This must be the last session-related function
that you call. All session data will be lost after
you do that.

Note

This method is just an alias for PHP’s native
session_destroy() [http://php.net/session_destroy] function.

	
__get($key)

	

	Parameters:	
	$key (string) – Session item key

	Returns:	The requested session data item, or NULL if it doesn’t exist

	Return type:	mixed

A magic method that allows you to use
$this->session->item instead of $_SESSION['item'],
if that’s what you prefer.

It will also return the session ID by calling
session_id() if you try to access
$this->session->session_id.

	
__set($key, $value)

	

	Parameters:	
	$key (string) – Session item key

	$value (mixed) – Value to assign to the session item key

	Returns:	void

A magic method that allows you to assign items to
$_SESSION by accessing them as $this->session
properties:

$this->session->foo = 'bar';

// Results in:
// $_SESSION['foo'] = 'bar';

HTML Table Class

The Table Class provides functions that enable you to auto-generate HTML
tables from arrays or database result sets.

	Using the Table Class
	Initializing the Class

	Examples

	Changing the Look of Your Table

	Class Reference

Using the Table Class

Initializing the Class

Like most other classes in CodeIgniter, the Table class is initialized
in your controller using the $this->load->library() method:

$this->load->library('table');

Once loaded, the Table library object will be available using:

$this->table

Examples

Here is an example showing how you can create a table from a
multi-dimensional array. Note that the first array index will become the
table heading (or you can set your own headings using the set_heading()
method described in the function reference below).

$this->load->library('table');

$data = array(
 array('Name', 'Color', 'Size'),
 array('Fred', 'Blue', 'Small'),
 array('Mary', 'Red', 'Large'),
 array('John', 'Green', 'Medium')
);

echo $this->table->generate($data);

Here is an example of a table created from a database query result. The
table class will automatically generate the headings based on the table
names (or you can set your own headings using the set_heading()
method described in the class reference below).

$this->load->library('table');

$query = $this->db->query('SELECT * FROM my_table');

echo $this->table->generate($query);

Here is an example showing how you might create a table using discrete
parameters:

$this->load->library('table');

$this->table->set_heading('Name', 'Color', 'Size');

$this->table->add_row('Fred', 'Blue', 'Small');
$this->table->add_row('Mary', 'Red', 'Large');
$this->table->add_row('John', 'Green', 'Medium');

echo $this->table->generate();

Here is the same example, except instead of individual parameters,
arrays are used:

$this->load->library('table');

$this->table->set_heading(array('Name', 'Color', 'Size'));

$this->table->add_row(array('Fred', 'Blue', 'Small'));
$this->table->add_row(array('Mary', 'Red', 'Large'));
$this->table->add_row(array('John', 'Green', 'Medium'));

echo $this->table->generate();

Changing the Look of Your Table

The Table Class permits you to set a table template with which you can
specify the design of your layout. Here is the template prototype:

$template = array(
 'table_open' => '<table border="0" cellpadding="4" cellspacing="0">',

 'thead_open' => '<thead>',
 'thead_close' => '</thead>',

 'heading_row_start' => '<tr>',
 'heading_row_end' => '</tr>',
 'heading_cell_start' => '<th>',
 'heading_cell_end' => '</th>',

 'tbody_open' => '<tbody>',
 'tbody_close' => '</tbody>',

 'row_start' => '<tr>',
 'row_end' => '</tr>',
 'cell_start' => '<td>',
 'cell_end' => '</td>',

 'row_alt_start' => '<tr>',
 'row_alt_end' => '</tr>',
 'cell_alt_start' => '<td>',
 'cell_alt_end' => '</td>',

 'table_close' => '</table>'
);

$this->table->set_template($template);

Note

You’ll notice there are two sets of “row” blocks in the
template. These permit you to create alternating row colors or design
elements that alternate with each iteration of the row data.

You are NOT required to submit a complete template. If you only need to
change parts of the layout you can simply submit those elements. In this
example, only the table opening tag is being changed:

$template = array(
 'table_open' => '<table border="1" cellpadding="2" cellspacing="1" class="mytable">'
);

$this->table->set_template($template);

You can also set defaults for these in a config file.

Class Reference

	
class CI_Table

	
	
$function = NULL

	Allows you to specify a native PHP function or a valid function array object to be applied to all cell data.

$this->load->library('table');

$this->table->set_heading('Name', 'Color', 'Size');
$this->table->add_row('Fred', 'Blue', 'Small');

$this->table->function = 'htmlspecialchars';
echo $this->table->generate();

In the above example, all cell data would be ran through PHP’s htmlspecialchars() function, resulting in:

<td>Fred</td><td>Blue</td><td>Small</td>

	
generate([$table_data = NULL])

	

	Parameters:	
	$table_data (mixed) – Data to populate the table rows with

	Returns:	HTML table

	Return type:	string

Returns a string containing the generated table. Accepts an optional parameter which can be an array or a database result object.

	
set_caption($caption)

	

	Parameters:	
	$caption (string) – Table caption

	Returns:	CI_Table instance (method chaining)

	Return type:	CI_Table

Permits you to add a caption to the table.

$this->table->set_caption('Colors');

	
set_heading([$args = array()[, ...]])

	

	Parameters:	
	$args (mixed) – An array or multiple strings containing the table column titles

	Returns:	CI_Table instance (method chaining)

	Return type:	CI_Table

Permits you to set the table heading. You can submit an array or discrete params:

$this->table->set_heading('Name', 'Color', 'Size');

$this->table->set_heading(array('Name', 'Color', 'Size'));

	
add_row([$args = array()[, ...]])

	

	Parameters:	
	$args (mixed) – An array or multiple strings containing the row values

	Returns:	CI_Table instance (method chaining)

	Return type:	CI_Table

Permits you to add a row to your table. You can submit an array or discrete params:

$this->table->add_row('Blue', 'Red', 'Green');

$this->table->add_row(array('Blue', 'Red', 'Green'));

If you would like to set an individual cell’s tag attributes, you can use an associative array for that cell.
The associative key data defines the cell’s data. Any other key => val pairs are added as key=’val’ attributes to the tag:

$cell = array('data' => 'Blue', 'class' => 'highlight', 'colspan' => 2);
$this->table->add_row($cell, 'Red', 'Green');

// generates
// <td class='highlight' colspan='2'>Blue</td><td>Red</td><td>Green</td>

	
make_columns([$array = array()[, $col_limit = 0]])

	

	Parameters:	
	$array (array) – An array containing multiple rows’ data

	$col_limit (int) – Count of columns in the table

	Returns:	An array of HTML table columns

	Return type:	array

This method takes a one-dimensional array as input and creates a multi-dimensional array with a depth equal to the number of columns desired.
This allows a single array with many elements to be displayed in a table that has a fixed column count. Consider this example:

$list = array('one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'eleven', 'twelve');

$new_list = $this->table->make_columns($list, 3);

$this->table->generate($new_list);

// Generates a table with this prototype

<table border="0" cellpadding="4" cellspacing="0">
<tr>
<td>one</td><td>two</td><td>three</td>
</tr><tr>
<td>four</td><td>five</td><td>six</td>
</tr><tr>
<td>seven</td><td>eight</td><td>nine</td>
</tr><tr>
<td>ten</td><td>eleven</td><td>twelve</td></tr>
</table>

	
set_template($template)

	

	Parameters:	
	$template (array) – An associative array containing template values

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Permits you to set your template. You can submit a full or partial template.

$template = array(
 'table_open' => '<table border="1" cellpadding="2" cellspacing="1" class="mytable">'
);

$this->table->set_template($template);

	
set_empty($value)

	

	Parameters:	
	$value (mixed) – Value to put in empty cells

	Returns:	CI_Table instance (method chaining)

	Return type:	CI_Table

Lets you set a default value for use in any table cells that are empty.
You might, for example, set a non-breaking space:

$this->table->set_empty(" ");

	
clear()

	

	Returns:	CI_Table instance (method chaining)

	Return type:	CI_Table

Lets you clear the table heading and row data. If you need to show multiple tables with different data you should to call this method
after each table has been generated to clear the previous table information. Example:

$this->load->library('table');

$this->table->set_heading('Name', 'Color', 'Size');
$this->table->add_row('Fred', 'Blue', 'Small');
$this->table->add_row('Mary', 'Red', 'Large');
$this->table->add_row('John', 'Green', 'Medium');

echo $this->table->generate();

$this->table->clear();

$this->table->set_heading('Name', 'Day', 'Delivery');
$this->table->add_row('Fred', 'Wednesday', 'Express');
$this->table->add_row('Mary', 'Monday', 'Air');
$this->table->add_row('John', 'Saturday', 'Overnight');

echo $this->table->generate();

Trackback Class

The Trackback Class provides functions that enable you to send and
receive Trackback data.

If you are not familiar with Trackbacks you’ll find more information
here [http://en.wikipedia.org/wiki/Trackback].

	Using the Trackback Class
	Initializing the Class

	Sending Trackbacks

	Receiving Trackbacks

	Your Ping URL

	Creating a Trackback Table

	Processing a Trackback
	Notes:

	Class Reference

Using the Trackback Class

Initializing the Class

Like most other classes in CodeIgniter, the Trackback class is
initialized in your controller using the $this->load->library() method:

$this->load->library('trackback');

Once loaded, the Trackback library object will be available using:

$this->trackback

Sending Trackbacks

A Trackback can be sent from any of your controller functions using code
similar to this example:

$this->load->library('trackback');

$tb_data = array(
 'ping_url' => 'http://example.com/trackback/456',
 'url' => 'http://www.my-example.com/blog/entry/123',
 'title' => 'The Title of My Entry',
 'excerpt' => 'The entry content.',
 'blog_name' => 'My Blog Name',
 'charset' => 'utf-8'
);

if (! $this->trackback->send($tb_data))
{
 echo $this->trackback->display_errors();
}
else
{
 echo 'Trackback was sent!';
}

Description of array data:

	ping_url - The URL of the site you are sending the Trackback to.
You can send Trackbacks to multiple URLs by separating each URL with a comma.

	url - The URL to YOUR site where the weblog entry can be seen.

	title - The title of your weblog entry.

	excerpt - The content of your weblog entry.

	blog_name - The name of your weblog.

	charset - The character encoding your weblog is written in. If omitted, UTF-8 will be used.

Note

The Trackback class will automatically send only the first 500 characters of your
entry. It will also strip all HTML.

The Trackback sending method returns TRUE/FALSE (boolean) on success
or failure. If it fails, you can retrieve the error message using:

$this->trackback->display_errors();

Receiving Trackbacks

Before you can receive Trackbacks you must create a weblog. If you don’t
have a blog yet there’s no point in continuing.

Receiving Trackbacks is a little more complex than sending them, only
because you will need a database table in which to store them, and you
will need to validate the incoming trackback data. You are encouraged to
implement a thorough validation process to guard against spam and
duplicate data. You may also want to limit the number of Trackbacks you
allow from a particular IP within a given span of time to further
curtail spam. The process of receiving a Trackback is quite simple; the
validation is what takes most of the effort.

Your Ping URL

In order to accept Trackbacks you must display a Trackback URL next to
each one of your weblog entries. This will be the URL that people will
use to send you Trackbacks (we will refer to this as your “Ping URL”).

Your Ping URL must point to a controller function where your Trackback
receiving code is located, and the URL must contain the ID number for
each particular entry, so that when the Trackback is received you’ll be
able to associate it with a particular entry.

For example, if your controller class is called Trackback, and the
receiving function is called receive, your Ping URLs will look something
like this:

http://example.com/index.php/trackback/receive/entry_id

Where entry_id represents the individual ID number for each of your
entries.

Creating a Trackback Table

Before you can receive Trackbacks you must create a table in which to
store them. Here is a basic prototype for such a table:

CREATE TABLE trackbacks (
 tb_id int(10) unsigned NOT NULL auto_increment,
 entry_id int(10) unsigned NOT NULL default 0,
 url varchar(200) NOT NULL,
 title varchar(100) NOT NULL,
 excerpt text NOT NULL,
 blog_name varchar(100) NOT NULL,
 tb_date int(10) NOT NULL,
 ip_address varchar(45) NOT NULL,
 PRIMARY KEY `tb_id` (`tb_id`),
 KEY `entry_id` (`entry_id`)
);

The Trackback specification only requires four pieces of information to
be sent in a Trackback (url, title, excerpt, blog_name), but to make
the data more useful we’ve added a few more fields in the above table
schema (date, IP address, etc.).

Processing a Trackback

Here is an example showing how you will receive and process a Trackback.
The following code is intended for use within the controller function
where you expect to receive Trackbacks.:

$this->load->library('trackback');
$this->load->database();

if ($this->uri->segment(3) == FALSE)
{
 $this->trackback->send_error('Unable to determine the entry ID');
}

if (! $this->trackback->receive())
{
 $this->trackback->send_error('The Trackback did not contain valid data');
}

$data = array(
 'tb_id' => '',
 'entry_id' => $this->uri->segment(3),
 'url' => $this->trackback->data('url'),
 'title' => $this->trackback->data('title'),
 'excerpt' => $this->trackback->data('excerpt'),
 'blog_name' => $this->trackback->data('blog_name'),
 'tb_date' => time(),
 'ip_address' => $this->input->ip_address()
);

$sql = $this->db->insert_string('trackbacks', $data);
$this->db->query($sql);

$this->trackback->send_success();

Notes:

The entry ID number is expected in the third segment of your URL. This
is based on the URI example we gave earlier:

http://example.com/index.php/trackback/receive/entry_id

Notice the entry_id is in the third URI segment, which you can retrieve
using:

$this->uri->segment(3);

In our Trackback receiving code above, if the third segment is missing,
we will issue an error. Without a valid entry ID, there’s no reason to
continue.

The $this->trackback->receive() function is simply a validation function
that looks at the incoming data and makes sure it contains the four
pieces of data that are required (url, title, excerpt, blog_name). It
returns TRUE on success and FALSE on failure. If it fails you will issue
an error message.

The incoming Trackback data can be retrieved using this function:

$this->trackback->data('item')

Where item represents one of these four pieces of info: url, title,
excerpt, or blog_name

If the Trackback data is successfully received, you will issue a success
message using:

$this->trackback->send_success();

Note

The above code contains no data validation, which you are
encouraged to add.

Class Reference

	
class CI_Trackback

	
	
$data = array('url' => '', 'title' => '', 'excerpt' => '', 'blog_name' => '', 'charset' => '')

	Trackback data array.

	
$convert_ascii = TRUE

	Whether to convert high ASCII and MS Word characters to HTML entities.

	
send($tb_data)

	

	Parameters:	
	$tb_data (array) – Trackback data

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Send trackback.

	
receive()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

This method simply validates the incoming TB data, returning TRUE on success and FALSE on failure.
If the data is valid it is set to the $this->data array so that it can be inserted into a database.

	
send_error([$message = 'Incomplete information'])

	

	Parameters:	
	$message (string) – Error message

	Return type:	void

Responses to a trackback request with an error message.

Note

This method will terminate script execution.

	
send_success()

	

	Return type:	void

Responses to a trackback request with a success message.

Note

This method will terminate script execution.

	
data($item)

	

	Parameters:	
	$item (string) – Data key

	Returns:	Data value or empty string if not found

	Return type:	string

Returns a single item from the response data array.

	
process($url, $data)

	

	Parameters:	
	$url (string) – Target url

	$data (string) – Raw POST data

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Opens a socket connection and passes the data to the server, returning TRUE on success and FALSE on failure.

	
extract_urls($urls)

	

	Parameters:	
	$urls (string) – Comma-separated URL list

	Returns:	Array of URLs

	Return type:	array

This method lets multiple trackbacks to be sent. It takes a string of URLs (separated by comma or space) and puts each URL into an array.

	
validate_url(&$url)

	

	Parameters:	
	$url (string) – Trackback URL

	Return type:	void

Simply adds the http:// prefix it it’s not already present in the URL.

	
get_id($url)

	

	Parameters:	
	$url (string) – Trackback URL

	Returns:	URL ID or FALSE on failure

	Return type:	string

Find and return a trackback URL’s ID or FALSE on failure.

	
convert_xml($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Converted string

	Return type:	string

Converts reserved XML characters to entities.

	
limit_characters($str[, $n = 500[, $end_char = '…']])

	

	Parameters:	
	$str (string) – Input string

	$n (int) – Max characters number

	$end_char (string) – Character to put at end of string

	Returns:	Shortened string

	Return type:	string

Limits the string based on the character count. Will preserve complete words.

	
convert_ascii($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Converted string

	Return type:	string

Converts high ASCII text and MS Word special characterss to HTML entities.

	
set_error($msg)

	

	Parameters:	
	$msg (string) – Error message

	Return type:	void

Set an log an error message.

	
display_errors([$open = '<p>'[, $close = '</p>']])

	

	Parameters:	
	$open (string) – Open tag

	$close (string) – Close tag

	Returns:	HTML formatted error messages

	Return type:	string

Returns error messages formatted in HTML or an empty string if there are no errors.

Typography Class

The Typography Class provides methods that help you format text.

	Using the Typography Class
	Initializing the Class

	Class Reference

Using the Typography Class

Initializing the Class

Like most other classes in CodeIgniter, the Typography class is
initialized in your controller using the $this->load->library() method:

$this->load->library('typography');

Once loaded, the Typography library object will be available using:

$this->typography

Class Reference

	
class CI_Typography

	
	
$protect_braced_quotes = FALSE

	When using the Typography library in conjunction with the Template Parser library
it can often be desirable to protect single and double quotes within curly braces.
To enable this, set the protect_braced_quotes class property to TRUE.

Usage example:

$this->load->library('typography');
$this->typography->protect_braced_quotes = TRUE;

	
auto_typography($str[, $reduce_linebreaks = FALSE])

	

	Parameters:	
	$str (string) – Input string

	$reduce_linebreaks (bool) – Whether to reduce consecutive linebreaks

	Returns:	HTML typography-safe string

	Return type:	string

Formats text so that it is semantically and typographically correct HTML.
Takes a string as input and returns it with the following formatting:

	Surrounds paragraphs within <p></p> (looks for double line breaks to identify paragraphs).

	Single line breaks are converted to
, except those that appear within <pre> tags.

	Block level elements, like <div> tags, are not wrapped within paragraphs, but their contained text is if it contains paragraphs.

	Quotes are converted to correctly facing curly quote entities, except those that appear within tags.

	Apostrophes are converted to curly apostrophe entities.

	Double dashes (either like – this or like–this) are converted to em—dashes.

	Three consecutive periods either preceding or following a word are converted to ellipsis (…).

	Double spaces following sentences are converted to non-breaking spaces to mimic double spacing.

Usage example:

$string = $this->typography->auto_typography($string);

There is one optional parameter that determines whether the parser should reduce more than two consecutive line breaks down to two.
Pass boolean TRUE to enable reducing line breaks:

$string = $this->typography->auto_typography($string, TRUE);

Note

Typographic formatting can be processor intensive, particularly if you have a lot of content being formatted.
If you choose to use this method you may want to consider caching your pages.

	
format_characters($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Formatted string

	Return type:	string

This method is similar to auto_typography() above, except that it only does character conversion:

	Quotes are converted to correctly facing curly quote entities, except those that appear within tags.

	Apostrophes are converted to curly apostrophe entities.

	Double dashes (either like – this or like–this) are converted to em—dashes.

	Three consecutive periods either preceding or following a word are converted to ellipsis (…).

	Double spaces following sentences are converted to non-breaking spaces to mimic double spacing.

Usage example:

$string = $this->typography->format_characters($string);

	
nl2br_except_pre($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Formatted string

	Return type:	string

Converts newlines to
 tags unless they appear within <pre> tags.
This method is identical to the native PHP nl2br() function, except that it ignores <pre> tags.

Usage example:

$string = $this->typography->nl2br_except_pre($string);

Unit Testing Class

Unit testing is an approach to software development in which tests are
written for each function in your application. If you are not familiar
with the concept you might do a little googling on the subject.

CodeIgniter’s Unit Test class is quite simple, consisting of an
evaluation function and two result functions. It’s not intended to be a
full-blown test suite but rather a simple mechanism to evaluate your
code to determine if it is producing the correct data type and result.

	Using the Unit Testing Library
	Initializing the Class

	Running Tests

	Generating Reports

	Strict Mode

	Enabling/Disabling Unit Testing

	Unit Test Display
	Customizing displayed tests

	Creating a Template

	Class Reference

Using the Unit Testing Library

Initializing the Class

Like most other classes in CodeIgniter, the Unit Test class is
initialized in your controller using the $this->load->library function:

$this->load->library('unit_test');

Once loaded, the Unit Test object will be available using $this->unit

Running Tests

Running a test involves supplying a test and an expected result in the
following way:

$this->unit->run(‘test’, ‘expected result’, ‘test name’, ‘notes’);

Where test is the result of the code you wish to test, expected result
is the data type you expect, test name is an optional name you can give
your test, and notes are optional notes. Example:

$test = 1 + 1;

$expected_result = 2;

$test_name = 'Adds one plus one';

$this->unit->run($test, $expected_result, $test_name);

The expected result you supply can either be a literal match, or a data
type match. Here’s an example of a literal:

$this->unit->run('Foo', 'Foo');

Here is an example of a data type match:

$this->unit->run('Foo', 'is_string');

Notice the use of “is_string” in the second parameter? This tells the
function to evaluate whether your test is producing a string as the
result. Here is a list of allowed comparison types:

	is_object

	is_string

	is_bool

	is_true

	is_false

	is_int

	is_numeric

	is_float

	is_double

	is_array

	is_null

	is_resource

Generating Reports

You can either display results after each test, or your can run several
tests and generate a report at the end. To show a report directly simply
echo or return the run function:

echo $this->unit->run($test, $expected_result);

To run a full report of all tests, use this:

echo $this->unit->report();

The report will be formatted in an HTML table for viewing. If you prefer
the raw data you can retrieve an array using:

echo $this->unit->result();

Strict Mode

By default the unit test class evaluates literal matches loosely.
Consider this example:

$this->unit->run(1, TRUE);

The test is evaluating an integer, but the expected result is a boolean.
PHP, however, due to it’s loose data-typing will evaluate the above code
as TRUE using a normal equality test:

if (1 == TRUE) echo 'This evaluates as true';

If you prefer, you can put the unit test class in to strict mode, which
will compare the data type as well as the value:

if (1 === TRUE) echo 'This evaluates as FALSE';

To enable strict mode use this:

$this->unit->use_strict(TRUE);

Enabling/Disabling Unit Testing

If you would like to leave some testing in place in your scripts, but
not have it run unless you need it, you can disable unit testing using:

$this->unit->active(FALSE);

Unit Test Display

When your unit test results display, the following items show by
default:

	Test Name (test_name)

	Test Datatype (test_datatype)

	Expected Datatype (res_datatype)

	Result (result)

	File Name (file)

	Line Number (line)

	Any notes you entered for the test (notes)

You can customize which of these items get displayed by using
$this->unit->set_test_items(). For example, if you only wanted the test name
and the result displayed:

Customizing displayed tests

$this->unit->set_test_items(array('test_name', 'result'));

Creating a Template

If you would like your test results formatted differently then the
default you can set your own template. Here is an example of a simple
template. Note the required pseudo-variables:

$str = '
<table border="0" cellpadding="4" cellspacing="1">
{rows}
 <tr>
 <td>{item}</td>
 <td>{result}</td>
 </tr>
{/rows}
</table>';

$this->unit->set_template($str);

Note

Your template must be declared before running the unit
test process.

Class Reference

	
class CI_Unit_test

	
	
set_test_items($items)

	

	Parameters:	
	$items (array) – List of visible test items

	Returns:	void

Sets a list of items that should be visible in tests.
Valid options are:

	test_name

	test_datatype

	res_datatype

	result

	file

	line

	notes

	
run($test[, $expected = TRUE[, $test_name = 'undefined'[, $notes = '']]])

	

	Parameters:	
	$test (mixed) – Test data

	$expected (mixed) – Expected result

	$test_name (string) – Test name

	$notes (string) – Any notes to be attached to the test

	Returns:	Test report

	Return type:	string

Runs unit tests.

	
report([$result = array()])

	

	Parameters:	
	$result (array) – Array containing tests results

	Returns:	Test report

	Return type:	string

Generates a report about already complete tests.

	
use_strict([$state = TRUE])

	

	Parameters:	
	$state (bool) – Strict state flag

	Return type:	void

Enables/disables strict type comparison in tests.

	
active([$state = TRUE])

	

	Parameters:	
	$state (bool) – Whether to enable testing

	Return type:	void

Enables/disables unit testing.

	
result([$results = array()])

	

	Parameters:	
	$results (array) – Tests results list

	Returns:	Array of raw result data

	Return type:	array

Returns raw tests results data.

	
set_template($template)

	

	Parameters:	
	$template (string) – Test result template

	Return type:	void

Sets the template for displaying tests results.

URI Class

The URI Class provides methods that help you retrieve information from
your URI strings. If you use URI routing, you can also retrieve
information about the re-routed segments.

Note

This class is initialized automatically by the system so there
is no need to do it manually.

	Class Reference

Class Reference

	
class CI_URI

	
	
segment($n[, $no_result = NULL])

	

	Parameters:	
	$n (int) – Segment index number

	$no_result (mixed) – What to return if the searched segment is not found

	Returns:	Segment value or $no_result value if not found

	Return type:	mixed

Permits you to retrieve a specific segment. Where n is the segment
number you wish to retrieve. Segments are numbered from left to right.
For example, if your full URL is this:

http://example.com/index.php/news/local/metro/crime_is_up

The segment numbers would be this:

	news

	local

	metro

	crime_is_up

The optional second parameter defaults to NULL and allows you to set the return value
of this method when the requested URI segment is missing.
For example, this would tell the method to return the number zero in the event of failure:

$product_id = $this->uri->segment(3, 0);

It helps avoid having to write code like this:

if ($this->uri->segment(3) === FALSE)
{
 $product_id = 0;
}
else
{
 $product_id = $this->uri->segment(3);
}

	
rsegment($n[, $no_result = NULL])

	

	Parameters:	
	$n (int) – Segment index number

	$no_result (mixed) – What to return if the searched segment is not found

	Returns:	Routed segment value or $no_result value if not found

	Return type:	mixed

This method is identical to segment(), except that it lets you retrieve
a specific segment from your re-routed URI in the event you are
using CodeIgniter’s URI Routing feature.

	
slash_segment($n[, $where = 'trailing'])

	

	Parameters:	
	$n (int) – Segment index number

	$where (string) – Where to add the slash (‘trailing’ or ‘leading’)

	Returns:	Segment value, prepended/suffixed with a forward slash, or a slash if not found

	Return type:	string

This method is almost identical to segment(), except it
adds a trailing and/or leading slash based on the second parameter.
If the parameter is not used, a trailing slash added. Examples:

$this->uri->slash_segment(3);
$this->uri->slash_segment(3, 'leading');
$this->uri->slash_segment(3, 'both');

Returns:

	segment/

	/segment

	/segment/

	
slash_rsegment($n[, $where = 'trailing'])

	

	Parameters:	
	$n (int) – Segment index number

	$where (string) – Where to add the slash (‘trailing’ or ‘leading’)

	Returns:	Routed segment value, prepended/suffixed with a forward slash, or a slash if not found

	Return type:	string

This method is identical to slash_segment(), except that it lets you
add slashes a specific segment from your re-routed URI in the event you
are using CodeIgniter’s URI Routing
feature.

	
uri_to_assoc([$n = 3[, $default = array()]])

	

	Parameters:	
	$n (int) – Segment index number

	$default (array) – Default values

	Returns:	Associative URI segments array

	Return type:	array

This method lets you turn URI segments into an associative array of
key/value pairs. Consider this URI:

index.php/user/search/name/joe/location/UK/gender/male

Using this method you can turn the URI into an associative array with
this prototype:

[array]
(
 'name' => 'joe'
 'location' => 'UK'
 'gender' => 'male'
)

The first parameter lets you set an offset, which defaults to 3 since your
URI will normally contain a controller/method pair in the first and second segments.
Example:

$array = $this->uri->uri_to_assoc(3);
echo $array['name'];

The second parameter lets you set default key names, so that the array
returned will always contain expected indexes, even if missing from the URI.
Example:

$default = array('name', 'gender', 'location', 'type', 'sort');
$array = $this->uri->uri_to_assoc(3, $default);

If the URI does not contain a value in your default, an array index will
be set to that name, with a value of NULL.

Lastly, if a corresponding value is not found for a given key (if there
is an odd number of URI segments) the value will be set to NULL.

	
ruri_to_assoc([$n = 3[, $default = array()]])

	

	Parameters:	
	$n (int) – Segment index number

	$default (array) – Default values

	Returns:	Associative routed URI segments array

	Return type:	array

This method is identical to uri_to_assoc(), except that it creates
an associative array using the re-routed URI in the event you are using
CodeIgniter’s URI Routing feature.

	
assoc_to_uri($array)

	

	Parameters:	
	$array (array) – Input array of key/value pairs

	Returns:	URI string

	Return type:	string

Takes an associative array as input and generates a URI string from it.
The array keys will be included in the string. Example:

$array = array('product' => 'shoes', 'size' => 'large', 'color' => 'red');
$str = $this->uri->assoc_to_uri($array);

// Produces: product/shoes/size/large/color/red

	
uri_string()

	

	Returns:	URI string

	Return type:	string

Returns a string with the complete URI. For example, if this is your full URL:

http://example.com/index.php/news/local/345

The method would return this:

news/local/345

	
ruri_string()

	

	Returns:	Routed URI string

	Return type:	string

This method is identical to uri_string(), except that it returns
the re-routed URI in the event you are using CodeIgniter’s URI
Routing feature.

	
total_segments()

	

	Returns:	Count of URI segments

	Return type:	int

Returns the total number of segments.

	
total_rsegments()

	

	Returns:	Count of routed URI segments

	Return type:	int

This method is identical to total_segments(), except that it returns
the total number of segments in your re-routed URI in the event you are
using CodeIgniter’s URI Routing feature.

	
segment_array()

	

	Returns:	URI segments array

	Return type:	array

Returns an array containing the URI segments. For example:

$segs = $this->uri->segment_array();

foreach ($segs as $segment)
{
 echo $segment;
 echo '
';
}

	
rsegment_array()

	

	Returns:	Routed URI segments array

	Return type:	array

This method is identical to segment_array(), except that it returns
the array of segments in your re-routed URI in the event you are using
CodeIgniter’s URI Routing feature.

User Agent Class

The User Agent Class provides functions that help identify information
about the browser, mobile device, or robot visiting your site. In
addition you can get referrer information as well as language and
supported character-set information.

	Using the User Agent Class
	Initializing the Class

	User Agent Definitions

	Example

	Class Reference

Using the User Agent Class

Initializing the Class

Like most other classes in CodeIgniter, the User Agent class is
initialized in your controller using the $this->load->library function:

$this->load->library('user_agent');

Once loaded, the object will be available using: $this->agent

User Agent Definitions

The user agent name definitions are located in a config file located at:
application/config/user_agents.php. You may add items to the various
user agent arrays if needed.

Example

When the User Agent class is initialized it will attempt to determine
whether the user agent browsing your site is a web browser, a mobile
device, or a robot. It will also gather the platform information if it
is available.

$this->load->library('user_agent');

if ($this->agent->is_browser())
{
 $agent = $this->agent->browser().' '.$this->agent->version();
}
elseif ($this->agent->is_robot())
{
 $agent = $this->agent->robot();
}
elseif ($this->agent->is_mobile())
{
 $agent = $this->agent->mobile();
}
else
{
 $agent = 'Unidentified User Agent';
}

echo $agent;

echo $this->agent->platform(); // Platform info (Windows, Linux, Mac, etc.)

Class Reference

	
class CI_User_agent

	
	
is_browser([$key = NULL])

	

	Parameters:	
	$key (string) – Optional browser name

	Returns:	TRUE if the user agent is a (specified) browser, FALSE if not

	Return type:	bool

Returns TRUE/FALSE (boolean) if the user agent is a known web browser.

if ($this->agent->is_browser('Safari'))
{
 echo 'You are using Safari.';
}
elseif ($this->agent->is_browser())
{
 echo 'You are using a browser.';
}

Note

The string “Safari” in this example is an array key in the list of browser definitions.
You can find this list in application/config/user_agents.php if you want to add new
browsers or change the stings.

	
is_mobile([$key = NULL])

	

	Parameters:	
	$key (string) – Optional mobile device name

	Returns:	TRUE if the user agent is a (specified) mobile device, FALSE if not

	Return type:	bool

Returns TRUE/FALSE (boolean) if the user agent is a known mobile device.

if ($this->agent->is_mobile('iphone'))
{
 $this->load->view('iphone/home');
}
elseif ($this->agent->is_mobile())
{
 $this->load->view('mobile/home');
}
else
{
 $this->load->view('web/home');
}

	
is_robot([$key = NULL])

	

	Parameters:	
	$key (string) – Optional robot name

	Returns:	TRUE if the user agent is a (specified) robot, FALSE if not

	Return type:	bool

Returns TRUE/FALSE (boolean) if the user agent is a known robot.

Note

The user agent library only contains the most common robot definitions. It is not a complete list of bots.
There are hundreds of them so searching for each one would not be very efficient. If you find that some bots
that commonly visit your site are missing from the list you can add them to your
application/config/user_agents.php file.

	
is_referral()

	

	Returns:	TRUE if the user agent is a referral, FALSE if not

	Return type:	bool

Returns TRUE/FALSE (boolean) if the user agent was referred from another site.

	
browser()

	

	Returns:	Detected browser or an empty string

	Return type:	string

Returns a string containing the name of the web browser viewing your site.

	
version()

	

	Returns:	Detected browser version or an empty string

	Return type:	string

Returns a string containing the version number of the web browser viewing your site.

	
mobile()

	

	Returns:	Detected mobile device brand or an empty string

	Return type:	string

Returns a string containing the name of the mobile device viewing your site.

	
robot()

	

	Returns:	Detected robot name or an empty string

	Return type:	string

Returns a string containing the name of the robot viewing your site.

	
platform()

	

	Returns:	Detected operating system or an empty string

	Return type:	string

Returns a string containing the platform viewing your site (Linux, Windows, OS X, etc.).

	
referrer()

	

	Returns:	Detected referrer or an empty string

	Return type:	string

The referrer, if the user agent was referred from another site. Typically you’ll test for this as follows:

if ($this->agent->is_referral())
{
 echo $this->agent->referrer();
}

	
agent_string()

	

	Returns:	Full user agent string or an empty string

	Return type:	string

Returns a string containing the full user agent string. Typically it will be something like this:

Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.0.4) Gecko/20060613 Camino/1.0.2

	
accept_lang([$lang = 'en'])

	

	Parameters:	
	$lang (string) – Language key

	Returns:	TRUE if provided language is accepted, FALSE if not

	Return type:	bool

Lets you determine if the user agent accepts a particular language. Example:

if ($this->agent->accept_lang('en'))
{
 echo 'You accept English!';
}

Note

This method is not typically very reliable since some browsers do not provide language info,
and even among those that do, it is not always accurate.

	
languages()

	

	Returns:	An array list of accepted languages

	Return type:	array

Returns an array of languages supported by the user agent.

	
accept_charset([$charset = 'utf-8'])

	

	Parameters:	
	$charset (string) – Character set

	Returns:	TRUE if the character set is accepted, FALSE if not

	Return type:	bool

Lets you determine if the user agent accepts a particular character set. Example:

if ($this->agent->accept_charset('utf-8'))
{
 echo 'You browser supports UTF-8!';
}

Note

This method is not typically very reliable since some browsers do not provide character-set info,
and even among those that do, it is not always accurate.

	
charsets()

	

	Returns:	An array list of accepted character sets

	Return type:	array

Returns an array of character sets accepted by the user agent.

	
parse($string)

	

	Parameters:	
	$string (string) – A custom user-agent string

	Return type:	void

Parses a custom user-agent string, different from the one reported by the current visitor.

XML-RPC and XML-RPC Server Classes

CodeIgniter’s XML-RPC classes permit you to send requests to another
server, or set up your own XML-RPC server to receive requests.

	What is XML-RPC?

	Using the XML-RPC Class
	Initializing the Class

	Sending XML-RPC Requests
	Explanation

	Anatomy of a Request

	Creating an XML-RPC Server

	Processing Server Requests
	Notes:

	Formatting a Response

	Sending an Error Response

	Creating Your Own Client and Server
	The Client

	The Server

	Try it!

	Using Associative Arrays In a Request Parameter

	Data Types

	Class Reference

What is XML-RPC?

Quite simply it is a way for two computers to communicate over the
internet using XML. One computer, which we will call the client, sends
an XML-RPC request to another computer, which we will call the
server. Once the server receives and processes the request it will send
back a response to the client.

For example, using the MetaWeblog API, an XML-RPC Client (usually a
desktop publishing tool) will send a request to an XML-RPC Server
running on your site. This request might be a new weblog entry being
sent for publication, or it could be a request for an existing entry for
editing. When the XML-RPC Server receives this request it will examine
it to determine which class/method should be called to process the
request. Once processed, the server will then send back a response
message.

For detailed specifications, you can visit the XML-RPC [http://www.xmlrpc.com/] site.

Using the XML-RPC Class

Initializing the Class

Like most other classes in CodeIgniter, the XML-RPC and XML-RPCS classes
are initialized in your controller using the $this->load->library
function:

To load the XML-RPC class you will use:

$this->load->library('xmlrpc');

Once loaded, the xml-rpc library object will be available using:
$this->xmlrpc

To load the XML-RPC Server class you will use:

$this->load->library('xmlrpc');
$this->load->library('xmlrpcs');

Once loaded, the xml-rpcs library object will be available using:
$this->xmlrpcs

Note

When using the XML-RPC Server class you must load BOTH the
XML-RPC class and the XML-RPC Server class.

Sending XML-RPC Requests

To send a request to an XML-RPC server you must specify the following
information:

	The URL of the server

	The method on the server you wish to call

	The request data (explained below).

Here is a basic example that sends a simple Weblogs.com ping to the
Ping-o-Matic [http://pingomatic.com/]

$this->load->library('xmlrpc');

$this->xmlrpc->server('http://rpc.pingomatic.com/', 80);
$this->xmlrpc->method('weblogUpdates.ping');

$request = array('My Photoblog', 'http://www.my-site.com/photoblog/');
$this->xmlrpc->request($request);

if (! $this->xmlrpc->send_request())
{
 echo $this->xmlrpc->display_error();
}

Explanation

The above code initializes the XML-RPC class, sets the server URL and
method to be called (weblogUpdates.ping). The request (in this case, the
title and URL of your site) is placed into an array for transportation,
and compiled using the request() function. Lastly, the full request is
sent. If the send_request() method returns false we will display the
error message sent back from the XML-RPC Server.

Anatomy of a Request

An XML-RPC request is simply the data you are sending to the XML-RPC
server. Each piece of data in a request is referred to as a request
parameter. The above example has two parameters: The URL and title of
your site. When the XML-RPC server receives your request, it will look
for parameters it requires.

Request parameters must be placed into an array for transportation, and
each parameter can be one of seven data types (strings, numbers, dates,
etc.). If your parameters are something other than strings you will have
to include the data type in the request array.

Here is an example of a simple array with three parameters:

$request = array('John', 'Doe', 'www.some-site.com');
$this->xmlrpc->request($request);

If you use data types other than strings, or if you have several
different data types, you will place each parameter into its own array,
with the data type in the second position:

$request = array(
 array('John', 'string'),
 array('Doe', 'string'),
 array(FALSE, 'boolean'),
 array(12345, 'int')
);
$this->xmlrpc->request($request);

The Data Types section below has a full list of data
types.

Creating an XML-RPC Server

An XML-RPC Server acts as a traffic cop of sorts, waiting for incoming
requests and redirecting them to the appropriate functions for
processing.

To create your own XML-RPC server involves initializing the XML-RPC
Server class in your controller where you expect the incoming request to
appear, then setting up an array with mapping instructions so that
incoming requests can be sent to the appropriate class and method for
processing.

Here is an example to illustrate:

$this->load->library('xmlrpc');
$this->load->library('xmlrpcs');

$config['functions']['new_post'] = array('function' => 'My_blog.new_entry');
$config['functions']['update_post'] = array('function' => 'My_blog.update_entry');
$config['object'] = $this;

$this->xmlrpcs->initialize($config);
$this->xmlrpcs->serve();

The above example contains an array specifying two method requests that
the Server allows. The allowed methods are on the left side of the
array. When either of those are received, they will be mapped to the
class and method on the right.

The ‘object’ key is a special key that you pass an instantiated class
object with, which is necessary when the method you are mapping to is
not part of the CodeIgniter super object.

In other words, if an XML-RPC Client sends a request for the new_post
method, your server will load the My_blog class and call the new_entry
function. If the request is for the update_post method, your server
will load the My_blog class and call the update_entry() method.

The function names in the above example are arbitrary. You’ll decide
what they should be called on your server, or if you are using
standardized APIs, like the Blogger or MetaWeblog API, you’ll use their
function names.

There are two additional configuration keys you may make use of when
initializing the server class: debug can be set to TRUE in order to
enable debugging, and xss_clean may be set to FALSE to prevent sending
data through the Security library’s xss_clean() method.

Processing Server Requests

When the XML-RPC Server receives a request and loads the class/method
for processing, it will pass an object to that method containing the
data sent by the client.

Using the above example, if the new_post method is requested, the
server will expect a class to exist with this prototype:

class My_blog extends CI_Controller {

 public function new_post($request)
 {

 }
}

The $request variable is an object compiled by the Server, which
contains the data sent by the XML-RPC Client. Using this object you will
have access to the request parameters enabling you to process the
request. When you are done you will send a Response back to the Client.

Below is a real-world example, using the Blogger API. One of the methods
in the Blogger API is getUserInfo(). Using this method, an XML-RPC
Client can send the Server a username and password, in return the Server
sends back information about that particular user (nickname, user ID,
email address, etc.). Here is how the processing function might look:

class My_blog extends CI_Controller {

 public function getUserInfo($request)
 {
 $username = 'smitty';
 $password = 'secretsmittypass';

 $this->load->library('xmlrpc');

 $parameters = $request->output_parameters();

 if ($parameters[1] != $username && $parameters[2] != $password)
 {
 return $this->xmlrpc->send_error_message('100', 'Invalid Access');
 }

 $response = array(
 array(
 'nickname' => array('Smitty', 'string'),
 'userid' => array('99', 'string'),
 'url' => array('http://yoursite.com', 'string'),
 'email' => array('jsmith@yoursite.com', 'string'),
 'lastname' => array('Smith', 'string'),
 'firstname' => array('John', 'string')
),
 'struct'
);

 return $this->xmlrpc->send_response($response);
 }
}

Notes:

The output_parameters() method retrieves an indexed array
corresponding to the request parameters sent by the client. In the above
example, the output parameters will be the username and password.

If the username and password sent by the client were not valid, and
error message is returned using send_error_message().

If the operation was successful, the client will be sent back a response
array containing the user’s info.

Formatting a Response

Similar to Requests, Responses must be formatted as an array.
However, unlike requests, a response is an array that contains a
single item. This item can be an array with several additional arrays,
but there can be only one primary array index. In other words, the basic
prototype is this:

$response = array('Response data', 'array');

Responses, however, usually contain multiple pieces of information. In
order to accomplish this we must put the response into its own array so
that the primary array continues to contain a single piece of data.
Here’s an example showing how this might be accomplished:

$response = array(
 array(
 'first_name' => array('John', 'string'),
 'last_name' => array('Doe', 'string'),
 'member_id' => array(123435, 'int'),
 'todo_list' => array(array('clean house', 'call mom', 'water plants'), 'array'),
),
 'struct'
);

Notice that the above array is formatted as a struct. This is the most
common data type for responses.

As with Requests, a response can be one of the seven data types listed
in the Data Types section.

Sending an Error Response

If you need to send the client an error response you will use the
following:

return $this->xmlrpc->send_error_message('123', 'Requested data not available');

The first parameter is the error number while the second parameter is
the error message.

Creating Your Own Client and Server

To help you understand everything we’ve covered thus far, let’s create a
couple controllers that act as XML-RPC Client and Server. You’ll use the
Client to send a request to the Server and receive a response.

The Client

Using a text editor, create a controller called Xmlrpc_client.php. In
it, place this code and save it to your application/controllers/
folder:

<?php

class Xmlrpc_client extends CI_Controller {

 public function index()
 {
 $this->load->helper('url');
 $server_url = site_url('xmlrpc_server');

 $this->load->library('xmlrpc');

 $this->xmlrpc->server($server_url, 80);
 $this->xmlrpc->method('Greetings');

 $request = array('How is it going?');
 $this->xmlrpc->request($request);

 if (! $this->xmlrpc->send_request())
 {
 echo $this->xmlrpc->display_error();
 }
 else
 {
 echo '<pre>';
 print_r($this->xmlrpc->display_response());
 echo '</pre>';
 }
 }
}
?>

Note

In the above code we are using a “url helper”. You can find more
information in the Helpers Functions page.

The Server

Using a text editor, create a controller called Xmlrpc_server.php. In
it, place this code and save it to your application/controllers/
folder:

<?php

class Xmlrpc_server extends CI_Controller {

 public function index()
 {
 $this->load->library('xmlrpc');
 $this->load->library('xmlrpcs');

 $config['functions']['Greetings'] = array('function' => 'Xmlrpc_server.process');

 $this->xmlrpcs->initialize($config);
 $this->xmlrpcs->serve();
 }

 public function process($request)
 {
 $parameters = $request->output_parameters();

 $response = array(
 array(
 'you_said' => $parameters[0],
 'i_respond' => 'Not bad at all.'
),
 'struct'
);

 return $this->xmlrpc->send_response($response);
 }
}

Try it!

Now visit the your site using a URL similar to this:

example.com/index.php/xmlrpc_client/

You should now see the message you sent to the server, and its response
back to you.

The client you created sends a message (“How’s is going?”) to the
server, along with a request for the “Greetings” method. The Server
receives the request and maps it to the process() method, where a
response is sent back.

Using Associative Arrays In a Request Parameter

If you wish to use an associative array in your method parameters you
will need to use a struct datatype:

$request = array(
 array(
 // Param 0
 array('name' => 'John'),
 'struct'
),
 array(
 // Param 1
 array(
 'size' => 'large',
 'shape'=>'round'
),
 'struct'
)
);

$this->xmlrpc->request($request);

You can retrieve the associative array when processing the request in
the Server.

$parameters = $request->output_parameters();
$name = $parameters[0]['name'];
$size = $parameters[1]['size'];
$shape = $parameters[1]['shape'];

Data Types

According to the XML-RPC spec [http://www.xmlrpc.com/spec] there are
seven types of values that you can send via XML-RPC:

	int or i4

	boolean

	string

	double

	dateTime.iso8601

	base64

	struct (contains array of values)

	array (contains array of values)

Class Reference

	
class CI_Xmlrpc

	
	
initialize([$config = array()])

	

	Parameters:	
	$config (array) – Configuration data

	Return type:	void

Initializes the XML-RPC library. Accepts an associative array containing your settings.

	
server($url[, $port = 80[, $proxy = FALSE[, $proxy_port = 8080]]])

	

	Parameters:	
	$url (string) – XML-RPC server URL

	$port (int) – Server port

	$proxy (string) – Optional proxy

	$proxy_port (int) – Proxy listening port

	Return type:	void

Sets the URL and port number of the server to which a request is to be sent:

$this->xmlrpc->server('http://www.sometimes.com/pings.php', 80);

Basic HTTP authentication is also supported, simply add it to the server URL:

$this->xmlrpc->server('http://user:pass@localhost/', 80);

	
timeout($seconds = 5)

	

	Parameters:	
	$seconds (int) – Timeout in seconds

	Return type:	void

Set a time out period (in seconds) after which the request will be canceled:

$this->xmlrpc->timeout(6);

This timeout period will be used both for an initial connection to
the remote server, as well as for getting a response from it.
Make sure you set the timeout before calling send_request().

	
method($function)

	

	Parameters:	
	$function (string) – Method name

	Return type:	void

Sets the method that will be requested from the XML-RPC server:

$this->xmlrpc->method('method');

Where method is the name of the method.

	
request($incoming)

	

	Parameters:	
	$incoming (array) – Request data

	Return type:	void

Takes an array of data and builds request to be sent to XML-RPC server:

$request = array(array('My Photoblog', 'string'), 'http://www.yoursite.com/photoblog/');
$this->xmlrpc->request($request);

	
send_request()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

The request sending method. Returns boolean TRUE or FALSE based on success for failure, enabling it to be used conditionally.

	
display_error()

	

	Returns:	Error message string

	Return type:	string

Returns an error message as a string if your request failed for some reason.

echo $this->xmlrpc->display_error();

	
display_response()

	

	Returns:	Response

	Return type:	mixed

Returns the response from the remote server once request is received. The response will typically be an associative array.

$this->xmlrpc->display_response();

	
send_error_message($number, $message)

	

	Parameters:	
	$number (int) – Error number

	$message (string) – Error message

	Returns:	XML_RPC_Response instance

	Return type:	XML_RPC_Response

This method lets you send an error message from your server to the client.
First parameter is the error number while the second parameter is the error message.

return $this->xmlrpc->send_error_message(123, 'Requested data not available');

Zip Encoding Class

CodeIgniter’s Zip Encoding Class permits you to create Zip archives.
Archives can be downloaded to your desktop or saved to a directory.

	Using the Zip Encoding Class
	Initializing the Class

	Usage Example

	Class Reference

Using the Zip Encoding Class

Initializing the Class

Like most other classes in CodeIgniter, the Zip class is initialized in
your controller using the $this->load->library function:

$this->load->library('zip');

Once loaded, the Zip library object will be available using:

$this->zip

Usage Example

This example demonstrates how to compress a file, save it to a folder on
your server, and download it to your desktop.

$name = 'mydata1.txt';
$data = 'A Data String!';

$this->zip->add_data($name, $data);

// Write the zip file to a folder on your server. Name it "my_backup.zip"
$this->zip->archive('/path/to/directory/my_backup.zip');

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

Class Reference

	
class CI_Zip

	
	
$compression_level = 2

	The compression level to use.

It can range from 0 to 9, with 9 being the highest and 0 effectively disabling compression:

$this->zip->compression_level = 0;

	
add_data($filepath[, $data = NULL])

	

	Parameters:	
	$filepath (mixed) – A single file path or an array of file => data pairs

	$data (array) – File contents (ignored if $filepath is an array)

	Return type:	void

Adds data to the Zip archive. Can work both in single and multiple files mode.

When adding a single file, the first parameter must contain the name you would
like given to the file and the second must contain the file contents:

$name = 'mydata1.txt';
$data = 'A Data String!';
$this->zip->add_data($name, $data);

$name = 'mydata2.txt';
$data = 'Another Data String!';
$this->zip->add_data($name, $data);

When adding multiple files, the first parameter must contain file => contents pairs
and the second parameter is ignored:

$data = array(
 'mydata1.txt' => 'A Data String!',
 'mydata2.txt' => 'Another Data String!'
);

$this->zip->add_data($data);

If you would like your compressed data organized into sub-directories, simply include
the path as part of the filename(s):

$name = 'personal/my_bio.txt';
$data = 'I was born in an elevator...';

$this->zip->add_data($name, $data);

The above example will place my_bio.txt inside a folder called personal.

	
add_dir($directory)

	

	Parameters:	
	$directory (mixed) – Directory name string or an array of multiple directories

	Return type:	void

Permits you to add a directory. Usually this method is unnecessary since you can place
your data into directories when using $this->zip->add_data(), but if you would like
to create an empty directory you can do so:

$this->zip->add_dir('myfolder'); // Creates a directory called "myfolder"

	
read_file($path[, $archive_filepath = FALSE])

	

	Parameters:	
	$path (string) – Path to file

	$archive_filepath (mixed) – New file name/path (string) or (boolean) whether to maintain the original filepath

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Permits you to compress a file that already exists somewhere on your server.
Supply a file path and the zip class will read it and add it to the archive:

$path = '/path/to/photo.jpg';

$this->zip->read_file($path);

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

If you would like the Zip archive to maintain the directory structure of
the file in it, pass TRUE (boolean) in the second parameter. Example:

$path = '/path/to/photo.jpg';

$this->zip->read_file($path, TRUE);

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

In the above example, photo.jpg will be placed into the path/to/ directory.

You can also specify a new name (path included) for the added file on the fly:

$path = '/path/to/photo.jpg';
$new_path = '/new/path/some_photo.jpg';

$this->zip->read_file($path, $new_path);

// Download ZIP archive containing /new/path/some_photo.jpg
$this->zip->download('my_archive.zip');

	
read_dir($path[, $preserve_filepath = TRUE[, $root_path = NULL]])

	

	Parameters:	
	$path (string) – Path to directory

	$preserve_filepath (bool) – Whether to maintain the original path

	$root_path (string) – Part of the path to exclude from the archive directory

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Permits you to compress a directory (and its contents) that already exists somewhere on your server.
Supply a path to the directory and the zip class will recursively read and recreate it as a Zip archive.
All files contained within the supplied path will be encoded, as will any sub-directories contained within it. Example:

$path = '/path/to/your/directory/';

$this->zip->read_dir($path);

// Download the file to your desktop. Name it "my_backup.zip"
$this->zip->download('my_backup.zip');

By default the Zip archive will place all directories listed in the first parameter
inside the zip. If you want the tree preceding the target directory to be ignored,
you can pass FALSE (boolean) in the second parameter. Example:

$path = '/path/to/your/directory/';

$this->zip->read_dir($path, FALSE);

This will create a ZIP with a directory named “directory” inside, then all sub-directories
stored correctly inside that, but will not include the /path/to/your part of the path.

	
archive($filepath)

	

	Parameters:	
	$filepath (string) – Path to target zip archive

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Writes the Zip-encoded file to a directory on your server. Submit a valid server path
ending in the file name. Make sure the directory is writable (755 is usually OK).
Example:

$this->zip->archive('/path/to/folder/myarchive.zip'); // Creates a file named myarchive.zip

	
download($filename = 'backup.zip')

	

	Parameters:	
	$filename (string) – Archive file name

	Return type:	void

Causes the Zip file to be downloaded from your server.
You must pass the name you would like the zip file called. Example:

$this->zip->download('latest_stuff.zip'); // File will be named "latest_stuff.zip"

Note

Do not display any data in the controller in which you call
this method since it sends various server headers that cause the
download to happen and the file to be treated as binary.

	
get_zip()

	

	Returns:	Zip file content

	Return type:	string

Returns the Zip-compressed file data. Generally you will not need this method unless you
want to do something unique with the data. Example:

$name = 'my_bio.txt';
$data = 'I was born in an elevator...';

$this->zip->add_data($name, $data);

$zip_file = $this->zip->get_zip();

	
clear_data()

	

	Return type:	void

The Zip class caches your zip data so that it doesn’t need to recompile the Zip archive
for each method you use above. If, however, you need to create multiple Zip archives,
each with different data, you can clear the cache between calls. Example:

$name = 'my_bio.txt';
$data = 'I was born in an elevator...';

$this->zip->add_data($name, $data);
$zip_file = $this->zip->get_zip();

$this->zip->clear_data();

$name = 'photo.jpg';
$this->zip->read_file("/path/to/photo.jpg"); // Read the file's contents

$this->zip->download('myphotos.zip');

Database Reference

CodeIgniter comes with a full-featured and very fast abstracted database
class that supports both traditional structures and Query Builder
patterns. The database functions offer clear, simple syntax.

	Quick Start: Usage Examples

	Database Configuration

	Connecting to a Database

	Running Queries

	Generating Query Results

	Query Helper Functions

	Query Builder Class

	Transactions

	Getting MetaData

	Custom Function Calls

	Query Caching

	Database Manipulation with Database Forge

	Database Utilities Class

	Database Driver Reference

Database Quick Start: Example Code

The following page contains example code showing how the database class
is used. For complete details please read the individual pages
describing each function.

Initializing the Database Class

The following code loads and initializes the database class based on
your configuration settings:

$this->load->database();

Once loaded the class is ready to be used as described below.

Note: If all your pages require database access you can connect
automatically. See the connecting page for details.

Standard Query With Multiple Results (Object Version)

$query = $this->db->query('SELECT name, title, email FROM my_table');

foreach ($query->result() as $row)
{
 echo $row->title;
 echo $row->name;
 echo $row->email;
}

echo 'Total Results: ' . $query->num_rows();

The above result() function returns an array of objects. Example:
$row->title

Standard Query With Multiple Results (Array Version)

$query = $this->db->query('SELECT name, title, email FROM my_table');

foreach ($query->result_array() as $row)
{
 echo $row['title'];
 echo $row['name'];
 echo $row['email'];
}

The above result_array() function returns an array of standard array
indexes. Example: $row[‘title’]

Standard Query With Single Result

$query = $this->db->query('SELECT name FROM my_table LIMIT 1');
$row = $query->row();
echo $row->name;

The above row() function returns an object. Example: $row->name

Standard Query With Single Result (Array version)

$query = $this->db->query('SELECT name FROM my_table LIMIT 1');
$row = $query->row_array();
echo $row['name'];

The above row_array() function returns an array. Example:
$row[‘name’]

Standard Insert

$sql = "INSERT INTO mytable (title, name) VALUES (".$this->db->escape($title).", ".$this->db->escape($name).")";
$this->db->query($sql);
echo $this->db->affected_rows();

Query Builder Query

The Query Builder Pattern gives you a simplified
means of retrieving data:

$query = $this->db->get('table_name');

foreach ($query->result() as $row)
{
 echo $row->title;
}

The above get() function retrieves all the results from the supplied
table. The Query Builder class contains a full
compliment of functions for working with data.

Query Builder Insert

$data = array(
 'title' => $title,
 'name' => $name,
 'date' => $date
);

$this->db->insert('mytable', $data); // Produces: INSERT INTO mytable (title, name, date) VALUES ('{$title}', '{$name}', '{$date}')

Database Configuration

CodeIgniter has a config file that lets you store your database
connection values (username, password, database name, etc.). The config
file is located at application/config/database.php. You can also set
database connection values for specific
environments by placing database.php
in the respective environment config folder.

The config settings are stored in a multi-dimensional array with this
prototype:

$db['default'] = array(
 'dsn' => '',
 'hostname' => 'localhost',
 'username' => 'root',
 'password' => '',
 'database' => 'database_name',
 'dbdriver' => 'mysqli',
 'dbprefix' => '',
 'pconnect' => TRUE,
 'db_debug' => TRUE,
 'cache_on' => FALSE,
 'cachedir' => '',
 'char_set' => 'utf8',
 'dbcollat' => 'utf8_general_ci',
 'swap_pre' => '',
 'encrypt' => FALSE,
 'compress' => FALSE,
 'stricton' => FALSE,
 'failover' => array()
);

Some database drivers (such as PDO, PostgreSQL, Oracle, ODBC) might
require a full DSN string to be provided. If that is the case, you
should use the ‘dsn’ configuration setting, as if you’re using the
driver’s underlying native PHP extension, like this:

// PDO
$db['default']['dsn'] = 'pgsql:host=localhost;port=5432;dbname=database_name';

// Oracle
$db['default']['dsn'] = '//localhost/XE';

Note

If you do not specify a DSN string for a driver that requires it, CodeIgniter
will try to build it with the rest of the provided settings.

Note

If you provide a DSN string and it is missing some valid settings (e.g. the
database character set), which are present in the rest of the configuration
fields, CodeIgniter will append them.

You can also specify failovers for the situation when the main connection cannot connect for some reason.
These failovers can be specified by setting the failover for a connection like this:

$db['default']['failover'] = array(
 array(
 'hostname' => 'localhost1',
 'username' => '',
 'password' => '',
 'database' => '',
 'dbdriver' => 'mysqli',
 'dbprefix' => '',
 'pconnect' => TRUE,
 'db_debug' => TRUE,
 'cache_on' => FALSE,
 'cachedir' => '',
 'char_set' => 'utf8',
 'dbcollat' => 'utf8_general_ci',
 'swap_pre' => '',
 'encrypt' => FALSE,
 'compress' => FALSE,
 'stricton' => FALSE
),
 array(
 'hostname' => 'localhost2',
 'username' => '',
 'password' => '',
 'database' => '',
 'dbdriver' => 'mysqli',
 'dbprefix' => '',
 'pconnect' => TRUE,
 'db_debug' => TRUE,
 'cache_on' => FALSE,
 'cachedir' => '',
 'char_set' => 'utf8',
 'dbcollat' => 'utf8_general_ci',
 'swap_pre' => '',
 'encrypt' => FALSE,
 'compress' => FALSE,
 'stricton' => FALSE
)
);

You can specify as many failovers as you like.

The reason we use a multi-dimensional array rather than a more simple
one is to permit you to optionally store multiple sets of connection
values. If, for example, you run multiple environments (development,
production, test, etc.) under a single installation, you can set up a
connection group for each, then switch between groups as needed. For
example, to set up a “test” environment you would do this:

$db['test'] = array(
 'dsn' => '',
 'hostname' => 'localhost',
 'username' => 'root',
 'password' => '',
 'database' => 'database_name',
 'dbdriver' => 'mysqli',
 'dbprefix' => '',
 'pconnect' => TRUE,
 'db_debug' => TRUE,
 'cache_on' => FALSE,
 'cachedir' => '',
 'char_set' => 'utf8',
 'dbcollat' => 'utf8_general_ci',
 'swap_pre' => '',
 'compress' => FALSE,
 'encrypt' => FALSE,
 'stricton' => FALSE,
 'failover' => array()
);

Then, to globally tell the system to use that group you would set this
variable located in the config file:

$active_group = 'test';

Note

The name ‘test’ is arbitrary. It can be anything you want. By
default we’ve used the word “default” for the primary connection,
but it too can be renamed to something more relevant to your project.

Query Builder

The Query Builder Class is globally enabled or
disabled by setting the $query_builder variable in the database
configuration file to TRUE/FALSE (boolean). The default setting is TRUE.
If you are not using the
query builder class, setting it to FALSE will utilize fewer resources
when the database classes are initialized.

$query_builder = TRUE;

Note

that some CodeIgniter classes such as Sessions require Query
Builder to be enabled to access certain functionality.

Explanation of Values:

	Name Config
	Description

	dsn
	The DSN connect string (an all-in-one configuration sequence).

	hostname
	The hostname of your database server. Often this is ‘localhost’.

	username
	The username used to connect to the database.

	password
	The password used to connect to the database.

	database
	The name of the database you want to connect to.

	dbdriver
	The database type. ie: mysqli, postgre, odbc, etc. Must be specified in lower case.

	dbprefix
	An optional table prefix which will added to the table name when running
Query Builder queries. This permits multiple CodeIgniter
installations to share one database.

	pconnect
	TRUE/FALSE (boolean) - Whether to use a persistent connection.

	db_debug
	TRUE/FALSE (boolean) - Whether database errors should be displayed.

	cache_on
	TRUE/FALSE (boolean) - Whether database query caching is enabled,
see also Database Caching Class.

	cachedir
	The absolute server path to your database query cache directory.

	char_set
	The character set used in communicating with the database.

	dbcollat
	The character collation used in communicating with the database

Note

Only used in the ‘mysql’ and ‘mysqli’ drivers.

	swap_pre
	A default table prefix that should be swapped with dbprefix. This is useful for distributed
applications where you might run manually written queries, and need the prefix to still be
customizable by the end user.

	schema
	The database schema, defaults to ‘public’. Used by PostgreSQL and ODBC drivers.

	encrypt
	Whether or not to use an encrypted connection.

	‘mysql’ (deprecated), ‘sqlsrv’ and ‘pdo/sqlsrv’ drivers accept TRUE/FALSE

	‘mysqli’ and ‘pdo/mysql’ drivers accept an array with the following options:
	‘ssl_key’ - Path to the private key file

	‘ssl_cert’ - Path to the public key certificate file

	‘ssl_ca’ - Path to the certificate authority file

	‘ssl_capath’ - Path to a directory containing trusted CA certificates in PEM format

	‘ssl_cipher’ - List of allowed ciphers to be used for the encryption, separated by colons (‘:’)

	‘ssl_verify’ - TRUE/FALSE; Whether to verify the server certificate or not (‘mysqli’ only)

	compress
	Whether or not to use client compression (MySQL only).

	stricton
	TRUE/FALSE (boolean) - Whether to force “Strict Mode” connections, good for ensuring strict SQL
while developing an application.

	port
	The database port number. To use this value you have to add a line to the database config array.

$db['default']['port'] = 5432;

Note

Depending on what database platform you are using (MySQL, PostgreSQL,
etc.) not all values will be needed. For example, when using SQLite you
will not need to supply a username or password, and the database name
will be the path to your database file. The information above assumes
you are using MySQL.

Connecting to your Database

There are two ways to connect to a database:

Automatically Connecting

The “auto connect” feature will load and instantiate the database class
with every page load. To enable “auto connecting”, add the word database
to the library array, as indicated in the following file:

application/config/autoload.php

Manually Connecting

If only some of your pages require database connectivity you can
manually connect to your database by adding this line of code in any
function where it is needed, or in your class constructor to make the
database available globally in that class.

$this->load->database();

If the above function does not contain any information in the first
parameter it will connect to the group specified in your database config
file. For most people, this is the preferred method of use.

Available Parameters

	The database connection values, passed either as an array or a DSN
string.

	TRUE/FALSE (boolean). Whether to return the connection ID (see
Connecting to Multiple Databases below).

	TRUE/FALSE (boolean). Whether to enable the Query Builder class. Set
to TRUE by default.

Manually Connecting to a Database

The first parameter of this function can optionally be used to
specify a particular database group from your config file, or you can
even submit connection values for a database that is not specified in
your config file. Examples:

To choose a specific group from your config file you can do this:

$this->load->database('group_name');

Where group_name is the name of the connection group from your config
file.

To connect manually to a desired database you can pass an array of
values:

$config['hostname'] = 'localhost';
$config['username'] = 'myusername';
$config['password'] = 'mypassword';
$config['database'] = 'mydatabase';
$config['dbdriver'] = 'mysqli';
$config['dbprefix'] = '';
$config['pconnect'] = FALSE;
$config['db_debug'] = TRUE;
$config['cache_on'] = FALSE;
$config['cachedir'] = '';
$config['char_set'] = 'utf8';
$config['dbcollat'] = 'utf8_general_ci';
$this->load->database($config);

For information on each of these values please see the configuration
page.

Note

For the PDO driver, you should use the $config[‘dsn’] setting
instead of ‘hostname’ and ‘database’:

$config[‘dsn’] = ‘mysql:host=localhost;dbname=mydatabase’;

Or you can submit your database values as a Data Source Name. DSNs must
have this prototype:

$dsn = 'dbdriver://username:password@hostname/database';
$this->load->database($dsn);

To override default config values when connecting with a DSN string, add
the config variables as a query string.

$dsn = 'dbdriver://username:password@hostname/database?char_set=utf8&dbcollat=utf8_general_ci&cache_on=true&cachedir=/path/to/cache';
$this->load->database($dsn);

Connecting to Multiple Databases

If you need to connect to more than one database simultaneously you can
do so as follows:

$DB1 = $this->load->database('group_one', TRUE);
$DB2 = $this->load->database('group_two', TRUE);

Note: Change the words “group_one” and “group_two” to the specific
group names you are connecting to (or you can pass the connection values
as indicated above).

By setting the second parameter to TRUE (boolean) the function will
return the database object.

Note

When you connect this way, you will use your object name to issue
commands rather than the syntax used throughout this guide. In other
words, rather than issuing commands with:

$this->db->query();

$this->db->result();

etc…

You will instead use:

$DB1->query();

$DB1->result();

etc…

Note

You don’t need to create separate database configurations if you
only need to use a different database on the same connection. You
can switch to a different database when you need to, like this:

$this->db->db_select($database2_name);

Reconnecting / Keeping the Connection Alive

If the database server’s idle timeout is exceeded while you’re doing
some heavy PHP lifting (processing an image, for instance), you should
consider pinging the server by using the reconnect() method before
sending further queries, which can gracefully keep the connection alive
or re-establish it.

$this->db->reconnect();

Manually closing the Connection

While CodeIgniter intelligently takes care of closing your database
connections, you can explicitly close the connection.

$this->db->close();

Queries

Query Basics

Regular Queries

To submit a query, use the query function:

$this->db->query('YOUR QUERY HERE');

The query() function returns a database result object when “read”
type queries are run, which you can use to show your
results. When “write” type queries are run it simply
returns TRUE or FALSE depending on success or failure. When retrieving
data you will typically assign the query to your own variable, like
this:

$query = $this->db->query('YOUR QUERY HERE');

Simplified Queries

The simple_query method is a simplified version of the
$this->db->query() method. It DOES
NOT return a database result set, nor does it set the query timer, or
compile bind data, or store your query for debugging. It simply lets you
submit a query. Most users will rarely use this function.

It returns whatever the database drivers’ “execute” function returns.
That typically is TRUE/FALSE on success or failure for write type queries
such as INSERT, DELETE or UPDATE statements (which is what it really
should be used for) and a resource/object on success for queries with
fetchable results.

if ($this->db->simple_query('YOUR QUERY'))
{
 echo "Success!";
}
else
{
 echo "Query failed!";
}

Note

PostgreSQL’s pg_exec() function (for example) always
returns a resource on success, even for write type queries.
So take that in mind if you’re looking for a boolean value.

Working with Database prefixes manually

If you have configured a database prefix and would like to prepend it to
a table name for use in a native SQL query for example, then you can use
the following:

$this->db->dbprefix('tablename'); // outputs prefix_tablename

If for any reason you would like to change the prefix programatically
without needing to create a new connection, you can use this method:

$this->db->set_dbprefix('newprefix_');
$this->db->dbprefix('tablename'); // outputs newprefix_tablename

Protecting identifiers

In many databases it is advisable to protect table and field names - for
example with backticks in MySQL. Query Builder queries are
automatically protected, however if you need to manually protect an
identifier you can use:

$this->db->protect_identifiers('table_name');

Important

Although the Query Builder will try its best to properly
quote any field and table names that you feed it, note that it
is NOT designed to work with arbitrary user input. DO NOT feed it
with unsanitized user data.

This function will also add a table prefix to your table, assuming you
have a prefix specified in your database config file. To enable the
prefixing set TRUE (boolean) via the second parameter:

$this->db->protect_identifiers('table_name', TRUE);

Escaping Queries

It’s a very good security practice to escape your data before submitting
it into your database. CodeIgniter has three methods that help you do
this:

	$this->db->escape() This function determines the data type so
that it can escape only string data. It also automatically adds
single quotes around the data so you don’t have to:

$sql = "INSERT INTO table (title) VALUES(".$this->db->escape($title).")";

	$this->db->escape_str() This function escapes the data passed to
it, regardless of type. Most of the time you’ll use the above
function rather than this one. Use the function like this:

$sql = "INSERT INTO table (title) VALUES('".$this->db->escape_str($title)."')";

	$this->db->escape_like_str() This method should be used when
strings are to be used in LIKE conditions so that LIKE wildcards
(‘%’, ‘_’) in the string are also properly escaped.

$search = '20% raise';
$sql = "SELECT id FROM table WHERE column LIKE '%" .
 $this->db->escape_like_str($search)."%' ESCAPE '!'";

Important

The escape_like_str() method uses ‘!’ (exclamation mark)
to escape special characters for LIKE conditions. Because this
method escapes partial strings that you would wrap in quotes
yourself, it cannot automatically add the ESCAPE '!'
condition for you, and so you’ll have to manually do that.

Query Bindings

Bindings enable you to simplify your query syntax by letting the system
put the queries together for you. Consider the following example:

$sql = "SELECT * FROM some_table WHERE id = ? AND status = ? AND author = ?";
$this->db->query($sql, array(3, 'live', 'Rick'));

The question marks in the query are automatically replaced with the
values in the array in the second parameter of the query function.

Binding also work with arrays, which will be transformed to IN sets:

$sql = "SELECT * FROM some_table WHERE id IN ? AND status = ? AND author = ?";
$this->db->query($sql, array(array(3, 6), 'live', 'Rick'));

The resulting query will be:

SELECT * FROM some_table WHERE id IN (3,6) AND status = 'live' AND author = 'Rick'

The secondary benefit of using binds is that the values are
automatically escaped, producing safer queries. You don’t have to
remember to manually escape data; the engine does it automatically for
you.

Handling Errors

$this->db->error();

If you need to get the last error that has occurred, the error() method
will return an array containing its code and message. Here’s a quick
example:

if (! $this->db->simple_query('SELECT `example_field` FROM `example_table`'))
{
 $error = $this->db->error(); // Has keys 'code' and 'message'
}

Generating Query Results

There are several ways to generate query results:

	Result Arrays

	Result Rows

	Custom Result Objects

	Result Helper Methods

	Class Reference

Result Arrays

result()

This method returns the query result as an array of objects, or
an empty array on failure. Typically you’ll use this in a foreach
loop, like this:

$query = $this->db->query("YOUR QUERY");

foreach ($query->result() as $row)
{
 echo $row->title;
 echo $row->name;
 echo $row->body;
}

The above method is an alias of result_object().

You can also pass a string to result() which represents a class to
instantiate for each result object (note: this class must be loaded)

$query = $this->db->query("SELECT * FROM users;");

foreach ($query->result('User') as $user)
{
 echo $user->name; // access attributes
 echo $user->reverse_name(); // or methods defined on the 'User' class
}

result_array()

This method returns the query result as a pure array, or an empty
array when no result is produced. Typically you’ll use this in a foreach
loop, like this:

$query = $this->db->query("YOUR QUERY");

foreach ($query->result_array() as $row)
{
 echo $row['title'];
 echo $row['name'];
 echo $row['body'];
}

Result Rows

row()

This method returns a single result row. If your query has more than
one row, it returns only the first row. The result is returned as an
object. Here’s a usage example:

$query = $this->db->query("YOUR QUERY");

$row = $query->row();

if (isset($row))
{
 echo $row->title;
 echo $row->name;
 echo $row->body;
}

If you want a specific row returned you can submit the row number as a
digit in the first parameter:

$row = $query->row(5);

You can also add a second String parameter, which is the name of a class
to instantiate the row with:

$query = $this->db->query("SELECT * FROM users LIMIT 1;");
$row = $query->row(0, 'User');

echo $row->name; // access attributes
echo $row->reverse_name(); // or methods defined on the 'User' class

row_array()

Identical to the above row() method, except it returns an array.
Example:

$query = $this->db->query("YOUR QUERY");

$row = $query->row_array();

if (isset($row))
{
 echo $row['title'];
 echo $row['name'];
 echo $row['body'];
}

If you want a specific row returned you can submit the row number as a
digit in the first parameter:

$row = $query->row_array(5);

In addition, you can walk forward/backwards/first/last through your
results using these variations:

$row = $query->first_row()

$row = $query->last_row()

$row = $query->next_row()

$row = $query->previous_row()

By default they return an object unless you put the word “array” in the
parameter:

$row = $query->first_row(‘array’)

$row = $query->last_row(‘array’)

$row = $query->next_row(‘array’)

$row = $query->previous_row(‘array’)

Note

All the methods above will load the whole result into memory
(prefetching). Use unbuffered_row() for processing large
result sets.

unbuffered_row()

This method returns a single result row without prefetching the whole
result in memory as row() does. If your query has more than one row,
it returns the current row and moves the internal data pointer ahead.

$query = $this->db->query("YOUR QUERY");

while ($row = $query->unbuffered_row())
{
 echo $row->title;
 echo $row->name;
 echo $row->body;
}

You can optionally pass ‘object’ (default) or ‘array’ in order to specify
the returned value’s type:

$query->unbuffered_row(); // object
$query->unbuffered_row('object'); // object
$query->unbuffered_row('array'); // associative array

Custom Result Objects

You can have the results returned as an instance of a custom class instead
of a stdClass or array, as the result() and result_array()
methods allow. This requires that the class is already loaded into memory.
The object will have all values returned from the database set as properties.
If these have been declared and are non-public then you should provide a
__set() method to allow them to be set.

Example:

class User {

 public $id;
 public $email;
 public $username;

 protected $last_login;

 public function last_login($format)
 {
 return $this->last_login->format($format);
 }

 public function __set($name, $value)
 {
 if ($name === 'last_login')
 {
 $this->last_login = DateTime::createFromFormat('U', $value);
 }
 }

 public function __get($name)
 {
 if (isset($this->$name))
 {
 return $this->$name;
 }
 }
}

In addition to the two methods listed below, the following methods also can
take a class name to return the results as: first_row(), last_row(),
next_row(), and previous_row().

custom_result_object()

Returns the entire result set as an array of instances of the class requested.
The only parameter is the name of the class to instantiate.

Example:

$query = $this->db->query("YOUR QUERY");

$rows = $query->custom_result_object('User');

foreach ($rows as $row)
{
 echo $row->id;
 echo $row->email;
 echo $row->last_login('Y-m-d');
}

custom_row_object()

Returns a single row from your query results. The first parameter is the row
number of the results. The second parameter is the class name to instantiate.

Example:

$query = $this->db->query("YOUR QUERY");

$row = $query->custom_row_object(0, 'User');

if (isset($row))
{
 echo $row->email; // access attributes
 echo $row->last_login('Y-m-d'); // access class methods
}

You can also use the row() method in exactly the same way.

Example:

$row = $query->custom_row_object(0, 'User');

Result Helper Methods

num_rows()

The number of rows returned by the query. Note: In this example, $query
is the variable that the query result object is assigned to:

$query = $this->db->query('SELECT * FROM my_table');

echo $query->num_rows();

Note

Not all database drivers have a native way of getting the total
number of rows for a result set. When this is the case, all of
the data is prefetched and count() is manually called on the
resulting array in order to achieve the same result.

num_fields()

The number of FIELDS (columns) returned by the query. Make sure to call
the method using your query result object:

$query = $this->db->query('SELECT * FROM my_table');

echo $query->num_fields();

free_result()

It frees the memory associated with the result and deletes the result
resource ID. Normally PHP frees its memory automatically at the end of
script execution. However, if you are running a lot of queries in a
particular script you might want to free the result after each query
result has been generated in order to cut down on memory consumption.

Example:

$query = $this->db->query('SELECT title FROM my_table');

foreach ($query->result() as $row)
{
 echo $row->title;
}

$query->free_result(); // The $query result object will no longer be available

$query2 = $this->db->query('SELECT name FROM some_table');

$row = $query2->row();
echo $row->name;
$query2->free_result(); // The $query2 result object will no longer be available

data_seek()

This method sets the internal pointer for the next result row to be
fetched. It is only useful in combination with unbuffered_row().

It accepts a positive integer value, which defaults to 0 and returns
TRUE on success or FALSE on failure.

$query = $this->db->query('SELECT `field_name` FROM `table_name`');
$query->data_seek(5); // Skip the first 5 rows
$row = $query->unbuffered_row();

Note

Not all database drivers support this feature and will return FALSE.
Most notably - you won’t be able to use it with PDO.

Class Reference

	
class CI_DB_result

	
	
result([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of requested results - array, object, or class name

	Returns:	Array containing the fetched rows

	Return type:	array

A wrapper for the result_array(), result_object()
and custom_result_object() methods.

Usage: see Result Arrays.

	
result_array()

	

	Returns:	Array containing the fetched rows

	Return type:	array

Returns the query results as an array of rows, where each
row is itself an associative array.

Usage: see Result Arrays.

	
result_object()

	

	Returns:	Array containing the fetched rows

	Return type:	array

Returns the query results as an array of rows, where each
row is an object of type stdClass.

Usage: see Result Arrays.

	
custom_result_object($class_name)

	

	Parameters:	
	$class_name (string) – Class name for the resulting rows

	Returns:	Array containing the fetched rows

	Return type:	array

Returns the query results as an array of rows, where each
row is an instance of the specified class.

	
row([$n = 0[, $type = 'object']])

	

	Parameters:	
	$n (int) – Index of the query results row to be returned

	$type (string) – Type of the requested result - array, object, or class name

	Returns:	The requested row or NULL if it doesn’t exist

	Return type:	mixed

A wrapper for the row_array(), row_object() and
``custom_row_object() methods.

Usage: see Result Rows.

	
unbuffered_row([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of the requested result - array, object, or class name

	Returns:	Next row from the result set or NULL if it doesn’t exist

	Return type:	mixed

Fetches the next result row and returns it in the
requested form.

Usage: see Result Rows.

	
row_array([$n = 0])

	

	Parameters:	
	$n (int) – Index of the query results row to be returned

	Returns:	The requested row or NULL if it doesn’t exist

	Return type:	array

Returns the requested result row as an associative array.

Usage: see Result Rows.

	
row_object([$n = 0])

	

	Parameters:	
	$n (int) – Index of the query results row to be returned

	Returns:	The requested row or NULL if it doesn’t exist

	Return type:	stdClass

Returns the requested result row as an object of type
stdClass.

Usage: see Result Rows.

	
custom_row_object($n, $type)

	

	Parameters:	
	$n (int) – Index of the results row to return

	$class_name (string) – Class name for the resulting row

	Returns:	The requested row or NULL if it doesn’t exist

	Return type:	$type

Returns the requested result row as an instance of the
requested class.

	
data_seek([$n = 0])

	

	Parameters:	
	$n (int) – Index of the results row to be returned next

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Moves the internal results row pointer to the desired offset.

Usage: see Result Helper Methods.

	
set_row($key[, $value = NULL])

	

	Parameters:	
	$key (mixed) – Column name or array of key/value pairs

	$value (mixed) – Value to assign to the column, $key is a single field name

	Return type:	void

Assigns a value to a particular column.

	
next_row([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of the requested result - array, object, or class name

	Returns:	Next row of result set, or NULL if it doesn’t exist

	Return type:	mixed

Returns the next row from the result set.

	
previous_row([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of the requested result - array, object, or class name

	Returns:	Previous row of result set, or NULL if it doesn’t exist

	Return type:	mixed

Returns the previous row from the result set.

	
first_row([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of the requested result - array, object, or class name

	Returns:	First row of result set, or NULL if it doesn’t exist

	Return type:	mixed

Returns the first row from the result set.

	
last_row([$type = 'object'])

	

	Parameters:	
	$type (string) – Type of the requested result - array, object, or class name

	Returns:	Last row of result set, or NULL if it doesn’t exist

	Return type:	mixed

Returns the last row from the result set.

	
num_rows()

	

	Returns:	Number of rows in the result set

	Return type:	int

Returns the number of rows in the result set.

Usage: see Result Helper Methods.

	
num_fields()

	

	Returns:	Number of fields in the result set

	Return type:	int

Returns the number of fields in the result set.

Usage: see Result Helper Methods.

	
field_data()

	

	Returns:	Array containing field meta-data

	Return type:	array

Generates an array of stdClass objects containing
field meta-data.

	
free_result()

	

	Return type:	void

Frees a result set.

Usage: see Result Helper Methods.

	
list_fields()

	

	Returns:	Array of column names

	Return type:	array

Returns an array containing the field names in the
result set.

Query Helper Methods

Information From Executing a Query

$this->db->insert_id()

The insert ID number when performing database inserts.

Note

If using the PDO driver with PostgreSQL, or using the Interbase
driver, this function requires a $name parameter, which specifies the
appropriate sequence to check for the insert id.

$this->db->affected_rows()

Displays the number of affected rows, when doing “write” type queries
(insert, update, etc.).

Note

In MySQL “DELETE FROM TABLE” returns 0 affected rows. The database
class has a small hack that allows it to return the correct number of
affected rows. By default this hack is enabled but it can be turned off
in the database driver file.

$this->db->last_query()

Returns the last query that was run (the query string, not the result).
Example:

$str = $this->db->last_query();

// Produces: SELECT * FROM sometable....

Note

Disabling the save_queries setting in your database
configuration will render this function useless.

Information About Your Database

$this->db->count_all()

Permits you to determine the number of rows in a particular table.
Submit the table name in the first parameter. Example:

echo $this->db->count_all('my_table');

// Produces an integer, like 25

$this->db->platform()

Outputs the database platform you are running (MySQL, MS SQL, Postgres,
etc…):

echo $this->db->platform();

$this->db->version()

Outputs the database version you are running:

echo $this->db->version();

Making Your Queries Easier

$this->db->insert_string()

This function simplifies the process of writing database inserts. It
returns a correctly formatted SQL insert string. Example:

$data = array('name' => $name, 'email' => $email, 'url' => $url);

$str = $this->db->insert_string('table_name', $data);

The first parameter is the table name, the second is an associative
array with the data to be inserted. The above example produces:

INSERT INTO table_name (name, email, url) VALUES ('Rick', 'rick@example.com', 'example.com')

Note

Values are automatically escaped, producing safer queries.

$this->db->update_string()

This function simplifies the process of writing database updates. It
returns a correctly formatted SQL update string. Example:

$data = array('name' => $name, 'email' => $email, 'url' => $url);

$where = "author_id = 1 AND status = 'active'";

$str = $this->db->update_string('table_name', $data, $where);

The first parameter is the table name, the second is an associative
array with the data to be updated, and the third parameter is the
“where” clause. The above example produces:

UPDATE table_name SET name = 'Rick', email = 'rick@example.com', url = 'example.com' WHERE author_id = 1 AND status = 'active'

Note

Values are automatically escaped, producing safer queries.

Query Builder Class

CodeIgniter gives you access to a Query Builder class. This pattern
allows information to be retrieved, inserted, and updated in your
database with minimal scripting. In some cases only one or two lines
of code are necessary to perform a database action.
CodeIgniter does not require that each database table be its own class
file. It instead provides a more simplified interface.

Beyond simplicity, a major benefit to using the Query Builder features
is that it allows you to create database independent applications, since
the query syntax is generated by each database adapter. It also allows
for safer queries, since the values are escaped automatically by the
system.

Note

If you intend to write your own queries you can disable this
class in your database config file, allowing the core database library
and adapter to utilize fewer resources.

	Selecting Data

	Looking for Specific Data

	Looking for Similar Data

	Ordering results

	Limiting or Counting Results

	Query grouping

	Inserting Data

	Updating Data

	Deleting Data

	Method Chaining

	Query Builder Caching

	Resetting Query Builder

	Class Reference

Selecting Data

The following functions allow you to build SQL SELECT statements.

$this->db->get()

Runs the selection query and returns the result. Can be used by itself
to retrieve all records from a table:

$query = $this->db->get('mytable'); // Produces: SELECT * FROM mytable

The second and third parameters enable you to set a limit and offset
clause:

$query = $this->db->get('mytable', 10, 20);

// Executes: SELECT * FROM mytable LIMIT 20, 10
// (in MySQL. Other databases have slightly different syntax)

You’ll notice that the above function is assigned to a variable named
$query, which can be used to show the results:

$query = $this->db->get('mytable');

foreach ($query->result() as $row)
{
 echo $row->title;
}

Please visit the result functions page for a full
discussion regarding result generation.

$this->db->get_compiled_select()

Compiles the selection query just like $this->db->get() but does not run
the query. This method simply returns the SQL query as a string.

Example:

$sql = $this->db->get_compiled_select('mytable');
echo $sql;

// Prints string: SELECT * FROM mytable

The second parameter enables you to set whether or not the query builder query
will be reset (by default it will be reset, just like when using $this->db->get()):

echo $this->db->limit(10,20)->get_compiled_select('mytable', FALSE);

// Prints string: SELECT * FROM mytable LIMIT 20, 10
// (in MySQL. Other databases have slightly different syntax)

echo $this->db->select('title, content, date')->get_compiled_select();

// Prints string: SELECT title, content, date FROM mytable LIMIT 20, 10

The key thing to notice in the above example is that the second query did not
utilize $this->db->from() and did not pass a table name into the first
parameter. The reason for this outcome is because the query has not been
executed using $this->db->get() which resets values or reset directly
using $this->db->reset_query().

$this->db->get_where()

Identical to the above function except that it permits you to add a
“where” clause in the second parameter, instead of using the db->where()
function:

$query = $this->db->get_where('mytable', array('id' => $id), $limit, $offset);

Please read the about the where function below for more information.

Note

get_where() was formerly known as getwhere(), which has been removed

$this->db->select()

Permits you to write the SELECT portion of your query:

$this->db->select('title, content, date');
$query = $this->db->get('mytable');

// Executes: SELECT title, content, date FROM mytable

Note

If you are selecting all (*) from a table you do not need to
use this function. When omitted, CodeIgniter assumes that you wish
to select all fields and automatically adds ‘SELECT *’.

$this->db->select() accepts an optional second parameter. If you set it
to FALSE, CodeIgniter will not try to protect your field or table names.
This is useful if you need a compound select statement where automatic
escaping of fields may break them.

$this->db->select('(SELECT SUM(payments.amount) FROM payments WHERE payments.invoice_id=4) AS amount_paid', FALSE);
$query = $this->db->get('mytable');

$this->db->select_max()

Writes a SELECT MAX(field) portion for your query. You can optionally
include a second parameter to rename the resulting field.

$this->db->select_max('age');
$query = $this->db->get('members'); // Produces: SELECT MAX(age) as age FROM members

$this->db->select_max('age', 'member_age');
$query = $this->db->get('members'); // Produces: SELECT MAX(age) as member_age FROM members

$this->db->select_min()

Writes a “SELECT MIN(field)” portion for your query. As with
select_max(), You can optionally include a second parameter to rename
the resulting field.

$this->db->select_min('age');
$query = $this->db->get('members'); // Produces: SELECT MIN(age) as age FROM members

$this->db->select_avg()

Writes a “SELECT AVG(field)” portion for your query. As with
select_max(), You can optionally include a second parameter to rename
the resulting field.

$this->db->select_avg('age');
$query = $this->db->get('members'); // Produces: SELECT AVG(age) as age FROM members

$this->db->select_sum()

Writes a “SELECT SUM(field)” portion for your query. As with
select_max(), You can optionally include a second parameter to rename
the resulting field.

$this->db->select_sum('age');
$query = $this->db->get('members'); // Produces: SELECT SUM(age) as age FROM members

$this->db->from()

Permits you to write the FROM portion of your query:

$this->db->select('title, content, date');
$this->db->from('mytable');
$query = $this->db->get(); // Produces: SELECT title, content, date FROM mytable

Note

As shown earlier, the FROM portion of your query can be specified
in the $this->db->get() function, so use whichever method you prefer.

$this->db->join()

Permits you to write the JOIN portion of your query:

$this->db->select('*');
$this->db->from('blogs');
$this->db->join('comments', 'comments.id = blogs.id');
$query = $this->db->get();

// Produces:
// SELECT * FROM blogs JOIN comments ON comments.id = blogs.id

Multiple function calls can be made if you need several joins in one
query.

If you need a specific type of JOIN you can specify it via the third
parameter of the function. Options are: left, right, outer, inner, left
outer, and right outer.

$this->db->join('comments', 'comments.id = blogs.id', 'left');
// Produces: LEFT JOIN comments ON comments.id = blogs.id

Looking for Specific Data

$this->db->where()

This function enables you to set WHERE clauses using one of four
methods:

Note

All values passed to this function are escaped automatically,
producing safer queries.

	Simple key/value method:

$this->db->where('name', $name); // Produces: WHERE name = 'Joe'

Notice that the equal sign is added for you.

If you use multiple function calls they will be chained together with
AND between them:

$this->db->where('name', $name);
$this->db->where('title', $title);
$this->db->where('status', $status);
// WHERE name = 'Joe' AND title = 'boss' AND status = 'active'

	Custom key/value method:

You can include an operator in the first parameter in order to
control the comparison:

$this->db->where('name !=', $name);
$this->db->where('id <', $id); // Produces: WHERE name != 'Joe' AND id < 45

	Associative array method:

$array = array('name' => $name, 'title' => $title, 'status' => $status);
$this->db->where($array);
// Produces: WHERE name = 'Joe' AND title = 'boss' AND status = 'active'

You can include your own operators using this method as well:

$array = array('name !=' => $name, 'id <' => $id, 'date >' => $date);
$this->db->where($array);

	
	Custom string:

	You can write your own clauses manually:

$where = "name='Joe' AND status='boss' OR status='active'";
$this->db->where($where);

$this->db->where() accepts an optional third parameter. If you set it to
FALSE, CodeIgniter will not try to protect your field or table names.

$this->db->where('MATCH (field) AGAINST ("value")', NULL, FALSE);

$this->db->or_where()

This function is identical to the one above, except that multiple
instances are joined by OR:

$this->db->where('name !=', $name);
$this->db->or_where('id >', $id); // Produces: WHERE name != 'Joe' OR id > 50

Note

or_where() was formerly known as orwhere(), which has been
removed.

$this->db->where_in()

Generates a WHERE field IN (‘item’, ‘item’) SQL query joined with AND if
appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->where_in('username', $names);
// Produces: WHERE username IN ('Frank', 'Todd', 'James')

$this->db->or_where_in()

Generates a WHERE field IN (‘item’, ‘item’) SQL query joined with OR if
appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->or_where_in('username', $names);
// Produces: OR username IN ('Frank', 'Todd', 'James')

$this->db->where_not_in()

Generates a WHERE field NOT IN (‘item’, ‘item’) SQL query joined with
AND if appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->where_not_in('username', $names);
// Produces: WHERE username NOT IN ('Frank', 'Todd', 'James')

$this->db->or_where_not_in()

Generates a WHERE field NOT IN (‘item’, ‘item’) SQL query joined with OR
if appropriate

$names = array('Frank', 'Todd', 'James');
$this->db->or_where_not_in('username', $names);
// Produces: OR username NOT IN ('Frank', 'Todd', 'James')

Looking for Similar Data

$this->db->like()

This method enables you to generate LIKE clauses, useful for doing
searches.

Note

All values passed to this method are escaped automatically.

	Simple key/value method:

$this->db->like('title', 'match');
// Produces: WHERE `title` LIKE '%match%' ESCAPE '!'

If you use multiple method calls they will be chained together with
AND between them:

$this->db->like('title', 'match');
$this->db->like('body', 'match');
// WHERE `title` LIKE '%match%' ESCAPE '!' AND `body` LIKE '%match% ESCAPE '!'

If you want to control where the wildcard (%) is placed, you can use
an optional third argument. Your options are ‘before’, ‘after’, ‘none’ and
‘both’ (which is the default).

$this->db->like('title', 'match', 'before'); // Produces: WHERE `title` LIKE '%match' ESCAPE '!'
$this->db->like('title', 'match', 'after'); // Produces: WHERE `title` LIKE 'match%' ESCAPE '!'
$this->db->like('title', 'match', 'none'); // Produces: WHERE `title` LIKE 'match' ESCAPE '!'
$this->db->like('title', 'match', 'both'); // Produces: WHERE `title` LIKE '%match%' ESCAPE '!'

	Associative array method:

$array = array('title' => $match, 'page1' => $match, 'page2' => $match);
$this->db->like($array);
// WHERE `title` LIKE '%match%' ESCAPE '!' AND `page1` LIKE '%match%' ESCAPE '!' AND `page2` LIKE '%match%' ESCAPE '!'

$this->db->or_like()

This method is identical to the one above, except that multiple
instances are joined by OR:

$this->db->like('title', 'match'); $this->db->or_like('body', $match);
// WHERE `title` LIKE '%match%' ESCAPE '!' OR `body` LIKE '%match%' ESCAPE '!'

Note

or_like() was formerly known as orlike(), which has been removed.

$this->db->not_like()

This method is identical to like(), except that it generates
NOT LIKE statements:

$this->db->not_like('title', 'match'); // WHERE `title` NOT LIKE '%match% ESCAPE '!'

$this->db->or_not_like()

This method is identical to not_like(), except that multiple
instances are joined by OR:

$this->db->like('title', 'match');
$this->db->or_not_like('body', 'match');
// WHERE `title` LIKE '%match% OR `body` NOT LIKE '%match%' ESCAPE '!'

$this->db->group_by()

Permits you to write the GROUP BY portion of your query:

$this->db->group_by("title"); // Produces: GROUP BY title

You can also pass an array of multiple values as well:

$this->db->group_by(array("title", "date")); // Produces: GROUP BY title, date

Note

group_by() was formerly known as groupby(), which has been
removed.

$this->db->distinct()

Adds the “DISTINCT” keyword to a query

$this->db->distinct();
$this->db->get('table'); // Produces: SELECT DISTINCT * FROM table

$this->db->having()

Permits you to write the HAVING portion of your query. There are 2
possible syntaxes, 1 argument or 2:

$this->db->having('user_id = 45'); // Produces: HAVING user_id = 45
$this->db->having('user_id', 45); // Produces: HAVING user_id = 45

You can also pass an array of multiple values as well:

$this->db->having(array('title =' => 'My Title', 'id <' => $id));
// Produces: HAVING title = 'My Title', id < 45

If you are using a database that CodeIgniter escapes queries for, you
can prevent escaping content by passing an optional third argument, and
setting it to FALSE.

$this->db->having('user_id', 45); // Produces: HAVING `user_id` = 45 in some databases such as MySQL
$this->db->having('user_id', 45, FALSE); // Produces: HAVING user_id = 45

$this->db->or_having()

Identical to having(), only separates multiple clauses with “OR”.

Ordering results

$this->db->order_by()

Lets you set an ORDER BY clause.

The first parameter contains the name of the column you would like to order by.

The second parameter lets you set the direction of the result.
Options are ASC, DESC AND RANDOM.

$this->db->order_by('title', 'DESC');
// Produces: ORDER BY `title` DESC

You can also pass your own string in the first parameter:

$this->db->order_by('title DESC, name ASC');
// Produces: ORDER BY `title` DESC, `name` ASC

Or multiple function calls can be made if you need multiple fields.

$this->db->order_by('title', 'DESC');
$this->db->order_by('name', 'ASC');
// Produces: ORDER BY `title` DESC, `name` ASC

If you choose the RANDOM direction option, then the first parameters will
be ignored, unless you specify a numeric seed value.

$this->db->order_by('title', 'RANDOM');
// Produces: ORDER BY RAND()

$this->db->order_by(42, 'RANDOM');
// Produces: ORDER BY RAND(42)

Note

order_by() was formerly known as orderby(), which has been
removed.

Note

Random ordering is not currently supported in Oracle and
will default to ASC instead.

Limiting or Counting Results

$this->db->limit()

Lets you limit the number of rows you would like returned by the query:

$this->db->limit(10); // Produces: LIMIT 10

The second parameter lets you set a result offset.

$this->db->limit(10, 20); // Produces: LIMIT 20, 10 (in MySQL. Other databases have slightly different syntax)

$this->db->count_all_results()

Permits you to determine the number of rows in a particular Active
Record query. Queries will accept Query Builder restrictors such as
where(), or_where(), like(), or_like(), etc. Example:

echo $this->db->count_all_results('my_table'); // Produces an integer, like 25
$this->db->like('title', 'match');
$this->db->from('my_table');
echo $this->db->count_all_results(); // Produces an integer, like 17

However, this method also resets any field values that you may have passed
to select(). If you need to keep them, you can pass FALSE as the
second parameter:

echo $this->db->count_all_results('my_table', FALSE);

$this->db->count_all()

Permits you to determine the number of rows in a particular table.
Submit the table name in the first parameter. Example:

echo $this->db->count_all('my_table'); // Produces an integer, like 25

Query grouping

Query grouping allows you to create groups of WHERE clauses by enclosing them in parentheses. This will allow
you to create queries with complex WHERE clauses. Nested groups are supported. Example:

$this->db->select('*')->from('my_table')
 ->group_start()
 ->where('a', 'a')
 ->or_group_start()
 ->where('b', 'b')
 ->where('c', 'c')
 ->group_end()
 ->group_end()
 ->where('d', 'd')
->get();

// Generates:
// SELECT * FROM (`my_table`) WHERE (`a` = 'a' OR (`b` = 'b' AND `c` = 'c')) AND `d` = 'd'

Note

groups need to be balanced, make sure every group_start() is matched by a group_end().

$this->db->group_start()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query.

$this->db->or_group_start()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query, prefixing it with ‘OR’.

$this->db->not_group_start()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query, prefixing it with ‘NOT’.

$this->db->or_not_group_start()

Starts a new group by adding an opening parenthesis to the WHERE clause of the query, prefixing it with ‘OR NOT’.

$this->db->group_end()

Ends the current group by adding an closing parenthesis to the WHERE clause of the query.

Inserting Data

$this->db->insert()

Generates an insert string based on the data you supply, and runs the
query. You can either pass an array or an object to the
function. Here is an example using an array:

$data = array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
);

$this->db->insert('mytable', $data);
// Produces: INSERT INTO mytable (title, name, date) VALUES ('My title', 'My name', 'My date')

The first parameter will contain the table name, the second is an
associative array of values.

Here is an example using an object:

/*
class Myclass {
 public $title = 'My Title';
 public $content = 'My Content';
 public $date = 'My Date';
}
*/

$object = new Myclass;
$this->db->insert('mytable', $object);
// Produces: INSERT INTO mytable (title, content, date) VALUES ('My Title', 'My Content', 'My Date')

The first parameter will contain the table name, the second is an
object.

Note

All values are escaped automatically producing safer queries.

$this->db->get_compiled_insert()

Compiles the insertion query just like $this->db->insert() but does not
run the query. This method simply returns the SQL query as a string.

Example:

$data = array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
);

$sql = $this->db->set($data)->get_compiled_insert('mytable');
echo $sql;

// Produces string: INSERT INTO mytable (`title`, `name`, `date`) VALUES ('My title', 'My name', 'My date')

The second parameter enables you to set whether or not the query builder query
will be reset (by default it will be–just like $this->db->insert()):

echo $this->db->set('title', 'My Title')->get_compiled_insert('mytable', FALSE);

// Produces string: INSERT INTO mytable (`title`) VALUES ('My Title')

echo $this->db->set('content', 'My Content')->get_compiled_insert();

// Produces string: INSERT INTO mytable (`title`, `content`) VALUES ('My Title', 'My Content')

The key thing to notice in the above example is that the second query did not
utilize $this->db->from() nor did it pass a table name into the first
parameter. The reason this worked is because the query has not been executed
using $this->db->insert() which resets values or reset directly using
$this->db->reset_query().

Note

This method doesn’t work for batched inserts.

$this->db->insert_batch()

Generates an insert string based on the data you supply, and runs the
query. You can either pass an array or an object to the
function. Here is an example using an array:

$data = array(
 array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
),
 array(
 'title' => 'Another title',
 'name' => 'Another Name',
 'date' => 'Another date'
)
);

$this->db->insert_batch('mytable', $data);
// Produces: INSERT INTO mytable (title, name, date) VALUES ('My title', 'My name', 'My date'), ('Another title', 'Another name', 'Another date')

The first parameter will contain the table name, the second is an
associative array of values.

Note

All values are escaped automatically producing safer queries.

Updating Data

$this->db->replace()

This method executes a REPLACE statement, which is basically the SQL
standard for (optional) DELETE + INSERT, using PRIMARY and UNIQUE
keys as the determining factor.
In our case, it will save you from the need to implement complex
logics with different combinations of select(), update(),
delete() and insert() calls.

Example:

$data = array(
 'title' => 'My title',
 'name' => 'My Name',
 'date' => 'My date'
);

$this->db->replace('table', $data);

// Executes: REPLACE INTO mytable (title, name, date) VALUES ('My title', 'My name', 'My date')

In the above example, if we assume that the title field is our primary
key, then if a row containing ‘My title’ as the title value, that row
will be deleted with our new row data replacing it.

Usage of the set() method is also allowed and all fields are
automatically escaped, just like with insert().

$this->db->set()

This function enables you to set values for inserts or updates.

It can be used instead of passing a data array directly to the insert
or update functions:

$this->db->set('name', $name);
$this->db->insert('mytable'); // Produces: INSERT INTO mytable (`name`) VALUES ('{$name}')

If you use multiple function called they will be assembled properly
based on whether you are doing an insert or an update:

$this->db->set('name', $name);
$this->db->set('title', $title);
$this->db->set('status', $status);
$this->db->insert('mytable');

set() will also accept an optional third parameter ($escape), that
will prevent data from being escaped if set to FALSE. To illustrate the
difference, here is set() used both with and without the escape
parameter.

$this->db->set('field', 'field+1', FALSE);
$this->db->where('id', 2);
$this->db->update('mytable'); // gives UPDATE mytable SET field = field+1 WHERE id = 2

$this->db->set('field', 'field+1');
$this->db->where('id', 2);
$this->db->update('mytable'); // gives UPDATE `mytable` SET `field` = 'field+1' WHERE `id` = 2

You can also pass an associative array to this function:

$array = array(
 'name' => $name,
 'title' => $title,
 'status' => $status
);

$this->db->set($array);
$this->db->insert('mytable');

Or an object:

/*
class Myclass {
 public $title = 'My Title';
 public $content = 'My Content';
 public $date = 'My Date';
}
*/

$object = new Myclass;
$this->db->set($object);
$this->db->insert('mytable');

$this->db->update()

Generates an update string and runs the query based on the data you
supply. You can pass an array or an object to the function. Here
is an example using an array:

$data = array(
 'title' => $title,
 'name' => $name,
 'date' => $date
);

$this->db->where('id', $id);
$this->db->update('mytable', $data);
// Produces:
//
// UPDATE mytable
// SET title = '{$title}', name = '{$name}', date = '{$date}'
// WHERE id = $id

Or you can supply an object:

/*
class Myclass {
 public $title = 'My Title';
 public $content = 'My Content';
 public $date = 'My Date';
}
*/

$object = new Myclass;
$this->db->where('id', $id);
$this->db->update('mytable', $object);
// Produces:
//
// UPDATE `mytable`
// SET `title` = '{$title}', `name` = '{$name}', `date` = '{$date}'
// WHERE id = `$id`

Note

All values are escaped automatically producing safer queries.

You’ll notice the use of the $this->db->where() function, enabling you
to set the WHERE clause. You can optionally pass this information
directly into the update function as a string:

$this->db->update('mytable', $data, "id = 4");

Or as an array:

$this->db->update('mytable', $data, array('id' => $id));

You may also use the $this->db->set() function described above when
performing updates.

$this->db->update_batch()

Generates an update string based on the data you supply, and runs the query.
You can either pass an array or an object to the function.
Here is an example using an array:

$data = array(
 array(
 'title' => 'My title' ,
 'name' => 'My Name 2' ,
 'date' => 'My date 2'
),
 array(
 'title' => 'Another title' ,
 'name' => 'Another Name 2' ,
 'date' => 'Another date 2'
)
);

$this->db->update_batch('mytable', $data, 'title');

// Produces:
// UPDATE `mytable` SET `name` = CASE
// WHEN `title` = 'My title' THEN 'My Name 2'
// WHEN `title` = 'Another title' THEN 'Another Name 2'
// ELSE `name` END,
// `date` = CASE
// WHEN `title` = 'My title' THEN 'My date 2'
// WHEN `title` = 'Another title' THEN 'Another date 2'
// ELSE `date` END
// WHERE `title` IN ('My title','Another title')

The first parameter will contain the table name, the second is an associative
array of values, the third parameter is the where key.

Note

All values are escaped automatically producing safer queries.

Note

affected_rows() won’t give you proper results with this method,
due to the very nature of how it works. Instead, update_batch()
returns the number of rows affected.

$this->db->get_compiled_update()

This works exactly the same way as $this->db->get_compiled_insert() except
that it produces an UPDATE SQL string instead of an INSERT SQL string.

For more information view documentation for $this->db->get_compiled_insert().

Note

This method doesn’t work for batched updates.

Deleting Data

$this->db->delete()

Generates a delete SQL string and runs the query.

$this->db->delete('mytable', array('id' => $id)); // Produces: // DELETE FROM mytable // WHERE id = $id

The first parameter is the table name, the second is the where clause.
You can also use the where() or or_where() functions instead of passing
the data to the second parameter of the function:

$this->db->where('id', $id);
$this->db->delete('mytable');

// Produces:
// DELETE FROM mytable
// WHERE id = $id

An array of table names can be passed into delete() if you would like to
delete data from more than 1 table.

$tables = array('table1', 'table2', 'table3');
$this->db->where('id', '5');
$this->db->delete($tables);

If you want to delete all data from a table, you can use the truncate()
function, or empty_table().

$this->db->empty_table()

Generates a delete SQL string and runs the
query.:

$this->db->empty_table('mytable'); // Produces: DELETE FROM mytable

$this->db->truncate()

Generates a truncate SQL string and runs the query.

$this->db->from('mytable');
$this->db->truncate();

// or

$this->db->truncate('mytable');

// Produce:
// TRUNCATE mytable

Note

If the TRUNCATE command isn’t available, truncate() will
execute as “DELETE FROM table”.

$this->db->get_compiled_delete()

This works exactly the same way as $this->db->get_compiled_insert() except
that it produces a DELETE SQL string instead of an INSERT SQL string.

For more information view documentation for $this->db->get_compiled_insert().

Method Chaining

Method chaining allows you to simplify your syntax by connecting
multiple functions. Consider this example:

$query = $this->db->select('title')
 ->where('id', $id)
 ->limit(10, 20)
 ->get('mytable');

Query Builder Caching

While not “true” caching, Query Builder enables you to save (or “cache”)
certain parts of your queries for reuse at a later point in your
script’s execution. Normally, when an Query Builder call is completed,
all stored information is reset for the next call. With caching, you can
prevent this reset, and reuse information easily.

Cached calls are cumulative. If you make 2 cached select() calls, and
then 2 uncached select() calls, this will result in 4 select() calls.
There are three Caching functions available:

$this->db->start_cache()

This function must be called to begin caching. All Query Builder queries
of the correct type (see below for supported queries) are stored for
later use.

$this->db->stop_cache()

This function can be called to stop caching.

$this->db->flush_cache()

This function deletes all items from the Query Builder cache.

An example of caching

Here’s a usage example:

$this->db->start_cache();
$this->db->select('field1');
$this->db->stop_cache();
$this->db->get('tablename');
//Generates: SELECT `field1` FROM (`tablename`)

$this->db->select('field2');
$this->db->get('tablename');
//Generates: SELECT `field1`, `field2` FROM (`tablename`)

$this->db->flush_cache();
$this->db->select('field2');
$this->db->get('tablename');
//Generates: SELECT `field2` FROM (`tablename`)

Note

The following statements can be cached: select, from, join,
where, like, group_by, having, order_by

Resetting Query Builder

$this->db->reset_query()

Resetting Query Builder allows you to start fresh with your query without
executing it first using a method like $this->db->get() or $this->db->insert().
Just like the methods that execute a query, this will not reset items you’ve
cached using Query Builder Caching.

This is useful in situations where you are using Query Builder to generate SQL
(ex. $this->db->get_compiled_select()) but then choose to, for instance,
run the query:

// Note that the second parameter of the get_compiled_select method is FALSE
$sql = $this->db->select(array('field1','field2'))
 ->where('field3',5)
 ->get_compiled_select('mytable', FALSE);

// ...
// Do something crazy with the SQL code... like add it to a cron script for
// later execution or something...
// ...

$data = $this->db->get()->result_array();

// Would execute and return an array of results of the following query:
// SELECT field1, field1 from mytable where field3 = 5;

Note

Double calls to get_compiled_select() while you’re using the
Query Builder Caching functionality and NOT resetting your queries
will results in the cache being merged twice. That in turn will
i.e. if you’re caching a select() - select the same field twice.

Class Reference

	
class CI_DB_query_builder

	
	
reset_query()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Resets the current Query Builder state. Useful when you want
to build a query that can be cancelled under certain conditions.

	
start_cache()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Starts the Query Builder cache.

	
stop_cache()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Stops the Query Builder cache.

	
flush_cache()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Empties the Query Builder cache.

	
set_dbprefix([$prefix = ''])

	

	Parameters:	
	$prefix (string) – The new prefix to use

	Returns:	The DB prefix in use

	Return type:	string

Sets the database prefix, without having to reconnect.

	
dbprefix([$table = ''])

	

	Parameters:	
	$table (string) – The table name to prefix

	Returns:	The prefixed table name

	Return type:	string

Prepends a database prefix, if one exists in configuration.

	
count_all_results([$table = ''[, $reset = TRUE]])

	

	Parameters:	
	$table (string) – Table name

	$reset (bool) – Whether to reset values for SELECTs

	Returns:	Number of rows in the query result

	Return type:	int

Generates a platform-specific query string that counts
all records returned by an Query Builder query.

	
get([$table = ''[, $limit = NULL[, $offset = NULL]]])

	

	Parameters:	
	$table (string) – The table to query

	$limit (int) – The LIMIT clause

	$offset (int) – The OFFSET clause

	Returns:	CI_DB_result instance (method chaining)

	Return type:	CI_DB_result

Compiles and runs SELECT statement based on the already
called Query Builder methods.

	
get_where([$table = ''[, $where = NULL[, $limit = NULL[, $offset = NULL]]]])

	

	Parameters:	
	$table (mixed) – The table(s) to fetch data from; string or array

	$where (string) – The WHERE clause

	$limit (int) – The LIMIT clause

	$offset (int) – The OFFSET clause

	Returns:	CI_DB_result instance (method chaining)

	Return type:	CI_DB_result

Same as get(), but also allows the WHERE to be added directly.

	
select([$select = '*'[, $escape = NULL]])

	

	Parameters:	
	$select (string) – The SELECT portion of a query

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a SELECT clause to a query.

	
select_avg([$select = ''[, $alias = '']])

	

	Parameters:	
	$select (string) – Field to compute the average of

	$alias (string) – Alias for the resulting value name

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a SELECT AVG(field) clause to a query.

	
select_max([$select = ''[, $alias = '']])

	

	Parameters:	
	$select (string) – Field to compute the maximum of

	$alias (string) – Alias for the resulting value name

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a SELECT MAX(field) clause to a query.

	
select_min([$select = ''[, $alias = '']])

	

	Parameters:	
	$select (string) – Field to compute the minimum of

	$alias (string) – Alias for the resulting value name

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a SELECT MIN(field) clause to a query.

	
select_sum([$select = ''[, $alias = '']])

	

	Parameters:	
	$select (string) – Field to compute the sum of

	$alias (string) – Alias for the resulting value name

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a SELECT SUM(field) clause to a query.

	
distinct([$val = TRUE])

	

	Parameters:	
	$val (bool) – Desired value of the “distinct” flag

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Sets a flag which tells the query builder to add
a DISTINCT clause to the SELECT portion of the query.

	
from($from)

	

	Parameters:	
	$from (mixed) – Table name(s); string or array

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Specifies the FROM clause of a query.

	
join($table, $cond[, $type = ''[, $escape = NULL]])

	

	Parameters:	
	$table (string) – Table name to join

	$cond (string) – The JOIN ON condition

	$type (string) – The JOIN type

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a JOIN clause to a query.

	
where($key[, $value = NULL[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Name of field to compare, or associative array

	$value (mixed) – If a single key, compared to this value

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates the WHERE portion of the query.
Separates multiple calls with ‘AND’.

	
or_where($key[, $value = NULL[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Name of field to compare, or associative array

	$value (mixed) – If a single key, compared to this value

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates the WHERE portion of the query.
Separates multiple calls with ‘OR’.

	
or_where_in([$key = NULL[, $values = NULL[, $escape = NULL]]])

	

	Parameters:	
	$key (string) – The field to search

	$values (array) – The values searched on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates a WHERE field IN(‘item’, ‘item’) SQL query,
joined with ‘OR’ if appropriate.

	
or_where_not_in([$key = NULL[, $values = NULL[, $escape = NULL]]])

	

	Parameters:	
	$key (string) – The field to search

	$values (array) – The values searched on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates a WHERE field NOT IN(‘item’, ‘item’) SQL query,
joined with ‘OR’ if appropriate.

	
where_in([$key = NULL[, $values = NULL[, $escape = NULL]]])

	

	Parameters:	
	$key (string) – Name of field to examine

	$values (array) – Array of target values

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates a WHERE field IN(‘item’, ‘item’) SQL query,
joined with ‘AND’ if appropriate.

	
where_not_in([$key = NULL[, $values = NULL[, $escape = NULL]]])

	

	Parameters:	
	$key (string) – Name of field to examine

	$values (array) – Array of target values

	$escape (bool) – Whether to escape values and identifiers

	Returns:	DB_query_builder instance

	Return type:	object

Generates a WHERE field NOT IN(‘item’, ‘item’) SQL query,
joined with ‘AND’ if appropriate.

	
group_start()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Starts a group expression, using ANDs for the conditions inside it.

	
or_group_start()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Starts a group expression, using ORs for the conditions inside it.

	
not_group_start()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Starts a group expression, using AND NOTs for the conditions inside it.

	
or_not_group_start()

	

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Starts a group expression, using OR NOTs for the conditions inside it.

	
group_end()

	

	Returns:	DB_query_builder instance

	Return type:	object

Ends a group expression.

	
like($field[, $match = ''[, $side = 'both'[, $escape = NULL]]])

	

	Parameters:	
	$field (string) – Field name

	$match (string) – Text portion to match

	$side (string) – Which side of the expression to put the ‘%’ wildcard on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a LIKE clause to a query, separating multiple calls with AND.

	
or_like($field[, $match = ''[, $side = 'both'[, $escape = NULL]]])

	

	Parameters:	
	$field (string) – Field name

	$match (string) – Text portion to match

	$side (string) – Which side of the expression to put the ‘%’ wildcard on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a LIKE clause to a query, separating multiple class with OR.

	
not_like($field[, $match = ''[, $side = 'both'[, $escape = NULL]]])

	

	Parameters:	
	$field (string) – Field name

	$match (string) – Text portion to match

	$side (string) – Which side of the expression to put the ‘%’ wildcard on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a NOT LIKE clause to a query, separating multiple calls with AND.

	
or_not_like($field[, $match = ''[, $side = 'both'[, $escape = NULL]]])

	

	Parameters:	
	$field (string) – Field name

	$match (string) – Text portion to match

	$side (string) – Which side of the expression to put the ‘%’ wildcard on

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a NOT LIKE clause to a query, separating multiple calls with OR.

	
having($key[, $value = NULL[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Identifier (string) or associative array of field/value pairs

	$value (string) – Value sought if $key is an identifier

	$escape (string) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a HAVING clause to a query, separating multiple calls with AND.

	
or_having($key[, $value = NULL[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Identifier (string) or associative array of field/value pairs

	$value (string) – Value sought if $key is an identifier

	$escape (string) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a HAVING clause to a query, separating multiple calls with OR.

	
group_by($by[, $escape = NULL])

	

	Parameters:	
	$by (mixed) – Field(s) to group by; string or array

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds a GROUP BY clause to a query.

	
order_by($orderby[, $direction = ''[, $escape = NULL]])

	

	Parameters:	
	$orderby (string) – Field to order by

	$direction (string) – The order requested - ASC, DESC or random

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds an ORDER BY clause to a query.

	
limit($value[, $offset = 0])

	

	Parameters:	
	$value (int) – Number of rows to limit the results to

	$offset (int) – Number of rows to skip

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds LIMIT and OFFSET clauses to a query.

	
offset($offset)

	

	Parameters:	
	$offset (int) – Number of rows to skip

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds an OFFSET clause to a query.

	
set($key[, $value = ''[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Field name, or an array of field/value pairs

	$value (string) – Field value, if $key is a single field

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds field/value pairs to be passed later to insert(),
update() or replace().

	
insert([$table = ''[, $set = NULL[, $escape = NULL]]])

	

	Parameters:	
	$table (string) – Table name

	$set (array) – An associative array of field/value pairs

	$escape (bool) – Whether to escape values and identifiers

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Compiles and executes an INSERT statement.

	
insert_batch($table[, $set = NULL[, $escape = NULL[, $batch_size = 100]]])

	

	Parameters:	
	$table (string) – Table name

	$set (array) – Data to insert

	$escape (bool) – Whether to escape values and identifiers

	$batch_size (int) – Count of rows to insert at once

	Returns:	Number of rows inserted or FALSE on failure

	Return type:	mixed

Compiles and executes batch INSERT statements.

Note

When more than $batch_size rows are provided, multiple
INSERT queries will be executed, each trying to insert
up to $batch_size rows.

	
set_insert_batch($key[, $value = ''[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Field name or an array of field/value pairs

	$value (string) – Field value, if $key is a single field

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds field/value pairs to be inserted in a table later via insert_batch().

	
update([$table = ''[, $set = NULL[, $where = NULL[, $limit = NULL]]]])

	

	Parameters:	
	$table (string) – Table name

	$set (array) – An associative array of field/value pairs

	$where (string) – The WHERE clause

	$limit (int) – The LIMIT clause

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Compiles and executes an UPDATE statement.

	
update_batch($table[, $set = NULL[, $value = NULL[, $batch_size = 100]]])

	

	Parameters:	
	$table (string) – Table name

	$set (array) – Field name, or an associative array of field/value pairs

	$value (string) – Field value, if $set is a single field

	$batch_size (int) – Count of conditions to group in a single query

	Returns:	Number of rows updated or FALSE on failure

	Return type:	mixed

Compiles and executes batch UPDATE statements.

Note

When more than $batch_size field/value pairs are provided,
multiple queries will be executed, each handling up to
$batch_size field/value pairs.

	
set_update_batch($key[, $value = ''[, $escape = NULL]])

	

	Parameters:	
	$key (mixed) – Field name or an array of field/value pairs

	$value (string) – Field value, if $key is a single field

	$escape (bool) – Whether to escape values and identifiers

	Returns:	CI_DB_query_builder instance (method chaining)

	Return type:	CI_DB_query_builder

Adds field/value pairs to be updated in a table later via update_batch().

	
replace([$table = ''[, $set = NULL]])

	

	Parameters:	
	$table (string) – Table name

	$set (array) – An associative array of field/value pairs

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Compiles and executes a REPLACE statement.

	
delete([$table = ''[, $where = ''[, $limit = NULL[, $reset_data = TRUE]]]])

	

	Parameters:	
	$table (mixed) – The table(s) to delete from; string or array

	$where (string) – The WHERE clause

	$limit (int) – The LIMIT clause

	$reset_data (bool) – TRUE to reset the query “write” clause

	Returns:	CI_DB_query_builder instance (method chaining) or FALSE on failure

	Return type:	mixed

Compiles and executes a DELETE query.

	
truncate([$table = ''])

	

	Parameters:	
	$table (string) – Table name

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Executes a TRUNCATE statement on a table.

Note

If the database platform in use doesn’t support TRUNCATE,
a DELETE statement will be used instead.

	
empty_table([$table = ''])

	

	Parameters:	
	$table (string) – Table name

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Deletes all records from a table via a DELETE statement.

	
get_compiled_select([$table = ''[, $reset = TRUE]])

	

	Parameters:	
	$table (string) – Table name

	$reset (bool) – Whether to reset the current QB values or not

	Returns:	The compiled SQL statement as a string

	Return type:	string

Compiles a SELECT statement and returns it as a string.

	
get_compiled_insert([$table = ''[, $reset = TRUE]])

	

	Parameters:	
	$table (string) – Table name

	$reset (bool) – Whether to reset the current QB values or not

	Returns:	The compiled SQL statement as a string

	Return type:	string

Compiles an INSERT statement and returns it as a string.

	
get_compiled_update([$table = ''[, $reset = TRUE]])

	

	Parameters:	
	$table (string) – Table name

	$reset (bool) – Whether to reset the current QB values or not

	Returns:	The compiled SQL statement as a string

	Return type:	string

Compiles an UPDATE statement and returns it as a string.

	
get_compiled_delete([$table = ''[, $reset = TRUE]])

	

	Parameters:	
	$table (string) – Table name

	$reset (bool) – Whether to reset the current QB values or not

	Returns:	The compiled SQL statement as a string

	Return type:	string

Compiles a DELETE statement and returns it as a string.

Transactions

CodeIgniter’s database abstraction allows you to use transactions with
databases that support transaction-safe table types. In MySQL, you’ll
need to be running InnoDB or BDB table types rather than the more common
MyISAM. Most other database platforms support transactions natively.

If you are not familiar with transactions we recommend you find a good
online resource to learn about them for your particular database. The
information below assumes you have a basic understanding of
transactions.

CodeIgniter’s Approach to Transactions

CodeIgniter utilizes an approach to transactions that is very similar to
the process used by the popular database class ADODB. We’ve chosen that
approach because it greatly simplifies the process of running
transactions. In most cases all that is required are two lines of code.

Traditionally, transactions have required a fair amount of work to
implement since they demand that you keep track of your queries and
determine whether to commit or rollback based on the success or failure
of your queries. This is particularly cumbersome with nested queries. In
contrast, we’ve implemented a smart transaction system that does all
this for you automatically (you can also manage your transactions
manually if you choose to, but there’s really no benefit).

Running Transactions

To run your queries using transactions you will use the
$this->db->trans_start() and $this->db->trans_complete() functions as
follows:

$this->db->trans_start();
$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->query('AND YET ANOTHER QUERY...');
$this->db->trans_complete();

You can run as many queries as you want between the start/complete
functions and they will all be committed or rolled back based on success
or failure of any given query.

Strict Mode

By default CodeIgniter runs all transactions in Strict Mode. When strict
mode is enabled, if you are running multiple groups of transactions, if
one group fails all groups will be rolled back. If strict mode is
disabled, each group is treated independently, meaning a failure of one
group will not affect any others.

Strict Mode can be disabled as follows:

$this->db->trans_strict(FALSE);

Managing Errors

If you have error reporting enabled in your config/database.php file
you’ll see a standard error message if the commit was unsuccessful. If
debugging is turned off, you can manage your own errors like this:

$this->db->trans_start();
$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->trans_complete();

if ($this->db->trans_status() === FALSE)
{
 // generate an error... or use the log_message() function to log your error
}

Disabling Transactions

If you would like to disable transactions you can do so using
$this->db->trans_off():

$this->db->trans_off();

$this->db->trans_start();
$this->db->query('AN SQL QUERY...');
$this->db->trans_complete();

When transactions are disabled, your queries will be auto-committed, just as
they are when running queries without transactions, practically ignoring
any calls to trans_start(), trans_complete(), etc.

Test Mode

You can optionally put the transaction system into “test mode”, which
will cause your queries to be rolled back – even if the queries produce
a valid result. To use test mode simply set the first parameter in the
$this->db->trans_start() function to TRUE:

$this->db->trans_start(TRUE); // Query will be rolled back
$this->db->query('AN SQL QUERY...');
$this->db->trans_complete();

Running Transactions Manually

If you would like to run transactions manually you can do so as follows:

$this->db->trans_begin();

$this->db->query('AN SQL QUERY...');
$this->db->query('ANOTHER QUERY...');
$this->db->query('AND YET ANOTHER QUERY...');

if ($this->db->trans_status() === FALSE)
{
 $this->db->trans_rollback();
}
else
{
 $this->db->trans_commit();
}

Note

Make sure to use $this->db->trans_begin() when running manual
transactions, NOT $this->db->trans_start().

Database Metadata

Table MetaData

These functions let you fetch table information.

List the Tables in Your Database

$this->db->list_tables();

Returns an array containing the names of all the tables in the database
you are currently connected to. Example:

$tables = $this->db->list_tables();

foreach ($tables as $table)
{
 echo $table;
}

Determine If a Table Exists

$this->db->table_exists();

Sometimes it’s helpful to know whether a particular table exists before
running an operation on it. Returns a boolean TRUE/FALSE. Usage example:

if ($this->db->table_exists('table_name'))
{
 // some code...
}

Note

Replace table_name with the name of the table you are looking for.

Field MetaData

List the Fields in a Table

$this->db->list_fields()

Returns an array containing the field names. This query can be called
two ways:

1. You can supply the table name and call it from the $this->db->
object:

$fields = $this->db->list_fields('table_name');

foreach ($fields as $field)
{
 echo $field;
}

2. You can gather the field names associated with any query you run by
calling the function from your query result object:

$query = $this->db->query('SELECT * FROM some_table');

foreach ($query->list_fields() as $field)
{
 echo $field;
}

Determine If a Field is Present in a Table

$this->db->field_exists()

Sometimes it’s helpful to know whether a particular field exists before
performing an action. Returns a boolean TRUE/FALSE. Usage example:

if ($this->db->field_exists('field_name', 'table_name'))
{
 // some code...
}

Note

Replace field_name with the name of the column you are looking
for, and replace table_name with the name of the table you are
looking for.

Retrieve Field Metadata

$this->db->field_data()

Returns an array of objects containing field information.

Sometimes it’s helpful to gather the field names or other metadata, like
the column type, max length, etc.

Note

Not all databases provide meta-data.

Usage example:

$fields = $this->db->field_data('table_name');

foreach ($fields as $field)
{
 echo $field->name;
 echo $field->type;
 echo $field->max_length;
 echo $field->primary_key;
}

If you have run a query already you can use the result object instead of
supplying the table name:

$query = $this->db->query("YOUR QUERY");
$fields = $query->field_data();

The following data is available from this function if supported by your
database:

	name - column name

	max_length - maximum length of the column

	primary_key - 1 if the column is a primary key

	type - the type of the column

Custom Function Calls

$this->db->call_function();

This function enables you to call PHP database functions that are not
natively included in CodeIgniter, in a platform independent manner. For
example, let’s say you want to call the mysql_get_client_info()
function, which is not natively supported by CodeIgniter. You could
do so like this:

$this->db->call_function('get_client_info');

You must supply the name of the function, without the mysql_
prefix, in the first parameter. The prefix is added automatically based
on which database driver is currently being used. This permits you to
run the same function on different database platforms. Obviously not all
function calls are identical between platforms, so there are limits to
how useful this function can be in terms of portability.

Any parameters needed by the function you are calling will be added to
the second parameter.

$this->db->call_function('some_function', $param1, $param2, etc..);

Often, you will either need to supply a database connection ID or a
database result ID. The connection ID can be accessed using:

$this->db->conn_id;

The result ID can be accessed from within your result object, like this:

$query = $this->db->query("SOME QUERY");

$query->result_id;

Database Caching Class

The Database Caching Class permits you to cache your queries as text
files for reduced database load.

Important

This class is initialized automatically by the database
driver when caching is enabled. Do NOT load this class manually.

Important

Not all query result functions are available when you
use caching. Please read this page carefully.

Enabling Caching

Caching is enabled in three steps:

	Create a writable directory on your server where the cache files can
be stored.

	Set the path to your cache folder in your
application/config/database.php file.

	Enable the caching feature, either globally by setting the preference
in your application/config/database.php file, or manually as
described below.

Once enabled, caching will happen automatically whenever a page is
loaded that contains database queries.

How Does Caching Work?

CodeIgniter’s query caching system happens dynamically when your pages
are viewed. When caching is enabled, the first time a web page is
loaded, the query result object will be serialized and stored in a text
file on your server. The next time the page is loaded the cache file
will be used instead of accessing your database. Your database usage can
effectively be reduced to zero for any pages that have been cached.

Only read-type (SELECT) queries can be cached, since these are the only
type of queries that produce a result. Write-type (INSERT, UPDATE, etc.)
queries, since they don’t generate a result, will not be cached by the
system.

Cache files DO NOT expire. Any queries that have been cached will remain
cached until you delete them. The caching system permits you clear
caches associated with individual pages, or you can delete the entire
collection of cache files. Typically you’ll want to use the housekeeping
functions described below to delete cache files after certain events
take place, like when you’ve added new information to your database.

Will Caching Improve Your Site’s Performance?

Getting a performance gain as a result of caching depends on many
factors. If you have a highly optimized database under very little load,
you probably won’t see a performance boost. If your database is under
heavy use you probably will see an improved response, assuming your
file-system is not overly taxed. Remember that caching simply changes
how your information is retrieved, shifting it from being a database
operation to a file-system one.

In some clustered server environments, for example, caching may be
detrimental since file-system operations are so intense. On single
servers in shared environments, caching will probably be beneficial.
Unfortunately there is no single answer to the question of whether you
should cache your database. It really depends on your situation.

How are Cache Files Stored?

CodeIgniter places the result of EACH query into its own cache file.
Sets of cache files are further organized into sub-folders corresponding
to your controller functions. To be precise, the sub-folders are named
identically to the first two segments of your URI (the controller class
name and function name).

For example, let’s say you have a controller called blog with a function
called comments that contains three queries. The caching system will
create a cache folder called blog+comments, into which it will write
three cache files.

If you use dynamic queries that change based on information in your URI
(when using pagination, for example), each instance of the query will
produce its own cache file. It’s possible, therefore, to end up with
many times more cache files than you have queries.

Managing your Cache Files

Since cache files do not expire, you’ll need to build deletion routines
into your application. For example, let’s say you have a blog that
allows user commenting. Whenever a new comment is submitted you’ll want
to delete the cache files associated with the controller function that
serves up your comments. You’ll find two delete functions described
below that help you clear data.

Not All Database Functions Work with Caching

Lastly, we need to point out that the result object that is cached is a
simplified version of the full result object. For that reason, some of
the query result functions are not available for use.

The following functions ARE NOT available when using a cached result
object:

	num_fields()

	field_names()

	field_data()

	free_result()

Also, the two database resources (result_id and conn_id) are not
available when caching, since result resources only pertain to run-time
operations.

Function Reference

$this->db->cache_on() / $this->db->cache_off()

Manually enables/disables caching. This can be useful if you want to
keep certain queries from being cached. Example:

// Turn caching on
$this->db->cache_on();
$query = $this->db->query("SELECT * FROM mytable");

// Turn caching off for this one query
$this->db->cache_off();
$query = $this->db->query("SELECT * FROM members WHERE member_id = '$current_user'");

// Turn caching back on
$this->db->cache_on();
$query = $this->db->query("SELECT * FROM another_table");

$this->db->cache_delete()

Deletes the cache files associated with a particular page. This is
useful if you need to clear caching after you update your database.

The caching system saves your cache files to folders that correspond to
the URI of the page you are viewing. For example, if you are viewing a
page at example.com/index.php/blog/comments, the caching system will put
all cache files associated with it in a folder called blog+comments. To
delete those particular cache files you will use:

$this->db->cache_delete('blog', 'comments');

If you do not use any parameters the current URI will be used when
determining what should be cleared.

$this->db->cache_delete_all()

Clears all existing cache files. Example:

$this->db->cache_delete_all();

Database Forge Class

The Database Forge Class contains methods that help you manage your
database.

Table of Contents

	Database Forge Class
	Initializing the Forge Class

	Creating and Dropping Databases

	Creating and Dropping Tables
	Adding fields

	Adding Keys

	Creating a table

	Dropping a table

	Renaming a table

	Modifying Tables
	Adding a Column to a Table

	Dropping a Column From a Table

	Modifying a Column in a Table

	Class Reference

Initializing the Forge Class

Important

In order to initialize the Forge class, your database
driver must already be running, since the forge class relies on it.

Load the Forge Class as follows:

$this->load->dbforge()

You can also pass another database object to the DB Forge loader, in case
the database you want to manage isn’t the default one:

$this->myforge = $this->load->dbforge($this->other_db, TRUE);

In the above example, we’re passing a custom database object as the first
parameter and then tell it to return the dbforge object, instead of
assigning it directly to $this->dbforge.

Note

Both of the parameters can be used individually, just pass an empty
value as the first one if you wish to skip it.

Once initialized you will access the methods using the $this->dbforge
object:

$this->dbforge->some_method();

Creating and Dropping Databases

$this->dbforge->create_database(‘db_name’)

Permits you to create the database specified in the first parameter.
Returns TRUE/FALSE based on success or failure:

if ($this->dbforge->create_database('my_db'))
{
 echo 'Database created!';
}

$this->dbforge->drop_database(‘db_name’)

Permits you to drop the database specified in the first parameter.
Returns TRUE/FALSE based on success or failure:

if ($this->dbforge->drop_database('my_db'))
{
 echo 'Database deleted!';
}

Creating and Dropping Tables

There are several things you may wish to do when creating tables. Add
fields, add keys to the table, alter columns. CodeIgniter provides a
mechanism for this.

Adding fields

Fields are created via an associative array. Within the array you must
include a ‘type’ key that relates to the datatype of the field. For
example, INT, VARCHAR, TEXT, etc. Many datatypes (for example VARCHAR)
also require a ‘constraint’ key.

$fields = array(
 'users' => array(
 'type' => 'VARCHAR',
 'constraint' => '100',
),
);
// will translate to "users VARCHAR(100)" when the field is added.

Additionally, the following key/values can be used:

	unsigned/true : to generate “UNSIGNED” in the field definition.

	default/value : to generate a default value in the field definition.

	null/true : to generate “NULL” in the field definition. Without this,
the field will default to “NOT NULL”.

	auto_increment/true : generates an auto_increment flag on the
field. Note that the field type must be a type that supports this,
such as integer.

	unique/true : to generate a unique key for the field definition.

$fields = array(
 'blog_id' => array(
 'type' => 'INT',
 'constraint' => 5,
 'unsigned' => TRUE,
 'auto_increment' => TRUE
),
 'blog_title' => array(
 'type' => 'VARCHAR',
 'constraint' => '100',
 'unique' => TRUE,
),
 'blog_author' => array(
 'type' =>'VARCHAR',
 'constraint' => '100',
 'default' => 'King of Town',
),
 'blog_description' => array(
 'type' => 'TEXT',
 'null' => TRUE,
),
);

After the fields have been defined, they can be added using
$this->dbforge->add_field($fields); followed by a call to the
create_table() method.

$this->dbforge->add_field()

The add fields method will accept the above array.

Passing strings as fields

If you know exactly how you want a field to be created, you can pass the
string into the field definitions with add_field()

$this->dbforge->add_field("label varchar(100) NOT NULL DEFAULT 'default label'");

Note

Passing raw strings as fields cannot be followed by add_key() calls on those fields.

Note

Multiple calls to add_field() are cumulative.

Creating an id field

There is a special exception for creating id fields. A field with type
id will automatically be assigned as an INT(9) auto_incrementing
Primary Key.

$this->dbforge->add_field('id');
// gives id INT(9) NOT NULL AUTO_INCREMENT

Adding Keys

Generally speaking, you’ll want your table to have Keys. This is
accomplished with $this->dbforge->add_key(‘field’). An optional second
parameter set to TRUE will make it a primary key. Note that add_key()
must be followed by a call to create_table().

Multiple column non-primary keys must be sent as an array. Sample output
below is for MySQL.

$this->dbforge->add_key('blog_id', TRUE);
// gives PRIMARY KEY `blog_id` (`blog_id`)

$this->dbforge->add_key('blog_id', TRUE);
$this->dbforge->add_key('site_id', TRUE);
// gives PRIMARY KEY `blog_id_site_id` (`blog_id`, `site_id`)

$this->dbforge->add_key('blog_name');
// gives KEY `blog_name` (`blog_name`)

$this->dbforge->add_key(array('blog_name', 'blog_label'));
// gives KEY `blog_name_blog_label` (`blog_name`, `blog_label`)

Creating a table

After fields and keys have been declared, you can create a new table
with

$this->dbforge->create_table('table_name');
// gives CREATE TABLE table_name

An optional second parameter set to TRUE adds an “IF NOT EXISTS” clause
into the definition

$this->dbforge->create_table('table_name', TRUE);
// gives CREATE TABLE IF NOT EXISTS table_name

You could also pass optional table attributes, such as MySQL’s ENGINE:

$attributes = array('ENGINE' => 'InnoDB');
$this->dbforge->create_table('table_name', FALSE, $attributes);
// produces: CREATE TABLE `table_name` (...) ENGINE = InnoDB DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci

Note

Unless you specify the CHARACTER SET and/or COLLATE attributes,
create_table() will always add them with your configured char_set
and dbcollat values, as long as they are not empty (MySQL only).

Dropping a table

Execute a DROP TABLE statement and optionally add an IF EXISTS clause.

// Produces: DROP TABLE table_name
$this->dbforge->drop_table('table_name');

// Produces: DROP TABLE IF EXISTS table_name
$this->dbforge->drop_table('table_name',TRUE);

Renaming a table

Executes a TABLE rename

$this->dbforge->rename_table('old_table_name', 'new_table_name');
// gives ALTER TABLE old_table_name RENAME TO new_table_name

Modifying Tables

Adding a Column to a Table

$this->dbforge->add_column()

The add_column() method is used to modify an existing table. It
accepts the same field array as above, and can be used for an unlimited
number of additional fields.

$fields = array(
 'preferences' => array('type' => 'TEXT')
);
$this->dbforge->add_column('table_name', $fields);
// Executes: ALTER TABLE table_name ADD preferences TEXT

If you are using MySQL or CUBIRD, then you can take advantage of their
AFTER and FIRST clauses to position the new column.

Examples:

// Will place the new column after the `another_field` column:
$fields = array(
 'preferences' => array('type' => 'TEXT', 'after' => 'another_field')
);

// Will place the new column at the start of the table definition:
$fields = array(
 'preferences' => array('type' => 'TEXT', 'first' => TRUE)
);

Dropping a Column From a Table

$this->dbforge->drop_column()

Used to remove a column from a table.

$this->dbforge->drop_column('table_name', 'column_to_drop');

Modifying a Column in a Table

$this->dbforge->modify_column()

The usage of this method is identical to add_column(), except it
alters an existing column rather than adding a new one. In order to
change the name you can add a “name” key into the field defining array.

$fields = array(
 'old_name' => array(
 'name' => 'new_name',
 'type' => 'TEXT',
),
);
$this->dbforge->modify_column('table_name', $fields);
// gives ALTER TABLE table_name CHANGE old_name new_name TEXT

Class Reference

	
class CI_DB_forge

	
	
add_column($table[, $field = array()[, $_after = NULL]])

	

	Parameters:	
	$table (string) – Table name to add the column to

	$field (array) – Column definition(s)

	$_after (string) – Column for AFTER clause (deprecated)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Adds a column to a table. Usage: See Adding a Column to a Table.

	
add_field($field)

	

	Parameters:	
	$field (array) – Field definition to add

	Returns:	CI_DB_forge instance (method chaining)

	Return type:	CI_DB_forge

Adds a field to the set that will be used to create a table. Usage: See Adding fields.

	
add_key($key[, $primary = FALSE])

	

	Parameters:	
	$key (array) – Name of a key field

	$primary (bool) – Set to TRUE if it should be a primary key or a regular one

	Returns:	CI_DB_forge instance (method chaining)

	Return type:	CI_DB_forge

Adds a key to the set that will be used to create a table. Usage: See Adding Keys.

	
create_database($db_name)

	

	Parameters:	
	$db_name (string) – Name of the database to create

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Creates a new database. Usage: See Creating and Dropping Databases.

	
create_table($table[, $if_not_exists = FALSE[, array $attributes = array()]])

	

	Parameters:	
	$table (string) – Name of the table to create

	$if_not_exists (string) – Set to TRUE to add an ‘IF NOT EXISTS’ clause

	$attributes (string) – An associative array of table attributes

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Creates a new table. Usage: See Creating a table.

	
drop_column($table, $column_name)

	

	Parameters:	
	$table (string) – Table name

	$column_name (array) – The column name to drop

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Drops a column from a table. Usage: See Dropping a Column From a Table.

	
drop_database($db_name)

	

	Parameters:	
	$db_name (string) – Name of the database to drop

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Drops a database. Usage: See Creating and Dropping Databases.

	
drop_table($table_name[, $if_exists = FALSE])

	

	Parameters:	
	$table (string) – Name of the table to drop

	$if_exists (string) – Set to TRUE to add an ‘IF EXISTS’ clause

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Drops a table. Usage: See Dropping a table.

	
modify_column($table, $field)

	

	Parameters:	
	$table (string) – Table name

	$field (array) – Column definition(s)

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Modifies a table column. Usage: See Modifying a Column in a Table.

	
rename_table($table_name, $new_table_name)

	

	Parameters:	
	$table (string) – Current of the table

	$new_table_name (string) – New name of the table

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Renames a table. Usage: See Renaming a table.

Database Utility Class

The Database Utility Class contains methods that help you manage your
database.

	Initializing the Utility Class

	Using the Database Utilities
	Retrieve list of database names

	Determine If a Database Exists

	Optimize a Table

	Repair a Table

	Optimize a Database

	Export a Query Result as a CSV File

	Export a Query Result as an XML Document

	Backup Your Database
	Database Backup Notes

	Usage Example

	Setting Backup Preferences

	Description of Backup Preferences

	Class Reference

Initializing the Utility Class

Important

In order to initialize the Utility class, your database
driver must already be running, since the utilities class relies on it.

Load the Utility Class as follows:

$this->load->dbutil();

You can also pass another database object to the DB Utility loader, in case
the database you want to manage isn’t the default one:

$this->myutil = $this->load->dbutil($this->other_db, TRUE);

In the above example, we’re passing a custom database object as the first
parameter and then tell it to return the dbutil object, instead of
assigning it directly to $this->dbutil.

Note

Both of the parameters can be used individually, just pass an empty
value as the first one if you wish to skip it.

Once initialized you will access the methods using the $this->dbutil
object:

$this->dbutil->some_method();

Using the Database Utilities

Retrieve list of database names

Returns an array of database names:

$dbs = $this->dbutil->list_databases();

foreach ($dbs as $db)
{
 echo $db;
}

Determine If a Database Exists

Sometimes it’s helpful to know whether a particular database exists.
Returns a boolean TRUE/FALSE. Usage example:

if ($this->dbutil->database_exists('database_name'))
{
 // some code...
}

Note

Replace database_name with the name of the database you are
looking for. This method is case sensitive.

Optimize a Table

Permits you to optimize a table using the table name specified in the
first parameter. Returns TRUE/FALSE based on success or failure:

if ($this->dbutil->optimize_table('table_name'))
{
 echo 'Success!';
}

Note

Not all database platforms support table optimization. It is
mostly for use with MySQL.

Repair a Table

Permits you to repair a table using the table name specified in the
first parameter. Returns TRUE/FALSE based on success or failure:

if ($this->dbutil->repair_table('table_name'))
{
 echo 'Success!';
}

Note

Not all database platforms support table repairs.

Optimize a Database

Permits you to optimize the database your DB class is currently
connected to. Returns an array containing the DB status messages or
FALSE on failure.

$result = $this->dbutil->optimize_database();

if ($result !== FALSE)
{
 print_r($result);
}

Note

Not all database platforms support database optimization. It
it is mostly for use with MySQL.

Export a Query Result as a CSV File

Permits you to generate a CSV file from a query result. The first
parameter of the method must contain the result object from your
query. Example:

$this->load->dbutil();

$query = $this->db->query("SELECT * FROM mytable");

echo $this->dbutil->csv_from_result($query);

The second, third, and fourth parameters allow you to set the delimiter
newline, and enclosure characters respectively. By default commas are
used as the delimiter, “n” is used as a new line, and a double-quote
is used as the enclosure. Example:

$delimiter = ",";
$newline = "\r\n";
$enclosure = '"';

echo $this->dbutil->csv_from_result($query, $delimiter, $newline, $enclosure);

Important

This method will NOT write the CSV file for you. It
simply creates the CSV layout. If you need to write the file
use the File Helper.

Export a Query Result as an XML Document

Permits you to generate an XML file from a query result. The first
parameter expects a query result object, the second may contain an
optional array of config parameters. Example:

$this->load->dbutil();

$query = $this->db->query("SELECT * FROM mytable");

$config = array (
 'root' => 'root',
 'element' => 'element',
 'newline' => "\n",
 'tab' => "\t"
);

echo $this->dbutil->xml_from_result($query, $config);

Important

This method will NOT write the XML file for you. It
simply creates the XML layout. If you need to write the file
use the File Helper.

Backup Your Database

Database Backup Notes

Permits you to backup your full database or individual tables. The
backup data can be compressed in either Zip or Gzip format.

Note

This feature is only available for MySQL and Interbase/Firebird databases.

Note

For Interbase/Firebird databases, the backup file name is the only parameter.

$this->dbutil->backup(‘db_backup_filename’);

Note

Due to the limited execution time and memory available to PHP,
backing up very large databases may not be possible. If your database is
very large you might need to backup directly from your SQL server via
the command line, or have your server admin do it for you if you do not
have root privileges.

Usage Example

// Load the DB utility class
$this->load->dbutil();

// Backup your entire database and assign it to a variable
$backup = $this->dbutil->backup();

// Load the file helper and write the file to your server
$this->load->helper('file');
write_file('/path/to/mybackup.gz', $backup);

// Load the download helper and send the file to your desktop
$this->load->helper('download');
force_download('mybackup.gz', $backup);

Setting Backup Preferences

Backup preferences are set by submitting an array of values to the first
parameter of the backup() method. Example:

$prefs = array(
 'tables' => array('table1', 'table2'), // Array of tables to backup.
 'ignore' => array(), // List of tables to omit from the backup
 'format' => 'txt', // gzip, zip, txt
 'filename' => 'mybackup.sql', // File name - NEEDED ONLY WITH ZIP FILES
 'add_drop' => TRUE, // Whether to add DROP TABLE statements to backup file
 'add_insert' => TRUE, // Whether to add INSERT data to backup file
 'newline' => "\n" // Newline character used in backup file
);

$this->dbutil->backup($prefs);

Description of Backup Preferences

	Preference
	Default Value
	Options
	Description

	tables
	empty array
	None
	An array of tables you want backed up. If left blank all tables will be
exported.

	ignore
	empty array
	None
	An array of tables you want the backup routine to ignore.

	format
	gzip
	gzip, zip, txt
	The file format of the export file.

	filename
	the current date/time
	None
	The name of the backed-up file. The name is needed only if you are using
zip compression.

	add_drop
	TRUE
	TRUE/FALSE
	Whether to include DROP TABLE statements in your SQL export file.

	add_insert
	TRUE
	TRUE/FALSE
	Whether to include INSERT statements in your SQL export file.

	newline
	“\n”
	“\n”, “\r”, “\r\n”
	Type of newline to use in your SQL export file.

	foreign_key_checks
	TRUE
	TRUE/FALSE
	Whether output should keep foreign key checks enabled.

Class Reference

	
class CI_DB_utility

	
	
backup([$params = array()])

	

	Parameters:	
	$params (array) – An associative array of options

	Returns:	raw/(g)zipped SQL query string

	Return type:	string

Perform a database backup, per user preferences.

	
database_exists($database_name)

	

	Parameters:	
	$database_name (string) – Database name

	Returns:	TRUE if the database exists, FALSE otherwise

	Return type:	bool

Check for the existence of a database.

	
list_databases()

	

	Returns:	Array of database names found

	Return type:	array

Retrieve a list of all the database names.

	
optimize_database()

	

	Returns:	Array of optimization messages or FALSE on failure

	Return type:	array

Optimizes the database.

	
optimize_table($table_name)

	

	Parameters:	
	$table_name (string) – Name of the table to optimize

	Returns:	Array of optimization messages or FALSE on failure

	Return type:	array

Optimizes a database table.

	
repair_table($table_name)

	

	Parameters:	
	$table_name (string) – Name of the table to repair

	Returns:	Array of repair messages or FALSE on failure

	Return type:	array

Repairs a database table.

	
csv_from_result($query[, $delim = ', '[, $newline = "n"[, $enclosure = '"']]])

	

	Parameters:	
	$query (object) – A database result object

	$delim (string) – The CSV field delimiter to use

	$newline (string) – The newline character to use

	$enclosure (string) – The enclosure delimiter to use

	Returns:	The generated CSV file as a string

	Return type:	string

Translates a database result object into a CSV document.

	
xml_from_result($query[, $params = array()])

	

	Parameters:	
	$query (object) – A database result object

	$params (array) – An associative array of preferences

	Returns:	The generated XML document as a string

	Return type:	string

Translates a database result object into an XML document.

DB Driver Reference

This is the platform-independent base DB implementation class.
This class will not be called directly. Rather, the adapter
class for the specific database will extend and instantiate it.

The how-to material for this has been split over several articles.
This article is intended to be a reference for them.

Important

Not all methods are supported by all database drivers,
some of them may fail (and return FALSE) if the underlying
driver does not support them.

	
class CI_DB_driver

	
	
initialize()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Initialize database settings, establish a connection to
the database.

	
db_connect($persistent = TRUE)

	

	Parameters:	
	$persistent (bool) – Whether to establish a persistent connection or a regular one

	Returns:	Database connection resource/object or FALSE on failure

	Return type:	mixed

Establish a connection with the database.

Note

The returned value depends on the underlying
driver in use. For example, a mysqli instance
will be returned with the ‘mysqli’ driver.

	
db_pconnect()

	

	Returns:	Database connection resource/object or FALSE on failure

	Return type:	mixed

Establish a persistent connection with the database.

Note

This method is just an alias for db_connect(TRUE).

	
reconnect()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Keep / reestablish the database connection if no queries
have been sent for a length of time exceeding the
server’s idle timeout.

	
db_select([$database = ''])

	

	Parameters:	
	$database (string) – Database name

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Select / switch the current database.

	
db_set_charset($charset)

	

	Parameters:	
	$charset (string) – Character set name

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Set client character set.

	
platform()

	

	Returns:	Platform name

	Return type:	string

The name of the platform in use (mysql, mssql, etc…).

	
version()

	

	Returns:	The version of the database being used

	Return type:	string

Database version number.

	
query($sql[, $binds = FALSE[, $return_object = NULL]])

	

	Parameters:	
	$sql (string) – The SQL statement to execute

	$binds (array) – An array of binding data

	$return_object (bool) – Whether to return a result object or not

	Returns:	TRUE for successful “write-type” queries, CI_DB_result instance (method chaining) on “query” success, FALSE on failure

	Return type:	mixed

Execute an SQL query.

Accepts an SQL string as input and returns a result object
upon successful execution of a “read” type query.

Returns:

	Boolean TRUE upon successful execution of a “write type” queries

	Boolean FALSE upon failure

	CI_DB_result object for “read type” queries

	
simple_query($sql)

	

	Parameters:	
	$sql (string) – The SQL statement to execute

	Returns:	Whatever the underlying driver’s “query” function returns

	Return type:	mixed

A simplified version of the query() method, appropriate
for use when you don’t need to get a result object or to
just send a query to the database and not care for the result.

	
affected_rows()

	

	Returns:	Number of rows affected

	Return type:	int

Returns the number of rows changed by the last executed query.

Useful for checking how much rows were created, updated or deleted
during the last executed query.

	
trans_strict([$mode = TRUE])

	

	Parameters:	
	$mode (bool) – Strict mode flag

	Return type:	void

Enable/disable transaction “strict” mode.

When strict mode is enabled, if you are running multiple
groups of transactions and one group fails, all subsequent
groups will be rolled back.

If strict mode is disabled, each group is treated
autonomously, meaning a failure of one group will not
affect any others.

	
trans_off()

	

	Return type:	void

Disables transactions at run-time.

	
trans_start([$test_mode = FALSE])

	

	Parameters:	
	$test_mode (bool) – Test mode flag

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Start a transaction.

	
trans_complete()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Complete Transaction.

	
trans_status()

	

	Returns:	TRUE if the transaction succeeded, FALSE if it failed

	Return type:	bool

Lets you retrieve the transaction status flag to
determine if it has failed.

	
compile_binds($sql, $binds)

	

	Parameters:	
	$sql (string) – The SQL statement

	$binds (array) – An array of binding data

	Returns:	The updated SQL statement

	Return type:	string

Compiles an SQL query with the bind values passed for it.

	
is_write_type($sql)

	

	Parameters:	
	$sql (string) – The SQL statement

	Returns:	TRUE if the SQL statement is of “write type”, FALSE if not

	Return type:	bool

Determines if a query is of a “write” type (such as
INSERT, UPDATE, DELETE) or “read” type (i.e. SELECT).

	
elapsed_time([$decimals = 6])

	

	Parameters:	
	$decimals (int) – The number of decimal places

	Returns:	The aggregate query elapsed time, in microseconds

	Return type:	string

Calculate the aggregate query elapsed time.

	
total_queries()

	

	Returns:	The total number of queries executed

	Return type:	int

Returns the total number of queries that have been
executed so far.

	
last_query()

	

	Returns:	The last query executed

	Return type:	string

Returns the last query that was executed.

	
escape($str)

	

	Parameters:	
	$str (mixed) – The value to escape, or an array of multiple ones

	Returns:	The escaped value(s)

	Return type:	mixed

Escapes input data based on type, including boolean and
NULLs.

	
escape_str($str[, $like = FALSE])

	

	Parameters:	
	$str (mixed) – A string value or array of multiple ones

	$like (bool) – Whether or not the string will be used in a LIKE condition

	Returns:	The escaped string(s)

	Return type:	mixed

Escapes string values.

Warning

The returned strings do NOT include quotes
around them.

	
escape_like_str($str)

	

	Parameters:	
	$str (mixed) – A string value or array of multiple ones

	Returns:	The escaped string(s)

	Return type:	mixed

Escape LIKE strings.

Similar to escape_str(), but will also escape the %
and _ wildcard characters, so that they don’t cause
false-positives in LIKE conditions.

Important

The escape_like_str() method uses ‘!’ (exclamation mark)
to escape special characters for LIKE conditions. Because this
method escapes partial strings that you would wrap in quotes
yourself, it cannot automatically add the ESCAPE '!'
condition for you, and so you’ll have to manually do that.

	
primary($table)

	

	Parameters:	
	$table (string) – Table name

	Returns:	The primary key name, FALSE if none

	Return type:	string

Retrieves the primary key of a table.

Note

If the database platform does not support primary
key detection, the first column name may be assumed
as the primary key.

	
count_all([$table = ''])

	

	Parameters:	
	$table (string) – Table name

	Returns:	Row count for the specified table

	Return type:	int

Returns the total number of rows in a table, or 0 if no
table was provided.

	
list_tables([$constrain_by_prefix = FALSE])

	

	Parameters:	
	$constrain_by_prefix (bool) – TRUE to match table names by the configured dbprefix

	Returns:	Array of table names or FALSE on failure

	Return type:	array

Gets a list of the tables in the current database.

	
table_exists($table_name)

	

	Parameters:	
	$table_name (string) – The table name

	Returns:	TRUE if that table exists, FALSE if not

	Return type:	bool

Determine if a particular table exists.

	
list_fields($table)

	

	Parameters:	
	$table (string) – The table name

	Returns:	Array of field names or FALSE on failure

	Return type:	array

Gets a list of the field names in a table.

	
field_exists($field_name, $table_name)

	

	Parameters:	
	$table_name (string) – The table name

	$field_name (string) – The field name

	Returns:	TRUE if that field exists in that table, FALSE if not

	Return type:	bool

Determine if a particular field exists.

	
field_data($table)

	

	Parameters:	
	$table (string) – The table name

	Returns:	Array of field data items or FALSE on failure

	Return type:	array

Gets a list containing field data about a table.

	
escape_identifiers($item)

	

	Parameters:	
	$item (mixed) – The item or array of items to escape

	Returns:	The input item(s), escaped

	Return type:	mixed

Escape SQL identifiers, such as column, table and names.

	
insert_string($table, $data)

	

	Parameters:	
	$table (string) – The target table

	$data (array) – An associative array of key/value pairs

	Returns:	The SQL INSERT statement, as a string

	Return type:	string

Generate an INSERT statement string.

	
update_string($table, $data, $where)

	

	Parameters:	
	$table (string) – The target table

	$data (array) – An associative array of key/value pairs

	$where (mixed) – The WHERE statement conditions

	Returns:	The SQL UPDATE statement, as a string

	Return type:	string

Generate an UPDATE statement string.

	
call_function($function)

	

	Parameters:	
	$function (string) – Function name

	Returns:	The function result

	Return type:	string

Runs a native PHP function , using a platform agnostic
wrapper.

	
cache_set_path([$path = ''])

	

	Parameters:	
	$path (string) – Path to the cache directory

	Return type:	void

Sets the directory path to use for caching storage.

	
cache_on()

	

	Returns:	TRUE if caching is on, FALSE if not

	Return type:	bool

Enable database results caching.

	
cache_off()

	

	Returns:	TRUE if caching is on, FALSE if not

	Return type:	bool

Disable database results caching.

	
cache_delete([$segment_one = ''[, $segment_two = '']])

	

	Parameters:	
	$segment_one (string) – First URI segment

	$segment_two (string) – Second URI segment

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Delete the cache files associated with a particular URI.

	
cache_delete_all()

	

	Returns:	TRUE on success, FALSE on failure

	Return type:	bool

Delete all cache files.

	
close()

	

	Return type:	void

Close the DB Connection.

	
display_error([$error = ''[, $swap = ''[, $native = FALSE]]])

	

	Parameters:	
	$error (string) – The error message

	$swap (string) – Any “swap” values

	$native (bool) – Whether to localize the message

	Return type:	void

	Returns:	Displays the DB error screensends the application/views/errors/error_db.php template

	Return type:	string

Display an error message and stop script execution.

The message is displayed using the
application/views/errors/error_db.php template.

	
protect_identifiers($item[, $prefix_single = FALSE[, $protect_identifiers = NULL[, $field_exists = TRUE]]])

	

	Parameters:	
	$item (string) – The item to work with

	$prefix_single (bool) – Whether to apply the dbprefix even if the input item is a single identifier

	$protect_identifiers (bool) – Whether to quote identifiers

	$field_exists (bool) – Whether the supplied item contains a field name or not

	Returns:	The modified item

	Return type:	string

Takes a column or table name (optionally with an alias)
and applies the configured dbprefix to it.

Some logic is necessary in order to deal with
column names that include the path.

Consider a query like this:

SELECT * FROM hostname.database.table.column AS c FROM hostname.database.table

Or a query with aliasing:

SELECT m.member_id, m.member_name FROM members AS m

Since the column name can include up to four segments
(host, DB, table, column) or also have an alias prefix,
we need to do a bit of work to figure this out and
insert the table prefix (if it exists) in the proper
position, and escape only the correct identifiers.

This method is used extensively by the Query Builder class.

Helpers

	Array Helper

	CAPTCHA Helper

	Cookie Helper

	Date Helper

	Directory Helper

	Download Helper

	Email Helper

	File Helper

	Form Helper

	HTML Helper

	Inflector Helper

	Language Helper

	Number Helper

	Path Helper

	Security Helper

	Smiley Helper

	String Helper

	Text Helper

	Typography Helper

	URL Helper

	XML Helper

Array Helper

The Array Helper file contains functions that assist in working with
arrays.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('array');

Available Functions

The following functions are available:

	
element($item, $array[, $default = NULL])

	

	Parameters:	
	$item (string) – Item to fetch from the array

	$array (array) – Input array

	$default (bool) – What to return if the array isn’t valid

	Returns:	NULL on failure or the array item.

	Return type:	mixed

Lets you fetch an item from an array. The function tests whether the
array index is set and whether it has a value. If a value exists it is
returned. If a value does not exist it returns NULL, or whatever you’ve
specified as the default value via the third parameter.

Example:

$array = array(
 'color' => 'red',
 'shape' => 'round',
 'size' => ''
);

echo element('color', $array); // returns "red"
echo element('size', $array, 'foobar'); // returns "foobar"

	
elements($items, $array[, $default = NULL])

	

	Parameters:	
	$item (string) – Item to fetch from the array

	$array (array) – Input array

	$default (bool) – What to return if the array isn’t valid

	Returns:	NULL on failure or the array item.

	Return type:	mixed

Lets you fetch a number of items from an array. The function tests
whether each of the array indices is set. If an index does not exist it
is set to NULL, or whatever you’ve specified as the default value via
the third parameter.

Example:

$array = array(
 'color' => 'red',
 'shape' => 'round',
 'radius' => '10',
 'diameter' => '20'
);

$my_shape = elements(array('color', 'shape', 'height'), $array);

The above will return the following array:

array(
 'color' => 'red',
 'shape' => 'round',
 'height' => NULL
);

You can set the third parameter to any default value you like.

$my_shape = elements(array('color', 'shape', 'height'), $array, 'foobar');

The above will return the following array:

array(
 'color' => 'red',
 'shape' => 'round',
 'height' => 'foobar'
);

This is useful when sending the $_POST array to one of your Models.
This prevents users from sending additional POST data to be entered into
your tables.

$this->load->model('post_model');
$this->post_model->update(
 elements(array('id', 'title', 'content'), $_POST)
);

This ensures that only the id, title and content fields are sent to be
updated.

	
random_element($array)

	

	Parameters:	
	$array (array) – Input array

	Returns:	A random element from the array

	Return type:	mixed

Takes an array as input and returns a random element from it.

Usage example:

$quotes = array(
 "I find that the harder I work, the more luck I seem to have. - Thomas Jefferson",
 "Don't stay in bed, unless you can make money in bed. - George Burns",
 "We didn't lose the game; we just ran out of time. - Vince Lombardi",
 "If everything seems under control, you're not going fast enough. - Mario Andretti",
 "Reality is merely an illusion, albeit a very persistent one. - Albert Einstein",
 "Chance favors the prepared mind - Louis Pasteur"
);

echo random_element($quotes);

CAPTCHA Helper

The CAPTCHA Helper file contains functions that assist in creating
CAPTCHA images.

	Loading this Helper

	Using the CAPTCHA helper
	Adding a Database

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('captcha');

Using the CAPTCHA helper

Once loaded you can generate a CAPTCHA like this:

$vals = array(
 'word' => 'Random word',
 'img_path' => './captcha/',
 'img_url' => 'http://example.com/captcha/',
 'font_path' => './path/to/fonts/texb.ttf',
 'img_width' => '150',
 'img_height' => 30,
 'expiration' => 7200,
 'word_length' => 8,
 'font_size' => 16,
 'img_id' => 'Imageid',
 'pool' => '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',

 // White background and border, black text and red grid
 'colors' => array(
 'background' => array(255, 255, 255),
 'border' => array(255, 255, 255),
 'text' => array(0, 0, 0),
 'grid' => array(255, 40, 40)
)
);

$cap = create_captcha($vals);
echo $cap['image'];

	The captcha function requires the GD image library.

	Only the img_path and img_url are required.

	If a word is not supplied, the function will generate a random
ASCII string. You might put together your own word library that you
can draw randomly from.

	If you do not specify a path to a TRUE TYPE font, the native ugly GD
font will be used.

	The “captcha” directory must be writable

	The expiration (in seconds) signifies how long an image will remain
in the captcha folder before it will be deleted. The default is two
hours.

	word_length defaults to 8, pool defaults to ‘0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’

	font_size defaults to 16, the native GD font has a size limit. Specify a “true type” font for bigger sizes.

	The img_id will be set as the “id” of the captcha image.

	If any of the colors values is missing, it will be replaced by the default.

Adding a Database

In order for the captcha function to prevent someone from submitting,
you will need to add the information returned from create_captcha()
to your database. Then, when the data from the form is submitted by
the user you will need to verify that the data exists in the database
and has not expired.

Here is a table prototype:

CREATE TABLE captcha (
 captcha_id bigint(13) unsigned NOT NULL auto_increment,
 captcha_time int(10) unsigned NOT NULL,
 ip_address varchar(45) NOT NULL,
 word varchar(20) NOT NULL,
 PRIMARY KEY `captcha_id` (`captcha_id`),
 KEY `word` (`word`)
);

Here is an example of usage with a database. On the page where the
CAPTCHA will be shown you’ll have something like this:

$this->load->helper('captcha');
$vals = array(
 'img_path' => './captcha/',
 'img_url' => 'http://example.com/captcha/'
);

$cap = create_captcha($vals);
$data = array(
 'captcha_time' => $cap['time'],
 'ip_address' => $this->input->ip_address(),
 'word' => $cap['word']
);

$query = $this->db->insert_string('captcha', $data);
$this->db->query($query);

echo 'Submit the word you see below:';
echo $cap['image'];
echo '<input type="text" name="captcha" value="" />';

Then, on the page that accepts the submission you’ll have something like
this:

// First, delete old captchas
$expiration = time() - 7200; // Two hour limit
$this->db->where('captcha_time < ', $expiration)
 ->delete('captcha');

// Then see if a captcha exists:
$sql = 'SELECT COUNT(*) AS count FROM captcha WHERE word = ? AND ip_address = ? AND captcha_time > ?';
$binds = array($_POST['captcha'], $this->input->ip_address(), $expiration);
$query = $this->db->query($sql, $binds);
$row = $query->row();

if ($row->count == 0)
{
 echo 'You must submit the word that appears in the image.';
}

Available Functions

The following functions are available:

	
create_captcha([$data = ''[, $img_path = ''[, $img_url = ''[, $font_path = '']]]])

	

	Parameters:	
	$data (array) – Array of data for the CAPTCHA

	$img_path (string) – Path to create the image in (DEPRECATED)

	$img_url (string) – URL to the CAPTCHA image folder (DEPRECATED)

	$font_path (string) – Server path to font (DEPRECATED)

	Returns:	array(‘word’ => $word, ‘time’ => $now, ‘image’ => $img)

	Return type:	array

Takes an array of information to generate the CAPTCHA as input and
creates the image to your specifications, returning an array of
associative data about the image.

array(
 'image' => IMAGE TAG
 'time' => TIMESTAMP (in microtime)
 'word' => CAPTCHA WORD
)

The image is the actual image tag:

The time is the micro timestamp used as the image name without the
file extension. It will be a number like this: 1139612155.3422

The word is the word that appears in the captcha image, which if not
supplied to the function, will be a random string.

Note

Usage of the $img_path, $img_url and $font_path
parameters is DEPRECATED. Provide them in the $data array
instead.

Cookie Helper

The Cookie Helper file contains functions that assist in working with
cookies.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('cookie');

Available Functions

The following functions are available:

	
set_cookie($name[, $value = ''[, $expire = ''[, $domain = ''[, $path = '/'[, $prefix = ''[, $secure = NULL[, $httponly = NULL]]]]]]])

	

	Parameters:	
	$name (mixed) – Cookie name or associative array of all of the parameters available to this function

	$value (string) – Cookie value

	$expire (int) – Number of seconds until expiration

	$domain (string) – Cookie domain (usually: .yourdomain.com)

	$path (string) – Cookie path

	$prefix (string) – Cookie name prefix

	$secure (bool) – Whether to only send the cookie through HTTPS

	$httponly (bool) – Whether to hide the cookie from JavaScript

	Return type:	void

This helper function gives you friendlier syntax to set browser
cookies. Refer to the Input Library for
a description of its use, as this function is an alias for
CI_Input::set_cookie().

	
get_cookie($index[, $xss_clean = NULL])

	

	Parameters:	
	$index (string) – Cookie name

	$xss_clean (bool) – Whether to apply XSS filtering to the returned value

	Returns:	The cookie value or NULL if not found

	Return type:	mixed

This helper function gives you friendlier syntax to get browser
cookies. Refer to the Input Library for
detailed description of its use, as this function acts very
similarly to CI_Input::cookie(), except it will also prepend
the $config['cookie_prefix'] that you might’ve set in your
application/config/config.php file.

	
delete_cookie($name[, $domain = ''[, $path = '/'[, $prefix = '']]])

	

	Parameters:	
	$name (string) – Cookie name

	$domain (string) – Cookie domain (usually: .yourdomain.com)

	$path (string) – Cookie path

	$prefix (string) – Cookie name prefix

	Return type:	void

Lets you delete a cookie. Unless you’ve set a custom path or other
values, only the name of the cookie is needed.

delete_cookie('name');

This function is otherwise identical to set_cookie(), except that it
does not have the value and expiration parameters. You can submit an
array of values in the first parameter or you can set discrete
parameters.

delete_cookie($name, $domain, $path, $prefix);

Date Helper

The Date Helper file contains functions that help you work with dates.

	Loading this Helper

	Available Functions

	Timezone Reference

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('date');

Available Functions

The following functions are available:

	
now([$timezone = NULL])

	

	Parameters:	
	$timezone (string) – Timezone

	Returns:	UNIX timestamp

	Return type:	int

Returns the current time as a UNIX timestamp, referenced either to your server’s
local time or any PHP supported timezone, based on the “time reference” setting
in your config file. If you do not intend to set your master time reference to
any other PHP supported timezone (which you’ll typically do if you run a site
that lets each user set their own timezone settings) there is no benefit to using
this function over PHP’s time() function.

echo now('Australia/Victoria');

If a timezone is not provided, it will return time() based on the
time_reference setting.

	
mdate([$datestr = ''[, $time = '']])

	

	Parameters:	
	$datestr (string) – Date string

	$time (int) – UNIX timestamp

	Returns:	MySQL-formatted date

	Return type:	string

This function is identical to PHP’s date() [http://php.net/manual/en/function.date.php]
function, except that it lets you use MySQL style date codes, where each
code letter is preceded with a percent sign, e.g. %Y %m %d

The benefit of doing dates this way is that you don’t have to worry
about escaping any characters that are not date codes, as you would
normally have to do with the date() function.

Example:

$datestring = 'Year: %Y Month: %m Day: %d - %h:%i %a';
$time = time();
echo mdate($datestring, $time);

If a timestamp is not included in the second parameter the current time
will be used.

	
standard_date([$fmt = 'DATE_RFC822'[, $time = NULL]])

	

	Parameters:	
	$fmt (string) – Date format

	$time (int) – UNIX timestamp

	Returns:	Formatted date or FALSE on invalid format

	Return type:	string

Lets you generate a date string in one of several standardized formats.

Example:

$format = 'DATE_RFC822';
$time = time();
echo standard_date($format, $time);

Note

This function is DEPRECATED. Use the native date() combined with
DateTime’s format constants [https://secure.php.net/manual/en/class.datetime.php#datetime.constants.types]
instead:

echo date(DATE_RFC822, time());

Supported formats:

	Constant
	Description
	Example

	DATE_ATOM
	Atom
	2005-08-15T16:13:03+0000

	DATE_COOKIE
	HTTP Cookies
	Sun, 14 Aug 2005 16:13:03 UTC

	DATE_ISO8601
	ISO-8601
	2005-08-14T16:13:03+00:00

	DATE_RFC822
	RFC 822
	Sun, 14 Aug 05 16:13:03 UTC

	DATE_RFC850
	RFC 850
	Sunday, 14-Aug-05 16:13:03 UTC

	DATE_RFC1036
	RFC 1036
	Sunday, 14-Aug-05 16:13:03 UTC

	DATE_RFC1123
	RFC 1123
	Sun, 14 Aug 2005 16:13:03 UTC

	DATE_RFC2822
	RFC 2822
	Sun, 14 Aug 2005 16:13:03 +0000

	DATE_RSS
	RSS
	Sun, 14 Aug 2005 16:13:03 UTC

	DATE_W3C
	W3C
	2005-08-14T16:13:03+0000

	
local_to_gmt([$time = ''])

	

	Parameters:	
	$time (int) – UNIX timestamp

	Returns:	UNIX timestamp

	Return type:	int

Takes a UNIX timestamp as input and returns it as GMT.

Example:

$gmt = local_to_gmt(time());

	
gmt_to_local([$time = ''[, $timezone = 'UTC'[, $dst = FALSE]]])

	

	Parameters:	
	$time (int) – UNIX timestamp

	$timezone (string) – Timezone

	$dst (bool) – Whether DST is active

	Returns:	UNIX timestamp

	Return type:	int

Takes a UNIX timestamp (referenced to GMT) as input, and converts it to
a localized timestamp based on the timezone and Daylight Saving Time
submitted.

Example:

$timestamp = 1140153693;
$timezone = 'UM8';
$daylight_saving = TRUE;
echo gmt_to_local($timestamp, $timezone, $daylight_saving);

Note

For a list of timezones see the reference at the bottom of this page.

	
mysql_to_unix([$time = ''])

	

	Parameters:	
	$time (string) – MySQL timestamp

	Returns:	UNIX timestamp

	Return type:	int

Takes a MySQL Timestamp as input and returns it as a UNIX timestamp.

Example:

$unix = mysql_to_unix('20061124092345');

	
unix_to_human([$time = ''[, $seconds = FALSE[, $fmt = 'us']]])

	

	Parameters:	
	$time (int) – UNIX timestamp

	$seconds (bool) – Whether to show seconds

	$fmt (string) – format (us or euro)

	Returns:	Formatted date

	Return type:	string

Takes a UNIX timestamp as input and returns it in a human readable
format with this prototype:

YYYY-MM-DD HH:MM:SS AM/PM

This can be useful if you need to display a date in a form field for
submission.

The time can be formatted with or without seconds, and it can be set to
European or US format. If only the timestamp is submitted it will return
the time without seconds formatted for the U.S.

Examples:

$now = time();
echo unix_to_human($now); // U.S. time, no seconds
echo unix_to_human($now, TRUE, 'us'); // U.S. time with seconds
echo unix_to_human($now, TRUE, 'eu'); // Euro time with seconds

	
human_to_unix([$datestr = ''])

	

	Parameters:	
	$datestr (int) – Date string

	Returns:	UNIX timestamp or FALSE on failure

	Return type:	int

The opposite of the unix_to_time() function. Takes a “human”
time as input and returns it as a UNIX timestamp. This is useful if you
accept “human” formatted dates submitted via a form. Returns boolean FALSE
date string passed to it is not formatted as indicated above.

Example:

$now = time();
$human = unix_to_human($now);
$unix = human_to_unix($human);

	
nice_date([$bad_date = ''[, $format = FALSE]])

	

	Parameters:	
	$bad_date (int) – The terribly formatted date-like string

	$format (string) – Date format to return (same as PHP’s date() function)

	Returns:	Formatted date

	Return type:	string

This function can take a number poorly-formed date formats and convert
them into something useful. It also accepts well-formed dates.

The function will return a UNIX timestamp by default. You can, optionally,
pass a format string (the same type as the PHP date() function accepts)
as the second parameter.

Example:

$bad_date = '199605';
// Should Produce: 1996-05-01
$better_date = nice_date($bad_date, 'Y-m-d');

$bad_date = '9-11-2001';
// Should Produce: 2001-09-11
$better_date = nice_date($bad_date, 'Y-m-d');

Note

This function is DEPRECATED. Use PHP’s native DateTime class [https://secure.php.net/datetime] instead.

	
timespan([$seconds = 1[, $time = ''[, $units = '']]])

	

	Parameters:	
	$seconds (int) – Number of seconds

	$time (string) – UNIX timestamp

	$units (int) – Number of time units to display

	Returns:	Formatted time difference

	Return type:	string

Formats a UNIX timestamp so that is appears similar to this:

1 Year, 10 Months, 2 Weeks, 5 Days, 10 Hours, 16 Minutes

The first parameter must contain a UNIX timestamp.
The second parameter must contain a timestamp that is greater that the
first timestamp.
The thirdparameter is optional and limits the number of time units to display.

If the second parameter empty, the current time will be used.

The most common purpose for this function is to show how much time has
elapsed from some point in time in the past to now.

Example:

$post_date = '1079621429';
$now = time();
$units = 2;
echo timespan($post_date, $now, $units);

Note

The text generated by this function is found in the following language
file: language/<your_lang>/date_lang.php

	
days_in_month([$month = 0[, $year = '']])

	

	Parameters:	
	$month (int) – a numeric month

	$year (int) – a numeric year

	Returns:	Count of days in the specified month

	Return type:	int

Returns the number of days in a given month/year. Takes leap years into
account.

Example:

echo days_in_month(06, 2005);

If the second parameter is empty, the current year will be used.

Note

This function will alias the native cal_days_in_month(), if
it is available.

	
date_range([$unix_start = ''[, $mixed = ''[, $is_unix = TRUE[, $format = 'Y-m-d']]]])

	

	Parameters:	
	$unix_start (int) – UNIX timestamp of the range start date

	$mixed (int) – UNIX timestamp of the range end date or interval in days

	$is_unix (bool) – set to FALSE if $mixed is not a timestamp

	$format (string) – Output date format, same as in date()

	Returns:	An array of dates

	Return type:	array

Returns a list of dates within a specified period.

Example:

$range = date_range('2012-01-01', '2012-01-15');
echo "First 15 days of 2012:";
foreach ($range as $date)
{
 echo $date."\n";
}

	
timezones([$tz = ''])

	

	Parameters:	
	$tz (string) – A numeric timezone

	Returns:	Hour difference from UTC

	Return type:	int

Takes a timezone reference (for a list of valid timezones, see the
“Timezone Reference” below) and returns the number of hours offset from
UTC.

Example:

echo timezones('UM5');

This function is useful when used with timezone_menu().

	
timezone_menu([$default = 'UTC'[, $class = ''[, $name = 'timezones'[, $attributes = '']]]])

	

	Parameters:	
	$default (string) – Timezone

	$class (string) – Class name

	$name (string) – Menu name

	$attributes (mixed) – HTML attributes

	Returns:	HTML drop down menu with time zones

	Return type:	string

Generates a pull-down menu of timezones, like this one:

 (UTC -12:00) Baker/Howland Island

 (UTC -11:00) Samoa Time Zone, Niue

 (UTC -10:00) Hawaii-Aleutian Standard Time, Cook Islands, Tahiti

 (UTC -9:30) Marquesas Islands

 (UTC -9:00) Alaska Standard Time, Gambier Islands

 (UTC -8:00) Pacific Standard Time, Clipperton Island

 (UTC -7:00) Mountain Standard Time

 (UTC -6:00) Central Standard Time

 (UTC -5:00) Eastern Standard Time, Western Caribbean Standard Time

 (UTC -4:30) Venezuelan Standard Time

 (UTC -4:00) Atlantic Standard Time, Eastern Caribbean Standard Time

 (UTC -3:30) Newfoundland Standard Time

 (UTC -3:00) Argentina, Brazil, French Guiana, Uruguay

 (UTC -2:00) South Georgia/South Sandwich Islands

 (UTC -1:00) Azores, Cape Verde Islands

 (UTC) Greenwich Mean Time, Western European Time

 (UTC +1:00) Central European Time, West Africa Time

 (UTC +2:00) Central Africa Time, Eastern European Time, Kaliningrad Time

 (UTC +3:00) Moscow Time, East Africa Time

 (UTC +3:30) Iran Standard Time

 (UTC +4:00) Azerbaijan Standard Time, Samara Time

 (UTC +4:30) Afghanistan

 (UTC +5:00) Pakistan Standard Time, Yekaterinburg Time

 (UTC +5:30) Indian Standard Time, Sri Lanka Time

 (UTC +5:45) Nepal Time

 (UTC +6:00) Bangladesh Standard Time, Bhutan Time, Omsk Time

 (UTC +6:30) Cocos Islands, Myanmar

 (UTC +7:00) Krasnoyarsk Time, Cambodia, Laos, Thailand, Vietnam

 (UTC +8:00) Australian Western Standard Time, Beijing Time, Irkutsk Time

 (UTC +8:45) Australian Central Western Standard Time

 (UTC +9:00) Japan Standard Time, Korea Standard Time, Yakutsk Time

 (UTC +9:30) Australian Central Standard Time

 (UTC +10:00) Australian Eastern Standard Time, Vladivostok Time

 (UTC +10:30) Lord Howe Island

 (UTC +11:00) Srednekolymsk Time, Solomon Islands, Vanuatu

 (UTC +11:30) Norfolk Island

 (UTC +12:00) Fiji, Gilbert Islands, Kamchatka Time, New Zealand Standard Time

 (UTC +12:45) Chatham Islands Standard Time

 (UTC +13:00) Phoenix Islands Time, Tonga

 (UTC +14:00) Line Islands

This menu is useful if you run a membership site in which your users are
allowed to set their local timezone value.

The first parameter lets you set the “selected” state of the menu. For
example, to set Pacific time as the default you will do this:

echo timezone_menu('UM8');

Please see the timezone reference below to see the values of this menu.

The second parameter lets you set a CSS class name for the menu.

The fourth parameter lets you set one or more attributes on the generated select tag.

Note

The text contained in the menu is found in the following
language file: language/<your_lang>/date_lang.php

Timezone Reference

The following table indicates each timezone and its location.

Note some of the location lists have been abridged for clarity and formatting.

	Time Zone
	Location

	UM12
	(UTC - 12:00) Baker/Howland Island

	UM11
	(UTC - 11:00) Samoa Time Zone, Niue

	UM10
	(UTC - 10:00) Hawaii-Aleutian Standard Time, Cook Islands

	UM95
	(UTC - 09:30) Marquesas Islands

	UM9
	(UTC - 09:00) Alaska Standard Time, Gambier Islands

	UM8
	(UTC - 08:00) Pacific Standard Time, Clipperton Island

	UM7
	(UTC - 07:00) Mountain Standard Time

	UM6
	(UTC - 06:00) Central Standard Time

	UM5
	(UTC - 05:00) Eastern Standard Time, Western Caribbean

	UM45
	(UTC - 04:30) Venezuelan Standard Time

	UM4
	(UTC - 04:00) Atlantic Standard Time, Eastern Caribbean

	UM35
	(UTC - 03:30) Newfoundland Standard Time

	UM3
	(UTC - 03:00) Argentina, Brazil, French Guiana, Uruguay

	UM2
	(UTC - 02:00) South Georgia/South Sandwich Islands

	UM1
	(UTC -1:00) Azores, Cape Verde Islands

	UTC
	(UTC) Greenwich Mean Time, Western European Time

	UP1
	(UTC +1:00) Central European Time, West Africa Time

	UP2
	(UTC +2:00) Central Africa Time, Eastern European Time

	UP3
	(UTC +3:00) Moscow Time, East Africa Time

	UP35
	(UTC +3:30) Iran Standard Time

	UP4
	(UTC +4:00) Azerbaijan Standard Time, Samara Time

	UP45
	(UTC +4:30) Afghanistan

	UP5
	(UTC +5:00) Pakistan Standard Time, Yekaterinburg Time

	UP55
	(UTC +5:30) Indian Standard Time, Sri Lanka Time

	UP575
	(UTC +5:45) Nepal Time

	UP6
	(UTC +6:00) Bangladesh Standard Time, Bhutan Time, Omsk Time

	UP65
	(UTC +6:30) Cocos Islands, Myanmar

	UP7
	(UTC +7:00) Krasnoyarsk Time, Cambodia, Laos, Thailand, Vietnam

	UP8
	(UTC +8:00) Australian Western Standard Time, Beijing Time

	UP875
	(UTC +8:45) Australian Central Western Standard Time

	UP9
	(UTC +9:00) Japan Standard Time, Korea Standard Time, Yakutsk

	UP95
	(UTC +9:30) Australian Central Standard Time

	UP10
	(UTC +10:00) Australian Eastern Standard Time, Vladivostok Time

	UP105
	(UTC +10:30) Lord Howe Island

	UP11
	(UTC +11:00) Srednekolymsk Time, Solomon Islands, Vanuatu

	UP115
	(UTC +11:30) Norfolk Island

	UP12
	(UTC +12:00) Fiji, Gilbert Islands, Kamchatka, New Zealand

	UP1275
	(UTC +12:45) Chatham Islands Standard Time

	UP13
	(UTC +13:00) Phoenix Islands Time, Tonga

	UP14
	(UTC +14:00) Line Islands

Directory Helper

The Directory Helper file contains functions that assist in working with
directories.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('directory');

Available Functions

The following functions are available:

	
directory_map($source_dir[, $directory_depth = 0[, $hidden = FALSE]])

	

	Parameters:	
	$source_dir (string) – Path to the source directory

	$directory_depth (int) – Depth of directories to traverse (0 = fully recursive, 1 = current dir, etc)

	$hidden (bool) – Whether to include hidden directories

	Returns:	An array of files

	Return type:	array

Examples:

$map = directory_map('./mydirectory/');

Note

Paths are almost always relative to your main index.php file.

Sub-folders contained within the directory will be mapped as well. If
you wish to control the recursion depth, you can do so using the second
parameter (integer). A depth of 1 will only map the top level directory:

$map = directory_map('./mydirectory/', 1);

By default, hidden files will not be included in the returned array. To
override this behavior, you may set a third parameter to true (boolean):

$map = directory_map('./mydirectory/', FALSE, TRUE);

Each folder name will be an array index, while its contained files will
be numerically indexed. Here is an example of a typical array:

Array (
 [libraries] => Array
 (
 [0] => benchmark.html
 [1] => config.html
 ["database/"] => Array
 (
 [0] => query_builder.html
 [1] => binds.html
 [2] => configuration.html
 [3] => connecting.html
 [4] => examples.html
 [5] => fields.html
 [6] => index.html
 [7] => queries.html
)
 [2] => email.html
 [3] => file_uploading.html
 [4] => image_lib.html
 [5] => input.html
 [6] => language.html
 [7] => loader.html
 [8] => pagination.html
 [9] => uri.html
)

Download Helper

The Download Helper lets you download data to your desktop.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('download');

Available Functions

The following functions are available:

	
force_download([$filename = ''[, $data = ''[, $set_mime = FALSE]]])

	

	Parameters:	
	$filename (string) – Filename

	$data (mixed) – File contents

	$set_mime (bool) – Whether to try to send the actual MIME type

	Return type:	void

Generates server headers which force data to be downloaded to your
desktop. Useful with file downloads. The first parameter is the name
you want the downloaded file to be named, the second parameter is the
file data.

If you set the second parameter to NULL and $filename is an existing, readable
file path, then its content will be read instead.

If you set the third parameter to boolean TRUE, then the actual file MIME type
(based on the filename extension) will be sent, so that if your browser has a
handler for that type - it can use it.

Example:

$data = 'Here is some text!';
$name = 'mytext.txt';
force_download($name, $data);

If you want to download an existing file from your server you’ll need to
do the following:

// Contents of photo.jpg will be automatically read
force_download('/path/to/photo.jpg', NULL);

Email Helper

The Email Helper provides some assistive functions for working with
Email. For a more robust email solution, see CodeIgniter’s Email
Class.

Important

The Email helper is DEPRECATED and is currently
only kept for backwards compatibility.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('email');

Available Functions

The following functions are available:

	
valid_email($email)

	

	Parameters:	
	$email (string) – E-mail address

	Returns:	TRUE if a valid email is supplied, FALSE otherwise

	Return type:	bool

Checks if the input is a correctly formatted e-mail address. Note that is
doesn’t actually prove that the address will be able recieve mail, but
simply that it is a validly formed address.

Example:

if (valid_email('email@somesite.com'))
{
 echo 'email is valid';
}
else
{
 echo 'email is not valid';
}

Note

All that this function does is to use PHP’s native filter_var():

(bool) filter_var($email, FILTER_VALIDATE_EMAIL);

	
send_email($recipient, $subject, $message)

	

	Parameters:	
	$recipient (string) – E-mail address

	$subject (string) – Mail subject

	$message (string) – Message body

	Returns:	TRUE if the mail was successfully sent, FALSE in case of an error

	Return type:	bool

Sends an email using PHP’s native mail() [http://php.net/function.mail]
function.

Note

All that this function does is to use PHP’s native mail

mail($recipient, $subject, $message);

For a more robust email solution, see CodeIgniter’s Email Library.

File Helper

The File Helper file contains functions that assist in working with files.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('file');

Available Functions

The following functions are available:

	
read_file($file)

	

	Parameters:	
	$file (string) – File path

	Returns:	File contents or FALSE on failure

	Return type:	string

Returns the data contained in the file specified in the path.

Example:

$string = read_file('./path/to/file.php');

The path can be a relative or full server path. Returns FALSE (boolean) on failure.

Note

The path is relative to your main site index.php file, NOT your
controller or view files. CodeIgniter uses a front controller so paths
are always relative to the main site index.

Note

This function is DEPRECATED. Use the native file_get_contents()
instead.

Important

If your server is running an open_basedir restriction this
function might not work if you are trying to access a file above the
calling script.

	
write_file($path, $data[, $mode = 'wb'])

	

	Parameters:	
	$path (string) – File path

	$data (string) – Data to write to file

	$mode (string) – fopen() mode

	Returns:	TRUE if the write was successful, FALSE in case of an error

	Return type:	bool

Writes data to the file specified in the path. If the file does not exist then the
function will create it.

Example:

$data = 'Some file data';
if (! write_file('./path/to/file.php', $data))
{
 echo 'Unable to write the file';
}
else
{
 echo 'File written!';
}

You can optionally set the write mode via the third parameter:

write_file('./path/to/file.php', $data, 'r+');

The default mode is ‘wb’. Please see the PHP user guide [http://php.net/manual/en/function.fopen.php]
for mode options.

Note

The path is relative to your main site index.php file, NOT your
controller or view files. CodeIgniter uses a front controller so paths
are always relative to the main site index.

Note

This function acquires an exclusive lock on the file while writing to it.

	
delete_files($path[, $del_dir = FALSE[, $htdocs = FALSE]])

	

	Parameters:	
	$path (string) – Directory path

	$del_dir (bool) – Whether to also delete directories

	$htdocs (bool) – Whether to skip deleting .htaccess and index page files

	Returns:	TRUE on success, FALSE in case of an error

	Return type:	bool

Deletes ALL files contained in the supplied path.

Example:

delete_files('./path/to/directory/');

If the second parameter is set to TRUE, any directories contained within the supplied
root path will be deleted as well.

Example:

delete_files('./path/to/directory/', TRUE);

Note

The files must be writable or owned by the system in order to be deleted.

	
get_filenames($source_dir[, $include_path = FALSE])

	

	Parameters:	
	$source_dir (string) – Directory path

	$include_path (bool) – Whether to include the path as part of the filenames

	Returns:	An array of file names

	Return type:	array

Takes a server path as input and returns an array containing the names of all files
contained within it. The file path can optionally be added to the file names by setting
the second parameter to TRUE.

Example:

$controllers = get_filenames(APPPATH.'controllers/');

	
get_dir_file_info($source_dir, $top_level_only)

	

	Parameters:	
	$source_dir (string) – Directory path

	$top_level_only (bool) – Whether to look only at the specified directory (excluding sub-directories)

	Returns:	An array containing info on the supplied directory’s contents

	Return type:	array

Reads the specified directory and builds an array containing the filenames, filesize,
dates, and permissions. Sub-folders contained within the specified path are only read
if forced by sending the second parameter to FALSE, as this can be an intensive
operation.

Example:

$models_info = get_dir_file_info(APPPATH.'models/');

	
get_file_info($file[, $returned_values = array('name', 'server_path', 'size', 'date')])

	

	Parameters:	
	$file (string) – File path

	$returned_values (array) – What type of info to return

	Returns:	An array containing info on the specified file or FALSE on failure

	Return type:	array

Given a file and path, returns (optionally) the name, path, size and date modified
information attributes for a file. Second parameter allows you to explicitly declare what
information you want returned.

Valid $returned_values options are: name, size, date, readable, writeable,
executable and fileperms.

	
get_mime_by_extension($filename)

	

	Parameters:	
	$filename (string) – File name

	Returns:	MIME type string or FALSE on failure

	Return type:	string

Translates a filename extension into a MIME type based on config/mimes.php.
Returns FALSE if it can’t determine the type, or read the MIME config file.

$file = 'somefile.png';
echo $file.' is has a mime type of '.get_mime_by_extension($file);

Note

This is not an accurate way of determining file MIME types, and
is here strictly for convenience. It should not be used for security
purposes.

	
symbolic_permissions($perms)

	

	Parameters:	
	$perms (int) – Permissions

	Returns:	Symbolic permissions string

	Return type:	string

Takes numeric permissions (such as is returned by fileperms()) and returns
standard symbolic notation of file permissions.

echo symbolic_permissions(fileperms('./index.php')); // -rw-r--r--

	
octal_permissions($perms)

	

	Parameters:	
	$perms (int) – Permissions

	Returns:	Octal permissions string

	Return type:	string

Takes numeric permissions (such as is returned by fileperms()) and returns
a three character octal notation of file permissions.

echo octal_permissions(fileperms('./index.php')); // 644

Form Helper

The Form Helper file contains functions that assist in working with
forms.

	Loading this Helper

	Escaping field values

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('form');

Escaping field values

You may need to use HTML and characters such as quotes within your form
elements. In order to do that safely, you’ll need to use
common function
html_escape().

Consider the following example:

$string = 'Here is a string containing "quoted" text.';

<input type="text" name="myfield" value="<?php echo $string; ?>" />

Since the above string contains a set of quotes, it will cause the form
to break. The html_escape() function converts HTML special
characters so that it can be used safely:

<input type="text" name="myfield" value="<?php echo html_escape($string); ?>" />

Note

If you use any of the form helper functions listed on this page,
the form values will be automatically escaped, so there is no need
to call this function. Use it only if you are creating your own
form elements.

Available Functions

The following functions are available:

	
form_open([$action = ''[, $attributes = ''[, $hidden = array()]]])

	

	Parameters:	
	$action (string) – Form action/target URI string

	$attributes (array) – HTML attributes

	$hidden (array) – An array of hidden fields’ definitions

	Returns:	An HTML form opening tag

	Return type:	string

Creates an opening form tag with a base URL built from your config preferences.
It will optionally let you add form attributes and hidden input fields, and
will always add the accept-charset attribute based on the charset value in your
config file.

The main benefit of using this tag rather than hard coding your own HTML is that
it permits your site to be more portable in the event your URLs ever change.

Here’s a simple example:

echo form_open('email/send');

The above example would create a form that points to your base URL plus the
“email/send” URI segments, like this:

<form method="post" accept-charset="utf-8" action="http://example.com/index.php/email/send">

Adding Attributes

Attributes can be added by passing an associative array to the second
parameter, like this:

$attributes = array('class' => 'email', 'id' => 'myform');
echo form_open('email/send', $attributes);

Alternatively, you can specify the second parameter as a string:

echo form_open('email/send', 'class="email" id="myform"');

The above examples would create a form similar to this:

<form method="post" accept-charset="utf-8" action="http://example.com/index.php/email/send" class="email" id="myform">

Adding Hidden Input Fields

Hidden fields can be added by passing an associative array to the
third parameter, like this:

$hidden = array('username' => 'Joe', 'member_id' => '234');
echo form_open('email/send', '', $hidden);

You can skip the second parameter by passing any falsy value to it.

The above example would create a form similar to this:

<form method="post" accept-charset="utf-8" action="http://example.com/index.php/email/send">
 <input type="hidden" name="username" value="Joe" />
 <input type="hidden" name="member_id" value="234" />

	
form_open_multipart([$action = ''[, $attributes = array()[, $hidden = array()]]])

	

	Parameters:	
	$action (string) – Form action/target URI string

	$attributes (array) – HTML attributes

	$hidden (array) – An array of hidden fields’ definitions

	Returns:	An HTML multipart form opening tag

	Return type:	string

This function is absolutely identical to form_open() above,
except that it adds a multipart attribute, which is necessary if you
would like to use the form to upload files with.

	
form_hidden($name[, $value = ''])

	

	Parameters:	
	$name (string) – Field name

	$value (string) – Field value

	Returns:	An HTML hidden input field tag

	Return type:	string

Lets you generate hidden input fields. You can either submit a
name/value string to create one field:

form_hidden('username', 'johndoe');
// Would produce: <input type="hidden" name="username" value="johndoe" />

… or you can submit an associative array to create multiple fields:

$data = array(
 'name' => 'John Doe',
 'email' => 'john@example.com',
 'url' => 'http://example.com'
);

echo form_hidden($data);

/*
 Would produce:
 <input type="hidden" name="name" value="John Doe" />
 <input type="hidden" name="email" value="john@example.com" />
 <input type="hidden" name="url" value="http://example.com" />
*/

You can also pass an associative array to the value field:

$data = array(
 'name' => 'John Doe',
 'email' => 'john@example.com',
 'url' => 'http://example.com'
);

echo form_hidden('my_array', $data);

/*
 Would produce:

 <input type="hidden" name="my_array[name]" value="John Doe" />
 <input type="hidden" name="my_array[email]" value="john@example.com" />
 <input type="hidden" name="my_array[url]" value="http://example.com" />
*/

If you want to create hidden input fields with extra attributes:

$data = array(
 'type' => 'hidden',
 'name' => 'email',
 'id' => 'hiddenemail',
 'value' => 'john@example.com',
 'class' => 'hiddenemail'
);

echo form_input($data);

/*
 Would produce:

 <input type="hidden" name="email" value="john@example.com" id="hiddenemail" class="hiddenemail" />
*/

	
form_input([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML text input field tag

	Return type:	string

Lets you generate a standard text input field. You can minimally pass
the field name and value in the first and second parameter:

echo form_input('username', 'johndoe');

Or you can pass an associative array containing any data you wish your
form to contain:

$data = array(
 'name' => 'username',
 'id' => 'username',
 'value' => 'johndoe',
 'maxlength' => '100',
 'size' => '50',
 'style' => 'width:50%'
);

echo form_input($data);

/*
 Would produce:

 <input type="text" name="username" value="johndoe" id="username" maxlength="100" size="50" style="width:50%" />
*/

If you would like your form to contain some additional data, like
JavaScript, you can pass it as a string in the third parameter:

$js = 'onClick="some_function()"';
echo form_input('username', 'johndoe', $js);

Or you can pass it as an array:

$js = array('onClick' => 'some_function();');
echo form_input('username', 'johndoe', $js);

	
form_password([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML password input field tag

	Return type:	string

This function is identical in all respects to the form_input()
function above except that it uses the “password” input type.

	
form_upload([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML file upload input field tag

	Return type:	string

This function is identical in all respects to the form_input()
function above except that it uses the “file” input type, allowing it to
be used to upload files.

	
form_textarea([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML textarea tag

	Return type:	string

This function is identical in all respects to the form_input()
function above except that it generates a “textarea” type.

Note

Instead of the maxlength and size attributes in the above example,
you will instead specify rows and cols.

	
form_dropdown([$name = ''[, $options = array()[, $selected = array()[, $extra = '']]]])

	

	Parameters:	
	$name (string) – Field name

	$options (array) – An associative array of options to be listed

	$selected (array) – List of fields to mark with the selected attribute

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML dropdown select field tag

	Return type:	string

Lets you create a standard drop-down field. The first parameter will
contain the name of the field, the second parameter will contain an
associative array of options, and the third parameter will contain the
value you wish to be selected. You can also pass an array of multiple
items through the third parameter, and CodeIgniter will create a
multiple select for you.

Example:

$options = array(
 'small' => 'Small Shirt',
 'med' => 'Medium Shirt',
 'large' => 'Large Shirt',
 'xlarge' => 'Extra Large Shirt',
);

$shirts_on_sale = array('small', 'large');
echo form_dropdown('shirts', $options, 'large');

/*
 Would produce:

 <select name="shirts">
 <option value="small">Small Shirt</option>
 <option value="med">Medium Shirt</option>
 <option value="large" selected="selected">Large Shirt</option>
 <option value="xlarge">Extra Large Shirt</option>
 </select>
*/

echo form_dropdown('shirts', $options, $shirts_on_sale);

/*
 Would produce:

 <select name="shirts" multiple="multiple">
 <option value="small" selected="selected">Small Shirt</option>
 <option value="med">Medium Shirt</option>
 <option value="large" selected="selected">Large Shirt</option>
 <option value="xlarge">Extra Large Shirt</option>
 </select>
*/

If you would like the opening <select> to contain additional data, like
an id attribute or JavaScript, you can pass it as a string in the fourth
parameter:

$js = 'id="shirts" onChange="some_function();"';
echo form_dropdown('shirts', $options, 'large', $js);

Or you can pass it as an array:

$js = array(
 'id' => 'shirts',
 'onChange' => 'some_function();'
);
echo form_dropdown('shirts', $options, 'large', $js);

If the array passed as $options is a multidimensional array, then
form_dropdown() will produce an <optgroup> with the array key as the
label.

	
form_multiselect([$name = ''[, $options = array()[, $selected = array()[, $extra = '']]]])

	

	Parameters:	
	$name (string) – Field name

	$options (array) – An associative array of options to be listed

	$selected (array) – List of fields to mark with the selected attribute

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML dropdown multiselect field tag

	Return type:	string

Lets you create a standard multiselect field. The first parameter will
contain the name of the field, the second parameter will contain an
associative array of options, and the third parameter will contain the
value or values you wish to be selected.

The parameter usage is identical to using form_dropdown() above,
except of course that the name of the field will need to use POST array
syntax, e.g. foo[].

	
form_fieldset([$legend_text = ''[, $attributes = array()]])

	

	Parameters:	
	$legend_text (string) – Text to put in the <legend> tag

	$attributes (array) – Attributes to be set on the <fieldset> tag

	Returns:	An HTML fieldset opening tag

	Return type:	string

Lets you generate fieldset/legend fields.

Example:

echo form_fieldset('Address Information');
echo "<p>fieldset content here</p>\n";
echo form_fieldset_close();

/*
 Produces:

 <fieldset>
 <legend>Address Information</legend>
 <p>fieldset content here</p>
 </fieldset>
*/

Similar to other functions, you can submit an associative array in the
second parameter if you prefer to set additional attributes:

$attributes = array(
 'id' => 'address_info',
 'class' => 'address_info'
);

echo form_fieldset('Address Information', $attributes);
echo "<p>fieldset content here</p>\n";
echo form_fieldset_close();

/*
 Produces:

 <fieldset id="address_info" class="address_info">
 <legend>Address Information</legend>
 <p>fieldset content here</p>
 </fieldset>
*/

	
form_fieldset_close([$extra = ''])

	

	Parameters:	
	$extra (string) – Anything to append after the closing tag, as is

	Returns:	An HTML fieldset closing tag

	Return type:	string

Produces a closing </fieldset> tag. The only advantage to using this
function is it permits you to pass data to it which will be added below
the tag. For example

$string = '</div></div>';
echo form_fieldset_close($string);
// Would produce: </fieldset></div></div>

	
form_checkbox([$data = ''[, $value = ''[, $checked = FALSE[, $extra = '']]]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$checked (bool) – Whether to mark the checkbox as being checked

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML checkbox input tag

	Return type:	string

Lets you generate a checkbox field. Simple example:

echo form_checkbox('newsletter', 'accept', TRUE);
// Would produce: <input type="checkbox" name="newsletter" value="accept" checked="checked" />

The third parameter contains a boolean TRUE/FALSE to determine whether
the box should be checked or not.

Similar to the other form functions in this helper, you can also pass an
array of attributes to the function:

$data = array(
 'name' => 'newsletter',
 'id' => 'newsletter',
 'value' => 'accept',
 'checked' => TRUE,
 'style' => 'margin:10px'
);

echo form_checkbox($data);
// Would produce: <input type="checkbox" name="newsletter" id="newsletter" value="accept" checked="checked" style="margin:10px" />

Also as with other functions, if you would like the tag to contain
additional data like JavaScript, you can pass it as a string in the
fourth parameter:

$js = 'onClick="some_function()"';
echo form_checkbox('newsletter', 'accept', TRUE, $js);

Or you can pass it as an array:

$js = array('onClick' => 'some_function();');
echo form_checkbox('newsletter', 'accept', TRUE, $js);

	
form_radio([$data = ''[, $value = ''[, $checked = FALSE[, $extra = '']]]])

	

	Parameters:	
	$data (array) – Field attributes data

	$value (string) – Field value

	$checked (bool) – Whether to mark the radio button as being checked

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML radio input tag

	Return type:	string

This function is identical in all respects to the form_checkbox()
function above except that it uses the “radio” input type.

	
form_label([$label_text = ''[, $id = ''[, $attributes = array()]]])

	

	Parameters:	
	$label_text (string) – Text to put in the <label> tag

	$id (string) – ID of the form element that we’re making a label for

	$attributes (mixed) – HTML attributes

	Returns:	An HTML field label tag

	Return type:	string

Lets you generate a <label>. Simple example:

echo form_label('What is your Name', 'username');
// Would produce: <label for="username">What is your Name</label>

Similar to other functions, you can submit an associative array in the
third parameter if you prefer to set additional attributes.

Example:

$attributes = array(
 'class' => 'mycustomclass',
 'style' => 'color: #000;'
);

echo form_label('What is your Name', 'username', $attributes);
// Would produce: <label for="username" class="mycustomclass" style="color: #000;">What is your Name</label>

	
form_submit([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (string) – Button name

	$value (string) – Button value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML input submit tag

	Return type:	string

Lets you generate a standard submit button. Simple example:

echo form_submit('mysubmit', 'Submit Post!');
// Would produce: <input type="submit" name="mysubmit" value="Submit Post!" />

Similar to other functions, you can submit an associative array in the
first parameter if you prefer to set your own attributes. The third
parameter lets you add extra data to your form, like JavaScript.

	
form_reset([$data = ''[, $value = ''[, $extra = '']]])

	

	Parameters:	
	$data (string) – Button name

	$value (string) – Button value

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML input reset button tag

	Return type:	string

Lets you generate a standard reset button. Use is identical to
form_submit().

	
form_button([$data = ''[, $content = ''[, $extra = '']]])

	

	Parameters:	
	$data (string) – Button name

	$content (string) – Button label

	$extra (mixed) – Extra attributes to be added to the tag either as an array or a literal string

	Returns:	An HTML button tag

	Return type:	string

Lets you generate a standard button element. You can minimally pass the
button name and content in the first and second parameter:

echo form_button('name','content');
// Would produce: <button name="name" type="button">Content</button>

Or you can pass an associative array containing any data you wish your
form to contain:

$data = array(
 'name' => 'button',
 'id' => 'button',
 'value' => 'true',
 'type' => 'reset',
 'content' => 'Reset'
);

echo form_button($data);
// Would produce: <button name="button" id="button" value="true" type="reset">Reset</button>

If you would like your form to contain some additional data, like
JavaScript, you can pass it as a string in the third parameter:

$js = 'onClick="some_function()"';
echo form_button('mybutton', 'Click Me', $js);

	
form_close([$extra = ''])

	

	Parameters:	
	$extra (string) – Anything to append after the closing tag, as is

	Returns:	An HTML form closing tag

	Return type:	string

Produces a closing </form> tag. The only advantage to using this
function is it permits you to pass data to it which will be added below
the tag. For example:

$string = '</div></div>';
echo form_close($string);
// Would produce: </form> </div></div>

	
set_value($field[, $default = ''[, $html_escape = TRUE]])

	

	Parameters:	
	$field (string) – Field name

	$default (string) – Default value

	$html_escape (bool) – Whether to turn off HTML escaping of the value

	Returns:	Field value

	Return type:	string

Permits you to set the value of an input form or textarea. You must
supply the field name via the first parameter of the function. The
second (optional) parameter allows you to set a default value for the
form. The third (optional) parameter allows you to turn off HTML escaping
of the value, in case you need to use this function in combination with
i.e. form_input() and avoid double-escaping.

Example:

<input type="text" name="quantity" value="<?php echo set_value('quantity', '0'); ?>" size="50" />

The above form will show “0” when loaded for the first time.

Note

If you’ve loaded the Form Validation Library and
have set a validation rule for the field name in use with this helper, then it will
forward the call to the Form Validation Library’s
own set_value() method. Otherwise, this function looks in $_POST for the
field value.

	
set_select($field[, $value = ''[, $default = FALSE]])

	

	Parameters:	
	$field (string) – Field name

	$value (string) – Value to check for

	$default (string) – Whether the value is also a default one

	Returns:	‘selected’ attribute or an empty string

	Return type:	string

If you use a <select> menu, this function permits you to display the
menu item that was selected.

The first parameter must contain the name of the select menu, the second
parameter must contain the value of each item, and the third (optional)
parameter lets you set an item as the default (use boolean TRUE/FALSE).

Example:

<select name="myselect">
 <option value="one" <?php echo set_select('myselect', 'one', TRUE); ?> >One</option>
 <option value="two" <?php echo set_select('myselect', 'two'); ?> >Two</option>
 <option value="three" <?php echo set_select('myselect', 'three'); ?> >Three</option>
</select>

	
set_checkbox($field[, $value = ''[, $default = FALSE]])

	

	Parameters:	
	$field (string) – Field name

	$value (string) – Value to check for

	$default (string) – Whether the value is also a default one

	Returns:	‘checked’ attribute or an empty string

	Return type:	string

Permits you to display a checkbox in the state it was submitted.

The first parameter must contain the name of the checkbox, the second
parameter must contain its value, and the third (optional) parameter
lets you set an item as the default (use boolean TRUE/FALSE).

Example:

<input type="checkbox" name="mycheck" value="1" <?php echo set_checkbox('mycheck', '1'); ?> />
<input type="checkbox" name="mycheck" value="2" <?php echo set_checkbox('mycheck', '2'); ?> />

	
set_radio($field[, $value = ''[, $default = FALSE]])

	

	Parameters:	
	$field (string) – Field name

	$value (string) – Value to check for

	$default (string) – Whether the value is also a default one

	Returns:	‘checked’ attribute or an empty string

	Return type:	string

Permits you to display radio buttons in the state they were submitted.
This function is identical to the set_checkbox() function above.

Example:

<input type="radio" name="myradio" value="1" <?php echo set_radio('myradio', '1', TRUE); ?> />
<input type="radio" name="myradio" value="2" <?php echo set_radio('myradio', '2'); ?> />

Note

If you are using the Form Validation class, you must always specify
a rule for your field, even if empty, in order for the set_*()
functions to work. This is because if a Form Validation object is
defined, the control for set_*() is handed over to a method of the
class instead of the generic helper function.

	
form_error([$field = ''[, $prefix = ''[, $suffix = '']]])

	

	Parameters:	
	$field (string) – Field name

	$prefix (string) – Error opening tag

	$suffix (string) – Error closing tag

	Returns:	HTML-formatted form validation error message(s)

	Return type:	string

Returns a validation error message from the Form Validation Library, associated with the specified field name.
You can optionally specify opening and closing tag(s) to put around the error
message.

Example:

// Assuming that the 'username' field value was incorrect:
echo form_error('myfield', '<div class="error">', '</div>');

// Would produce: <div class="error">Error message associated with the "username" field.</div>

	
validation_errors([$prefix = ''[, $suffix = '']])

	

	Parameters:	
	$prefix (string) – Error opening tag

	$suffix (string) – Error closing tag

	Returns:	HTML-formatted form validation error message(s)

	Return type:	string

Similarly to the form_error() function, returns all validation
error messages produced by the Form Validation Library, with optional opening and closing tags
around each of the messages.

Example:

echo validation_errors('', '');

/*
 Would produce, e.g.:

 The "email" field doesn't contain a valid e-mail address!
 The "password" field doesn't match the "repeat_password" field!

 */

	
form_prep($str)

	

	Parameters:	
	$str (string) – Value to escape

	Returns:	Escaped value

	Return type:	string

Allows you to safely use HTML and characters such as quotes within form
elements without breaking out of the form.

Note

If you use any of the form helper functions listed in this page the form
values will be prepped automatically, so there is no need to call this
function. Use it only if you are creating your own form elements.

Note

This function is DEPRECATED and is just an alias for
common function
html_escape() - please use that instead.

HTML Helper

The HTML Helper file contains functions that assist in working with
HTML.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('html');

Available Functions

The following functions are available:

	
heading([$data = ''[, $h = '1'[, $attributes = '']]])

	

	Parameters:	
	$data (string) – Content

	$h (string) – Heading level

	$attributes (mixed) – HTML attributes

	Returns:	HTML heading tag

	Return type:	string

Lets you create HTML heading tags. The first parameter will contain the
data, the second the size of the heading. Example:

echo heading('Welcome!', 3);

The above would produce: <h3>Welcome!</h3>

Additionally, in order to add attributes to the heading tag such as HTML
classes, ids or inline styles, a third parameter accepts either a string
or an array:

echo heading('Welcome!', 3, 'class="pink"');
echo heading('How are you?', 4, array('id' => 'question', 'class' => 'green'));

The above code produces:

<h3 class="pink">Welcome!<h3>
<h4 id="question" class="green">How are you?</h4>

	
img([$src = ''[, $index_page = FALSE[, $attributes = '']]])

	

	Parameters:	
	$src (string) – Image source data

	$index_page (bool) – Whether to treat $src as a routed URI string

	$attributes (array) – HTML attributes

	Returns:	HTML image tag

	Return type:	string

Lets you create HTML tags. The first parameter contains the
image source. Example:

echo img('images/picture.jpg'); // gives

There is an optional second parameter that is a TRUE/FALSE value that
specifics if the src should have the page specified by
$config['index_page'] added to the address it creates.
Presumably, this would be if you were using a media controller:

echo img('images/picture.jpg', TRUE); // gives

Additionally, an associative array can be passed to the img() function
for complete control over all attributes and values. If an alt attribute
is not provided, CodeIgniter will generate an empty string.

Example:

$image_properties = array(
 'src' => 'images/picture.jpg',
 'alt' => 'Me, demonstrating how to eat 4 slices of pizza at one time',
 'class' => 'post_images',
 'width' => '200',
 'height'=> '200',
 'title' => 'That was quite a night',
 'rel' => 'lightbox'
);

img($image_properties);
//

	
link_tag([$href = ''[, $rel = 'stylesheet'[, $type = 'text/css'[, $title = ''[, $media = ''[, $index_page = FALSE]]]]]])

	

	Parameters:	
	$href (string) – What are we linking to

	$rel (string) – Relation type

	$type (string) – Type of the related document

	$title (string) – Link title

	$media (string) – Media type

	$index_page (bool) – Whether to treat $src as a routed URI string

	Returns:	HTML link tag

	Return type:	string

Lets you create HTML <link /> tags. This is useful for stylesheet links,
as well as other links. The parameters are href, with optional rel,
type, title, media and index_page.

index_page is a boolean value that specifies if the href should have
the page specified by $config['index_page'] added to the address it creates.

Example:

echo link_tag('css/mystyles.css');
// gives <link href="http://site.com/css/mystyles.css" rel="stylesheet" type="text/css" />

Further examples:

echo link_tag('favicon.ico', 'shortcut icon', 'image/ico');
// <link href="http://site.com/favicon.ico" rel="shortcut icon" type="image/ico" />

echo link_tag('feed', 'alternate', 'application/rss+xml', 'My RSS Feed');
// <link href="http://site.com/feed" rel="alternate" type="application/rss+xml" title="My RSS Feed" />

Additionally, an associative array can be passed to the link() function
for complete control over all attributes and values:

$link = array(
 'href' => 'css/printer.css',
 'rel' => 'stylesheet',
 'type' => 'text/css',
 'media' => 'print'
);

echo link_tag($link);
// <link href="http://site.com/css/printer.css" rel="stylesheet" type="text/css" media="print" />

	
ul($list[, $attributes = ''])

	

	Parameters:	
	$list (array) – List entries

	$attributes (array) – HTML attributes

	Returns:	HTML-formatted unordered list

	Return type:	string

Permits you to generate unordered HTML lists from simple or
multi-dimensional arrays. Example:

$list = array(
 'red',
 'blue',
 'green',
 'yellow'
);

$attributes = array(
 'class' => 'boldlist',
 'id' => 'mylist'
);

echo ul($list, $attributes);

The above code will produce this:

<ul class="boldlist" id="mylist">
 red
 blue
 green
 yellow

Here is a more complex example, using a multi-dimensional array:

$attributes = array(
 'class' => 'boldlist',
 'id' => 'mylist'
);

$list = array(
 'colors' => array(
 'red',
 'blue',
 'green'
),
 'shapes' => array(
 'round',
 'square',
 'circles' => array(
 'ellipse',
 'oval',
 'sphere'
)
),
 'moods' => array(
 'happy',
 'upset' => array(
 'defeated' => array(
 'dejected',
 'disheartened',
 'depressed'
),
 'annoyed',
 'cross',
 'angry'
)
)
);

echo ul($list, $attributes);

The above code will produce this:

<ul class="boldlist" id="mylist">
 colors

 red
 blue
 green

 shapes

 round
 suare
 circles

 elipse
 oval
 sphere

 moods

 happy
 upset

 defeated

 dejected
 disheartened
 depressed

 annoyed
 cross
 angry

	
ol($list, $attributes = '')

	

	Parameters:	
	$list (array) – List entries

	$attributes (array) – HTML attributes

	Returns:	HTML-formatted ordered list

	Return type:	string

Identical to ul(), only it produces the tag for
ordered lists instead of .

	
meta([$name = ''[, $content = ''[, $type = 'name'[, $newline = "n"]]]])

	

	Parameters:	
	$name (string) – Meta name

	$content (string) – Meta content

	$type (string) – Meta type

	$newline (string) – Newline character

	Returns:	HTML meta tag

	Return type:	string

Helps you generate meta tags. You can pass strings to the function, or
simple arrays, or multidimensional ones.

Examples:

echo meta('description', 'My Great site');
// Generates: <meta name="description" content="My Great Site" />

echo meta('Content-type', 'text/html; charset=utf-8', 'equiv');
// Note the third parameter. Can be "equiv" or "name"
// Generates: <meta http-equiv="Content-type" content="text/html; charset=utf-8" />

echo meta(array('name' => 'robots', 'content' => 'no-cache'));
// Generates: <meta name="robots" content="no-cache" />

$meta = array(
 array(
 'name' => 'robots',
 'content' => 'no-cache'
),
 array(
 'name' => 'description',
 'content' => 'My Great Site'
),
 array(
 'name' => 'keywords',
 'content' => 'love, passion, intrigue, deception'
),
 array(
 'name' => 'robots',
 'content' => 'no-cache'
),
 array(
 'name' => 'Content-type',
 'content' => 'text/html; charset=utf-8', 'type' => 'equiv'
)
);

echo meta($meta);
// Generates:
// <meta name="robots" content="no-cache" />
// <meta name="description" content="My Great Site" />
// <meta name="keywords" content="love, passion, intrigue, deception" />
// <meta name="robots" content="no-cache" />
// <meta http-equiv="Content-type" content="text/html; charset=utf-8" />

	
doctype([$type = 'xhtml1-strict'])

	

	Parameters:	
	$type (string) – Doctype name

	Returns:	HTML DocType tag

	Return type:	string

Helps you generate document type declarations, or DTD’s. XHTML 1.0
Strict is used by default, but many doctypes are available.

Example:

echo doctype(); // <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

echo doctype('html4-trans'); // <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

The following is a list of doctype choices. These are configurable, and
pulled from application/config/doctypes.php

	Document type
	Option
	Result

	XHTML 1.1
	xhtml11
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN” “http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

	XHTML 1.0 Strict
	xhtml1-strict
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

	XHTML 1.0 Transitional
	xhtml1-trans
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

	XHTML 1.0 Frameset
	xhtml1-frame
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd”>

	XHTML Basic 1.1
	xhtml-basic11
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML Basic 1.1//EN” “http://www.w3.org/TR/xhtml-basic/xhtml-basic11.dtd”>

	HTML 5
	html5
	<!DOCTYPE html>

	HTML 4 Strict
	html4-strict
	<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/TR/html4/strict.dtd”>

	HTML 4 Transitional
	html4-trans
	<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” “http://www.w3.org/TR/html4/loose.dtd”>

	HTML 4 Frameset
	html4-frame
	<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Frameset//EN” “http://www.w3.org/TR/html4/frameset.dtd”>

	MathML 1.01
	mathml1
	<!DOCTYPE math SYSTEM “http://www.w3.org/Math/DTD/mathml1/mathml.dtd”>

	MathML 2.0
	mathml2
	<!DOCTYPE math PUBLIC “-//W3C//DTD MathML 2.0//EN” “http://www.w3.org/Math/DTD/mathml2/mathml2.dtd”>

	SVG 1.0
	svg10
	<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN” “http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>

	SVG 1.1 Full
	svg11
	<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN” “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

	SVG 1.1 Basic
	svg11-basic
	<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1 Basic//EN” “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-basic.dtd”>

	SVG 1.1 Tiny
	svg11-tiny
	<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1 Tiny//EN” “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-tiny.dtd”>

	XHTML+MathML+SVG (XHTML host)
	xhtml-math-svg-xh
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN” “http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd”>

	XHTML+MathML+SVG (SVG host)
	xhtml-math-svg-sh
	<!DOCTYPE svg:svg PUBLIC “-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN” “http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd”>

	XHTML+RDFa 1.0
	xhtml-rdfa-1
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML+RDFa 1.0//EN” “http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd”>

	XHTML+RDFa 1.1
	xhtml-rdfa-2
	<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML+RDFa 1.1//EN” “http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd”>

	
br([$count = 1])

	

	Parameters:	
	$count (int) – Number of times to repeat the tag

	Returns:	HTML line break tag

	Return type:	string

Generates line break tags (
) based on the number you submit.
Example:

echo br(3);

The above would produce:

Note

This function is DEPRECATED. Use the native str_repeat()
in combination with
 instead.

	
nbs([$num = 1])

	

	Parameters:	
	$num (int) – Number of space entities to produce

	Returns:	A sequence of non-breaking space HTML entities

	Return type:	string

Generates non-breaking spaces () based on the number you submit.
Example:

echo nbs(3);

The above would produce:

Note

This function is DEPRECATED. Use the native str_repeat()
in combination with instead.

Inflector Helper

The Inflector Helper file contains functions that permits you to change
English words to plural, singular, camel case, etc.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('inflector');

Available Functions

The following functions are available:

	
singular($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	A singular word

	Return type:	string

Changes a plural word to singular. Example:

echo singular('dogs'); // Prints 'dog'

	
plural($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	A plural word

	Return type:	string

Changes a singular word to plural. Example:

echo plural('dog'); // Prints 'dogs'

	
camelize($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Camelized string

	Return type:	string

Changes a string of words separated by spaces or underscores to camel
case. Example:

echo camelize('my_dog_spot'); // Prints 'myDogSpot'

	
underscore($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	String containing underscores instead of spaces

	Return type:	string

Takes multiple words separated by spaces and underscores them.
Example:

echo underscore('my dog spot'); // Prints 'my_dog_spot'

	
humanize($str[, $separator = '_'])

	

	Parameters:	
	$str (string) – Input string

	$separator (string) – Input separator

	Returns:	Humanized string

	Return type:	string

Takes multiple words separated by underscores and adds spaces between
them. Each word is capitalized.

Example:

echo humanize('my_dog_spot'); // Prints 'My Dog Spot'

To use dashes instead of underscores:

echo humanize('my-dog-spot', '-'); // Prints 'My Dog Spot'

	
word_is_countable($word)

	

	Parameters:	
	$word (string) – Input string

	Returns:	TRUE if the word is countable or FALSE if not

	Return type:	bool

Checks if the given word has a plural version. Example:

word_is_countable('equipment'); // Returns FALSE

Note

This function used to be called is_countable() in
in previous CodeIgniter versions.

Language Helper

The Language Helper file contains functions that assist in working with
language files.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('language');

Available Functions

The following functions are available:

	
lang($line[, $for = ''[, $attributes = array()]])

	

	Parameters:	
	$line (string) – Language line key

	$for (string) – HTML “for” attribute (ID of the element we’re creating a label for)

	$attributes (array) – Any additional HTML attributes

	Returns:	The language line; in an HTML label tag, if the $for parameter is not empty

	Return type:	string

This function returns a line of text from a loaded language file with
simplified syntax that may be more desirable for view files than
CI_Lang::line().

Examples:

echo lang('language_key');
// Outputs: Language line

echo lang('language_key', 'form_item_id', array('class' => 'myClass'));
// Outputs: <label for="form_item_id" class="myClass">Language line</label>

Number Helper

The Number Helper file contains functions that help you work with
numeric data.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('number');

Available Functions

The following functions are available:

	
byte_format($num[, $precision = 1])

	

	Parameters:	
	$num (mixed) – Number of bytes

	$precision (int) – Floating point precision

	Returns:	Formatted data size string

	Return type:	string

Formats numbers as bytes, based on size, and adds the appropriate
suffix. Examples:

echo byte_format(456); // Returns 456 Bytes
echo byte_format(4567); // Returns 4.5 KB
echo byte_format(45678); // Returns 44.6 KB
echo byte_format(456789); // Returns 447.8 KB
echo byte_format(3456789); // Returns 3.3 MB
echo byte_format(12345678912345); // Returns 1.8 GB
echo byte_format(123456789123456789); // Returns 11,228.3 TB

An optional second parameter allows you to set the precision of the
result:

echo byte_format(45678, 2); // Returns 44.61 KB

Note

The text generated by this function is found in the following
language file: language/<your_lang>/number_lang.php

Path Helper

The Path Helper file contains functions that permits you to work with
file paths on the server.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('path');

Available Functions

The following functions are available:

	
set_realpath($path[, $check_existance = FALSE])

	

	Parameters:	
	$path (string) – Path

	$check_existance (bool) – Whether to check if the path actually exists

	Returns:	An absolute path

	Return type:	string

This function will return a server path without symbolic links or
relative directory structures. An optional second argument will
cause an error to be triggered if the path cannot be resolved.

Examples:

$file = '/etc/php5/apache2/php.ini';
echo set_realpath($file); // Prints '/etc/php5/apache2/php.ini'

$non_existent_file = '/path/to/non-exist-file.txt';
echo set_realpath($non_existent_file, TRUE); // Shows an error, as the path cannot be resolved
echo set_realpath($non_existent_file, FALSE); // Prints '/path/to/non-exist-file.txt'

$directory = '/etc/php5';
echo set_realpath($directory); // Prints '/etc/php5/'

$non_existent_directory = '/path/to/nowhere';
echo set_realpath($non_existent_directory, TRUE); // Shows an error, as the path cannot be resolved
echo set_realpath($non_existent_directory, FALSE); // Prints '/path/to/nowhere'

Security Helper

The Security Helper file contains security related functions.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('security');

Available Functions

The following functions are available:

	
xss_clean($str[, $is_image = FALSE])

	

	Parameters:	
	$str (string) – Input data

	$is_image (bool) – Whether we’re dealing with an image

	Returns:	XSS-clean string

	Return type:	string

Provides Cross Site Script Hack filtering.

This function is an alias for CI_Input::xss_clean(). For more info,
please see the Input Library documentation.

	
sanitize_filename($filename)

	

	Parameters:	
	$filename (string) – Filename

	Returns:	Sanitized file name

	Return type:	string

Provides protection against directory traversal.

This function is an alias for CI_Security::sanitize_filename().
For more info, please see the Security Library
documentation.

	
do_hash($str[, $type = 'sha1'])

	

	Parameters:	
	$str (string) – Input

	$type (string) – Algorithm

	Returns:	Hex-formatted hash

	Return type:	string

Permits you to create one way hashes suitable for encrypting
passwords. Will use SHA1 by default.

See hash_algos() [http://php.net/function.hash_algos]
for a full list of supported algorithms.

Examples:

$str = do_hash($str); // SHA1
$str = do_hash($str, 'md5'); // MD5

Note

This function was formerly named dohash(), which has been
removed in favor of do_hash().

Note

This function is DEPRECATED. Use the native hash() instead.

	
strip_image_tags($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	The input string with no image tags

	Return type:	string

This is a security function that will strip image tags from a string.
It leaves the image URL as plain text.

Example:

$string = strip_image_tags($string);

This function is an alias for CI_Security::strip_image_tags(). For
more info, please see the Security Library
documentation.

	
encode_php_tags($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Safely formatted string

	Return type:	string

This is a security function that converts PHP tags to entities.

Note

xss_clean() does this automatically, if you use it.

Example:

$string = encode_php_tags($string);

Smiley Helper

The Smiley Helper file contains functions that let you manage smileys
(emoticons).

Important

The Smiley helper is DEPRECATED and should not be used.
It is currently only kept for backwards compatibility.

	Loading this Helper

	Overview

	Clickable Smileys Tutorial
	The Controller

	Field Aliases

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('smiley');

Overview

The Smiley helper has a renderer that takes plain text smileys, like
:-) and turns them into a image representation, like [image: smile!]

It also lets you display a set of smiley images that when clicked will
be inserted into a form field. For example, if you have a blog that
allows user commenting you can show the smileys next to the comment
form. Your users can click a desired smiley and with the help of some
JavaScript it will be placed into the form field.

Clickable Smileys Tutorial

Here is an example demonstrating how you might create a set of clickable
smileys next to a form field. This example requires that you first
download and install the smiley images, then create a controller and the
View as described.

Important

Before you begin, please download the smiley images [https://ellislab.com/asset/ci_download_files/smileys.zip]
and put them in a publicly accessible place on your server.
This helper also assumes you have the smiley replacement array
located at application/config/smileys.php

The Controller

In your application/controllers/ directory, create a file called
Smileys.php and place the code below in it.

Important

Change the URL in the get_clickable_smileys()
function below so that it points to your smiley folder.

You’ll notice that in addition to the smiley helper, we are also using
the Table Class:

<?php

class Smileys extends CI_Controller {

 public function index()
 {
 $this->load->helper('smiley');
 $this->load->library('table');

 $image_array = get_clickable_smileys('http://example.com/images/smileys/', 'comments');
 $col_array = $this->table->make_columns($image_array, 8);

 $data['smiley_table'] = $this->table->generate($col_array);
 $this->load->view('smiley_view', $data);
 }

}

In your application/views/ directory, create a file called smiley_view.php
and place this code in it:

<html>
 <head>
 <title>Smileys</title>
 <?php echo smiley_js(); ?>
 </head>
 <body>
 <form name="blog">
 <textarea name="comments" id="comments" cols="40" rows="4"></textarea>
 </form>
 <p>Click to insert a smiley!</p>
 <?php echo $smiley_table; ?> </body> </html>
 When you have created the above controller and view, load it by visiting http://www.example.com/index.php/smileys/
 </body>
</html>

Field Aliases

When making changes to a view it can be inconvenient to have the field
id in the controller. To work around this, you can give your smiley
links a generic name that will be tied to a specific id in your view.

$image_array = get_smiley_links("http://example.com/images/smileys/", "comment_textarea_alias");

To map the alias to the field id, pass them both into the
smiley_js() function:

$image_array = smiley_js("comment_textarea_alias", "comments");

Available Functions

	
get_clickable_smileys($image_url[, $alias = ''[, $smileys = NULL]])

	

	Parameters:	
	$image_url (string) – URL path to the smileys directory

	$alias (string) – Field alias

	Returns:	An array of ready to use smileys

	Return type:	array

Returns an array containing your smiley images wrapped in a clickable
link. You must supply the URL to your smiley folder and a field id or
field alias.

Example:

$image_array = get_clickable_smileys('http://example.com/images/smileys/', 'comment');

	
smiley_js([$alias = ''[, $field_id = ''[, $inline = TRUE]]])

	

	Parameters:	
	$alias (string) – Field alias

	$field_id (string) – Field ID

	$inline (bool) – Whether we’re inserting an inline smiley

	Returns:	Smiley-enabling JavaScript code

	Return type:	string

Generates the JavaScript that allows the images to be clicked and
inserted into a form field. If you supplied an alias instead of an id
when generating your smiley links, you need to pass the alias and
corresponding form id into the function. This function is designed to be
placed into the <head> area of your web page.

Example:

<?php echo smiley_js(); ?>

	
parse_smileys([$str = ''[, $image_url = ''[, $smileys = NULL]]])

	

	Parameters:	
	$str (string) – Text containing smiley codes

	$image_url (string) – URL path to the smileys directory

	$smileys (array) – An array of smileys

	Returns:	Parsed smileys

	Return type:	string

Takes a string of text as input and replaces any contained plain text
smileys into the image equivalent. The first parameter must contain your
string, the second must contain the URL to your smiley folder

Example:

$str = 'Here are some smileys: :-) ;-)';
$str = parse_smileys($str, 'http://example.com/images/smileys/');
echo $str;

String Helper

The String Helper file contains functions that assist in working with
strings.

Important

Please note that these functions are NOT intended, nor
suitable to be used for any kind of security-related logic.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('string');

Available Functions

The following functions are available:

	
random_string([$type = 'alnum'[, $len = 8]])

	

	Parameters:	
	$type (string) – Randomization type

	$len (int) – Output string length

	Returns:	A random string

	Return type:	string

Generates a random string based on the type and length you specify.
Useful for creating passwords or generating random hashes.

The first parameter specifies the type of string, the second parameter
specifies the length. The following choices are available:

	alpha: A string with lower and uppercase letters only.

	alnum: Alpha-numeric string with lower and uppercase characters.

	basic: A random number based on mt_rand().

	numeric: Numeric string.

	nozero: Numeric string with no zeros.

	md5: An encrypted random number based on md5() (fixed length of 32).

	sha1: An encrypted random number based on sha1() (fixed length of 40).

Usage example:

echo random_string('alnum', 16);

Note

Usage of the unique and encrypt types is DEPRECATED. They
are just aliases for md5 and sha1 respectively.

	
increment_string($str[, $separator = '_'[, $first = 1]])

	

	Parameters:	
	$str (string) – Input string

	$separator (string) – Separator to append a duplicate number with

	$first (int) – Starting number

	Returns:	An incremented string

	Return type:	string

Increments a string by appending a number to it or increasing the
number. Useful for creating “copies” or a file or duplicating database
content which has unique titles or slugs.

Usage example:

echo increment_string('file', '_'); // "file_1"
echo increment_string('file', '-', 2); // "file-2"
echo increment_string('file_4'); // "file_5"

	
alternator($args)

	

	Parameters:	
	$args (mixed) – A variable number of arguments

	Returns:	Alternated string(s)

	Return type:	mixed

Allows two or more items to be alternated between, when cycling through
a loop. Example:

for ($i = 0; $i < 10; $i++)
{
 echo alternator('string one', 'string two');
}

You can add as many parameters as you want, and with each iteration of
your loop the next item will be returned.

for ($i = 0; $i < 10; $i++)
{
 echo alternator('one', 'two', 'three', 'four', 'five');
}

Note

To use multiple separate calls to this function simply call the
function with no arguments to re-initialize.

	
repeater($data[, $num = 1])

	

	Parameters:	
	$data (string) – Input

	$num (int) – Number of times to repeat

	Returns:	Repeated string

	Return type:	string

Generates repeating copies of the data you submit. Example:

$string = "\n";
echo repeater($string, 30);

The above would generate 30 newlines.

Note

This function is DEPRECATED. Use the native str_repeat()
instead.

	
reduce_double_slashes($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	A string with normalized slashes

	Return type:	string

Converts double slashes in a string to a single slash, except those
found in URL protocol prefixes (e.g. http://).

Example:

$string = "http://example.com//index.php";
echo reduce_double_slashes($string); // results in "http://example.com/index.php"

	
strip_slashes($data)

	

	Parameters:	
	$data (mixed) – Input string or an array of strings

	Returns:	String(s) with stripped slashes

	Return type:	mixed

Removes any slashes from an array of strings.

Example:

$str = array(
 'question' => 'Is your name O\'reilly?',
 'answer' => 'No, my name is O\'connor.'
);

$str = strip_slashes($str);

The above will return the following array:

array(
 'question' => "Is your name O'reilly?",
 'answer' => "No, my name is O'connor."
);

Note

For historical reasons, this function will also accept
and handle string inputs. This however makes it just an
alias for stripslashes().

	
trim_slashes($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	Slash-trimmed string

	Return type:	string

Removes any leading/trailing slashes from a string. Example:

$string = "/this/that/theother/";
echo trim_slashes($string); // results in this/that/theother

Note

This function is DEPRECATED. Use the native trim() instead:
|
| trim($str, ‘/’);

	
reduce_multiples($str[, $character = ''[, $trim = FALSE]])

	

	Parameters:	
	$str (string) – Text to search in

	$character (string) – Character to reduce

	$trim (bool) – Whether to also trim the specified character

	Returns:	Reduced string

	Return type:	string

Reduces multiple instances of a particular character occurring directly
after each other. Example:

$string = "Fred, Bill,, Joe, Jimmy";
$string = reduce_multiples($string,","); //results in "Fred, Bill, Joe, Jimmy"

If the third parameter is set to TRUE it will remove occurrences of the
character at the beginning and the end of the string. Example:

$string = ",Fred, Bill,, Joe, Jimmy,";
$string = reduce_multiples($string, ", ", TRUE); //results in "Fred, Bill, Joe, Jimmy"

	
quotes_to_entities($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	String with quotes converted to HTML entities

	Return type:	string

Converts single and double quotes in a string to the corresponding HTML
entities. Example:

$string = "Joe's \"dinner\"";
$string = quotes_to_entities($string); //results in "Joe's "dinner""

	
strip_quotes($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	String with quotes stripped

	Return type:	string

Removes single and double quotes from a string. Example:

$string = "Joe's \"dinner\"";
$string = strip_quotes($string); //results in "Joes dinner"

Text Helper

The Text Helper file contains functions that assist in working with
text.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('text');

Available Functions

The following functions are available:

	
word_limiter($str[, $limit = 100[, $end_char = '…']])

	

	Parameters:	
	$str (string) – Input string

	$limit (int) – Limit

	$end_char (string) – End character (usually an ellipsis)

	Returns:	Word-limited string

	Return type:	string

Truncates a string to the number of words specified. Example:

$string = "Here is a nice text string consisting of eleven words.";
$string = word_limiter($string, 4);
// Returns: Here is a nice

The third parameter is an optional suffix added to the string. By
default it adds an ellipsis.

	
character_limiter($str[, $n = 500[, $end_char = '…']])

	

	Parameters:	
	$str (string) – Input string

	$n (int) – Number of characters

	$end_char (string) – End character (usually an ellipsis)

	Returns:	Character-limited string

	Return type:	string

Truncates a string to the number of characters specified. It
maintains the integrity of words so the character count may be slightly
more or less than what you specify.

Example:

$string = "Here is a nice text string consisting of eleven words.";
$string = character_limiter($string, 20);
// Returns: Here is a nice text string

The third parameter is an optional suffix added to the string, if
undeclared this helper uses an ellipsis.

Note

If you need to truncate to an exact number of characters please
see the ellipsize() function below.

	
ascii_to_entities($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	A string with ASCII values converted to entities

	Return type:	string

Converts ASCII values to character entities, including high ASCII and MS
Word characters that can cause problems when used in a web page, so that
they can be shown consistently regardless of browser settings or stored
reliably in a database. There is some dependence on your server’s
supported character sets, so it may not be 100% reliable in all cases,
but for the most part it should correctly identify characters outside
the normal range (like accented characters).

Example:

$string = ascii_to_entities($string);

	
convert_accented_characters($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	A string with accented characters converted

	Return type:	string

Transliterates high ASCII characters to low ASCII equivalents. Useful
when non-English characters need to be used where only standard ASCII
characters are safely used, for instance, in URLs.

Example:

$string = convert_accented_characters($string);

Note

This function uses a companion config file
application/config/foreign_chars.php to define the to and
from array for transliteration.

	
word_censor($str, $censored[, $replacement = ''])

	

	Parameters:	
	$str (string) – Input string

	$censored (array) – List of bad words to censor

	$replacement (string) – What to replace bad words with

	Returns:	Censored string

	Return type:	string

Enables you to censor words within a text string. The first parameter
will contain the original string. The second will contain an array of
words which you disallow. The third (optional) parameter can contain
a replacement value for the words. If not specified they are replaced
with pound signs: ####.

Example:

$disallowed = array('darn', 'shucks', 'golly', 'phooey');
$string = word_censor($string, $disallowed, 'Beep!');

	
highlight_code($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	String with code highlighted via HTML

	Return type:	string

Colorizes a string of code (PHP, HTML, etc.). Example:

$string = highlight_code($string);

The function uses PHP’s highlight_string() function, so the
colors used are the ones specified in your php.ini file.

	
highlight_phrase($str, $phrase[, $tag_open = '<mark>'[, $tag_close = '</mark>']])

	

	Parameters:	
	$str (string) – Input string

	$phrase (string) – Phrase to highlight

	$tag_open (string) – Opening tag used for the highlight

	$tag_close (string) – Closing tag for the highlight

	Returns:	String with a phrase highlighted via HTML

	Return type:	string

Will highlight a phrase within a text string. The first parameter will
contain the original string, the second will contain the phrase you wish
to highlight. The third and fourth parameters will contain the
opening/closing HTML tags you would like the phrase wrapped in.

Example:

$string = "Here is a nice text string about nothing in particular.";
echo highlight_phrase($string, "nice text", '', '');

The above code prints:

Here is a nice text string about nothing in particular.

Note

This function used to use the tag by default. Older browsers
might not support the new HTML5 mark tag, so it is recommended that you
insert the following CSS code into your stylesheet if you need to support
such browsers:

mark {
 background: #ff0;
 color: #000;
};

	
word_wrap($str[, $charlim = 76])

	

	Parameters:	
	$str (string) – Input string

	$charlim (int) – Character limit

	Returns:	Word-wrapped string

	Return type:	string

Wraps text at the specified character count while maintaining
complete words.

Example:

$string = "Here is a simple string of text that will help us demonstrate this function.";
echo word_wrap($string, 25);

// Would produce:
// Here is a simple string
// of text that will help us
// demonstrate this
// function.

	
ellipsize($str, $max_length[, $position = 1[, $ellipsis = '…']])

	

	Parameters:	
	$str (string) – Input string

	$max_length (int) – String length limit

	$position (mixed) – Position to split at (int or float)

	$ellipsis (string) – What to use as the ellipsis character

	Returns:	Ellipsized string

	Return type:	string

This function will strip tags from a string, split it at a defined
maximum length, and insert an ellipsis.

The first parameter is the string to ellipsize, the second is the number
of characters in the final string. The third parameter is where in the
string the ellipsis should appear from 0 - 1, left to right. For
example. a value of 1 will place the ellipsis at the right of the
string, .5 in the middle, and 0 at the left.

An optional forth parameter is the kind of ellipsis. By default,
… will be inserted.

Example:

$str = 'this_string_is_entirely_too_long_and_might_break_my_design.jpg';
echo ellipsize($str, 32, .5);

Produces:

this_string_is_e…ak_my_design.jpg

Typography Helper

The Typography Helper file contains functions that help your format text
in semantically relevant ways.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('typography');

Available Functions

The following functions are available:

	
auto_typography($str[, $reduce_linebreaks = FALSE])

	

	Parameters:	
	$str (string) – Input string

	$reduce_linebreaks (bool) – Whether to reduce multiple instances of double newlines to two

	Returns:	HTML-formatted typography-safe string

	Return type:	string

Formats text so that it is semantically and typographically correct
HTML.

This function is an alias for CI_Typography::auto_typography().
For more info, please see the Typography Library documentation.

Usage example:

$string = auto_typography($string);

Note

Typographic formatting can be processor intensive, particularly if
you have a lot of content being formatted. If you choose to use this
function you may want to consider caching your
pages.

	
nl2br_except_pre($str)

	

	Parameters:	
	$str (string) – Input string

	Returns:	String with HTML-formatted line breaks

	Return type:	string

Converts newlines to
 tags unless they appear within <pre> tags.
This function is identical to the native PHP nl2br() function,
except that it ignores <pre> tags.

Usage example:

$string = nl2br_except_pre($string);

	
entity_decode($str, $charset = NULL)

	

	Parameters:	
	$str (string) – Input string

	$charset (string) – Character set

	Returns:	String with decoded HTML entities

	Return type:	string

This function is an alias for CI_Security::entity_decode().
Fore more info, please see the Security Library documentation.

URL Helper

The URL Helper file contains functions that assist in working with URLs.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code:

$this->load->helper('url');

Available Functions

The following functions are available:

	
site_url([$uri = ''[, $protocol = NULL]])

	

	Parameters:	
	$uri (string) – URI string

	$protocol (string) – Protocol, e.g. ‘http’ or ‘https’

	Returns:	Site URL

	Return type:	string

Returns your site URL, as specified in your config file. The index.php
file (or whatever you have set as your site index_page in your config
file) will be added to the URL, as will any URI segments you pass to the
function, plus the url_suffix as set in your config file.

You are encouraged to use this function any time you need to generate a
local URL so that your pages become more portable in the event your URL
changes.

Segments can be optionally passed to the function as a string or an
array. Here is a string example:

echo site_url('news/local/123');

The above example would return something like:
http://example.com/index.php/news/local/123

Here is an example of segments passed as an array:

$segments = array('news', 'local', '123');
echo site_url($segments);

This function is an alias for CI_Config::site_url(). For more info,
please see the Config Library documentation.

	
base_url($uri = '', $protocol = NULL)

	

	Parameters:	
	$uri (string) – URI string

	$protocol (string) – Protocol, e.g. ‘http’ or ‘https’

	Returns:	Base URL

	Return type:	string

Returns your site base URL, as specified in your config file. Example:

echo base_url();

This function returns the same thing as site_url(), without
the index_page or url_suffix being appended.

Also like site_url(), you can supply segments as a string or
an array. Here is a string example:

echo base_url("blog/post/123");

The above example would return something like:
http://example.com/blog/post/123

This is useful because unlike site_url(), you can supply a
string to a file, such as an image or stylesheet. For example:

echo base_url("images/icons/edit.png");

This would give you something like:
http://example.com/images/icons/edit.png

This function is an alias for CI_Config::base_url(). For more info,
please see the Config Library documentation.

	
current_url()

	

	Returns:	The current URL

	Return type:	string

Returns the full URL (including segments) of the page being currently
viewed.

Note

Calling this function is the same as doing this:
|
| site_url(uri_string());

	
uri_string()

	

	Returns:	An URI string

	Return type:	string

Returns the URI segments of any page that contains this function.
For example, if your URL was this:

http://some-site.com/blog/comments/123

The function would return:

blog/comments/123

This function is an alias for CI_Config::uri_string(). For more info,
please see the Config Library documentation.

	
index_page()

	

	Returns:	‘index_page’ value

	Return type:	mixed

Returns your site index_page, as specified in your config file.
Example:

echo index_page();

	
anchor($uri = '', $title = '', $attributes = '')

	

	Parameters:	
	$uri (string) – URI string

	$title (string) – Anchor title

	$attributes (mixed) – HTML attributes

	Returns:	HTML hyperlink (anchor tag)

	Return type:	string

Creates a standard HTML anchor link based on your local site URL.

The first parameter can contain any segments you wish appended to the
URL. As with the site_url() function above, segments can
be a string or an array.

Note

If you are building links that are internal to your application
do not include the base URL (http://…). This will be added
automatically from the information specified in your config file.
Include only the URI segments you wish appended to the URL.

The second segment is the text you would like the link to say. If you
leave it blank, the URL will be used.

The third parameter can contain a list of attributes you would like
added to the link. The attributes can be a simple string or an
associative array.

Here are some examples:

echo anchor('news/local/123', 'My News', 'title="News title"');
// Prints: My News

echo anchor('news/local/123', 'My News', array('title' => 'The best news!'));
// Prints: My News

echo anchor('', 'Click here');
// Prints: Click Here

	
anchor_popup($uri = '', $title = '', $attributes = FALSE)

	

	Parameters:	
	$uri (string) – URI string

	$title (string) – Anchor title

	$attributes (mixed) – HTML attributes

	Returns:	Pop-up hyperlink

	Return type:	string

Nearly identical to the anchor() function except that it
opens the URL in a new window. You can specify JavaScript window
attributes in the third parameter to control how the window is opened.
If the third parameter is not set it will simply open a new window with
your own browser settings.

Here is an example with attributes:

$atts = array(
 'width' => 800,
 'height' => 600,
 'scrollbars' => 'yes',
 'status' => 'yes',
 'resizable' => 'yes',
 'screenx' => 0,
 'screeny' => 0,
 'window_name' => '_blank'
);

echo anchor_popup('news/local/123', 'Click Me!', $atts);

Note

The above attributes are the function defaults so you only need to
set the ones that are different from what you need. If you want the
function to use all of its defaults simply pass an empty array in the
third parameter:
|
| echo anchor_popup(‘news/local/123’, ‘Click Me!’, array());

Note

The window_name is not really an attribute, but an argument to
the JavaScript window.open() <http://www.w3schools.com/jsref/met_win_open.asp>
method, which accepts either a window name or a window target.

Note

Any other attribute than the listed above will be parsed as an
HTML attribute to the anchor tag.

	
mailto($email, $title = '', $attributes = '')

	

	Parameters:	
	$email (string) – E-mail address

	$title (string) – Anchor title

	$attributes (mixed) – HTML attributes

	Returns:	A “mail to” hyperlink

	Return type:	string

Creates a standard HTML e-mail link. Usage example:

echo mailto('me@my-site.com', 'Click Here to Contact Me');

As with the anchor() tab above, you can set attributes using the
third parameter:

$attributes = array('title' => 'Mail me');
echo mailto('me@my-site.com', 'Contact Me', $attributes);

	
safe_mailto($email, $title = '', $attributes = '')

	

	Parameters:	
	$email (string) – E-mail address

	$title (string) – Anchor title

	$attributes (mixed) – HTML attributes

	Returns:	A spam-safe “mail to” hyperlink

	Return type:	string

Identical to the mailto() function except it writes an obfuscated
version of the mailto tag using ordinal numbers written with JavaScript to
help prevent the e-mail address from being harvested by spam bots.

	
auto_link($str, $type = 'both', $popup = FALSE)

	

	Parameters:	
	$str (string) – Input string

	$type (string) – Link type (‘email’, ‘url’ or ‘both’)

	$popup (bool) – Whether to create popup links

	Returns:	Linkified string

	Return type:	string

Automatically turns URLs and e-mail addresses contained in a string into
links. Example:

$string = auto_link($string);

The second parameter determines whether URLs and e-mails are converted or
just one or the other. Default behavior is both if the parameter is not
specified. E-mail links are encoded as safe_mailto() as shown
above.

Converts only URLs:

$string = auto_link($string, 'url');

Converts only e-mail addresses:

$string = auto_link($string, 'email');

The third parameter determines whether links are shown in a new window.
The value can be TRUE or FALSE (boolean):

$string = auto_link($string, 'both', TRUE);

	
url_title($str, $separator = '-', $lowercase = FALSE)

	

	Parameters:	
	$str (string) – Input string

	$separator (string) – Word separator

	$lowercase (bool) – Whether to transform the output string to lower-case

	Returns:	URL-formatted string

	Return type:	string

Takes a string as input and creates a human-friendly URL string. This is
useful if, for example, you have a blog in which you’d like to use the
title of your entries in the URL. Example:

$title = "What's wrong with CSS?";
$url_title = url_title($title);
// Produces: Whats-wrong-with-CSS

The second parameter determines the word delimiter. By default dashes
are used. Preferred options are: - (dash) or _ (underscore)

Example:

$title = "What's wrong with CSS?";
$url_title = url_title($title, 'underscore');
// Produces: Whats_wrong_with_CSS

Note

Old usage of ‘dash’ and ‘underscore’ as the second parameter
is DEPRECATED.

The third parameter determines whether or not lowercase characters are
forced. By default they are not. Options are boolean TRUE/FALSE.

Example:

$title = "What's wrong with CSS?";
$url_title = url_title($title, 'underscore', TRUE);
// Produces: whats_wrong_with_css

	
prep_url($str = '')

	

	Parameters:	
	$str (string) – URL string

	Returns:	Protocol-prefixed URL string

	Return type:	string

This function will add http:// in the event that a protocol prefix
is missing from a URL.

Pass the URL string to the function like this:

$url = prep_url('example.com');

	
redirect($uri = '', $method = 'auto', $code = NULL)

	

	Parameters:	
	$uri (string) – URI string

	$method (string) – Redirect method (‘auto’, ‘location’ or ‘refresh’)

	$code (string) – HTTP Response code (usually 302 or 303)

	Return type:	void

Does a “header redirect” to the URI specified. If you specify the full
site URL that link will be built, but for local links simply providing
the URI segments to the controller you want to direct to will create the
link. The function will build the URL based on your config file values.

The optional second parameter allows you to force a particular redirection
method. The available methods are auto, location and refresh,
with location being faster but less reliable on IIS servers.
The default is auto, which will attempt to intelligently choose the
method based on the server environment.

The optional third parameter allows you to send a specific HTTP Response
Code - this could be used for example to create 301 redirects for search
engine purposes. The default Response Code is 302. The third parameter is
only available with location redirects, and not refresh. Examples:

if ($logged_in == FALSE)
{
 redirect('/login/form/');
}

// with 301 redirect
redirect('/article/13', 'location', 301);

Note

In order for this function to work it must be used before anything
is outputted to the browser since it utilizes server headers.

Note

For very fine grained control over headers, you should use the
Output Library set_header() method.

Note

To IIS users: if you hide the Server HTTP header, the auto
method won’t detect IIS, in that case it is advised you explicitly
use the refresh method.

Note

When the location method is used, an HTTP status code of 303
will automatically be selected when the page is currently accessed
via POST and HTTP/1.1 is used.

Important

This function will terminate script execution.

XML Helper

The XML Helper file contains functions that assist in working with XML
data.

	Loading this Helper

	Available Functions

Loading this Helper

This helper is loaded using the following code

$this->load->helper('xml');

Available Functions

The following functions are available:

	
xml_convert($str[, $protect_all = FALSE])

	

	Parameters:	
	$str (string) – the text string to convert

	$protect_all (bool) – Whether to protect all content that looks like a potential entity instead of just numbered entities, e.g. &foo;

	Returns:	XML-converted string

	Return type:	string

Takes a string as input and converts the following reserved XML
characters to entities:

	Ampersands: &

	Less than and greater than characters: < >

	Single and double quotes: ‘ “

	Dashes: -

This function ignores ampersands if they are part of existing numbered
character entities, e.g. {. Example:

$string = '<p>Here is a paragraph & an entity ({).</p>';
$string = xml_convert($string);
echo $string;

outputs:

<p>Here is a paragraph & an entity ({).</p>

Tutorial

This tutorial is intended to introduce you to the CodeIgniter framework
and the basic principles of MVC architecture. It will show you how a
basic CodeIgniter application is constructed in step-by-step fashion.

In this tutorial, you will be creating a basic news application. You
will begin by writing the code that can load static pages. Next, you
will create a news section that reads news items from a database.
Finally, you’ll add a form to create news items in the database.

This tutorial will primarily focus on:

	Model-View-Controller basics

	Routing basics

	Form validation

	Performing basic database queries using “Query Builder”

The entire tutorial is split up over several pages, each explaining a
small part of the functionality of the CodeIgniter framework. You’ll go
through the following pages:

	Introduction, this page, which gives you an overview of what to
expect.

	Static pages, which will teach you the basics
of controllers, views and routing.

	News section, where you’ll start using models
and will be doing some basic database operations.

	Create news items, which will introduce
more advanced database operations and form validation.

	Conclusion, which will give you some pointers on
further reading and other resources.

Enjoy your exploration of the CodeIgniter framework.

Static pages

Note: This tutorial assumes you’ve downloaded CodeIgniter and
installed the framework in your
development environment.

The first thing you’re going to do is set up a controller to handle
static pages. A controller is simply a class that helps delegate work.
It is the glue of your web application.

For example, when a call is made to:

http://example.com/news/latest/10

We might imagine that there is a controller named “news”. The method
being called on news would be “latest”. The news method’s job could be to
grab 10 news items, and render them on the page. Very often in MVC,
you’ll see URL patterns that match:

http://example.com/[controller-class]/[controller-method]/[arguments]

As URL schemes become more complex, this may change. But for now, this
is all we will need to know.

Create a file at application/controllers/Pages.php with the following
code.

<?php
class Pages extends CI_Controller {

 public function view($page = 'home')
 {
 }
}

You have created a class named Pages, with a view method that accepts
one argument named $page. The Pages class is extending the
CI_Controller class. This means that the new pages class can access the
methods and variables defined in the CI_Controller class
(system/core/Controller.php).

The controller is what will become the center of every request to
your web application. In very technical CodeIgniter discussions, it may
be referred to as the super object. Like any php class, you refer to
it within your controllers as $this. Referring to $this is how
you will load libraries, views, and generally command the framework.

Now you’ve created your first method, it’s time to make some basic page
templates. We will be creating two “views” (page templates) that act as
our page footer and header.

Create the header at application/views/templates/header.php and add
the following code:

<html>
 <head>
 <title>CodeIgniter Tutorial</title>
 </head>
 <body>

 <h1><?php echo $title; ?></h1>

The header contains the basic HTML code that you’ll want to display
before loading the main view, together with a heading. It will also
output the $title variable, which we’ll define later in the controller.
Now, create a footer at application/views/templates/footer.php that
includes the following code:

 © 2015
 </body>
</html>

Adding logic to the controller

Earlier you set up a controller with a view() method. The method
accepts one parameter, which is the name of the page to be loaded. The
static page templates will be located in the application/views/pages/
directory.

In that directory, create two files named home.php and about.php.
Within those files, type some text − anything you’d like − and save them.
If you like to be particularly un-original, try “Hello World!”.

In order to load those pages, you’ll have to check whether the requested
page actually exists:

public function view($page = 'home')
{
 if (! file_exists(APPPATH.'views/pages/'.$page.'.php'))
 {
 // Whoops, we don't have a page for that!
 show_404();
 }

 $data['title'] = ucfirst($page); // Capitalize the first letter

 $this->load->view('templates/header', $data);
 $this->load->view('pages/'.$page, $data);
 $this->load->view('templates/footer', $data);
}

Now, when the page does exist, it is loaded, including the header and
footer, and displayed to the user. If the page doesn’t exist, a “404
Page not found” error is shown.

The first line in this method checks whether the page actually exists.
PHP’s native file_exists() function is used to check whether the file
is where it’s expected to be. show_404() is a built-in CodeIgniter
function that renders the default error page.

In the header template, the $title variable was used to customize the
page title. The value of title is defined in this method, but instead of
assigning the value to a variable, it is assigned to the title element
in the $data array.

The last thing that has to be done is loading the views in the order
they should be displayed. The second parameter in the view() method is
used to pass values to the view. Each value in the $data array is
assigned to a variable with the name of its key. So the value of
$data['title'] in the controller is equivalent to $title in the
view.

Routing

The controller is now functioning! Point your browser to
[your-site-url]index.php/pages/view to see your page. When you visit
index.php/pages/view/about you’ll see the about page, again including
the header and footer.

Using custom routing rules, you have the power to map any URI to any
controller and method, and break free from the normal convention:
http://example.com/[controller-class]/[controller-method]/[arguments]

Let’s do that. Open the routing file located at
application/config/routes.php and add the following two lines.
Remove all other code that sets any element in the $route array.

$route['default_controller'] = 'pages/view';
$route['(:any)'] = 'pages/view/$1';

CodeIgniter reads its routing rules from top to bottom and routes the
request to the first matching rule. Each rule is a regular expression
(left-side) mapped to a controller and method name separated by slashes
(right-side). When a request comes in, CodeIgniter looks for the first
match, and calls the appropriate controller and method, possibly with
arguments.

More information about routing can be found in the URI Routing
documentation.

Here, the second rule in the $route array matches any request
using the wildcard string (:any). and passes the parameter to the
view() method of the Pages class.

Now visit index.php/about. Did it get routed correctly to the view()
method in the pages controller? Awesome!

News section

In the last section, we went over some basic concepts of the framework
by writing a class that includes static pages. We cleaned up the URI by
adding custom routing rules. Now it’s time to introduce dynamic content
and start using a database.

Setting up your model

Instead of writing database operations right in the controller, queries
should be placed in a model, so they can easily be reused later. Models
are the place where you retrieve, insert, and update information in your
database or other data stores. They represent your data.

Open up the application/models/ directory and create a new file called
News_model.php and add the following code. Make sure you’ve configured
your database properly as described here.

<?php
class News_model extends CI_Model {

 public function __construct()
 {
 $this->load->database();
 }
}

This code looks similar to the controller code that was used earlier. It
creates a new model by extending CI_Model and loads the database
library. This will make the database class available through the
$this->db object.

Before querying the database, a database schema has to be created.
Connect to your database and run the SQL command below (MySQL).
Also add some seed records.

CREATE TABLE news (
 id int(11) NOT NULL AUTO_INCREMENT,
 title varchar(128) NOT NULL,
 slug varchar(128) NOT NULL,
 text text NOT NULL,
 PRIMARY KEY (id),
 KEY slug (slug)
);

Now that the database and a model have been set up, you’ll need a method
to get all of our posts from our database. To do this, the database
abstraction layer that is included with CodeIgniter —
Query Builder — is used. This makes it
possible to write your ‘queries’ once and make them work on all
supported database systems. Add the
following code to your model.

public function get_news($slug = FALSE)
{
 if ($slug === FALSE)
 {
 $query = $this->db->get('news');
 return $query->result_array();
 }

 $query = $this->db->get_where('news', array('slug' => $slug));
 return $query->row_array();
}

With this code you can perform two different queries. You can get all
news records, or get a news item by its slug. You might have
noticed that the $slug variable wasn’t sanitized before running the
query; Query Builder does this for you.

Display the news

Now that the queries are written, the model should be tied to the views
that are going to display the news items to the user. This could be done
in our Pages controller created earlier, but for the sake of clarity,
a new News controller is defined. Create the new controller at
application/controllers/News.php.

<?php
class News extends CI_Controller {

 public function __construct()
 {
 parent::__construct();
 $this->load->model('news_model');
 $this->load->helper('url_helper');
 }

 public function index()
 {
 $data['news'] = $this->news_model->get_news();
 }

 public function view($slug = NULL)
 {
 $data['news_item'] = $this->news_model->get_news($slug);
 }
}

Looking at the code, you may see some similarity with the files we
created earlier. First, the __construct() method: it calls the
constructor of its parent class (CI_Controller) and loads the model,
so it can be used in all other methods in this controller.
It also loads a collection of URL Helper
functions, because we’ll use one of them in a view later.

Next, there are two methods to view all news items and one for a specific
news item. You can see that the $slug variable is passed to the model’s
method in the second method. The model is using this slug to identify the
news item to be returned.

Now the data is retrieved by the controller through our model, but
nothing is displayed yet. The next thing to do is passing this data to
the views.

public function index()
{
 $data['news'] = $this->news_model->get_news();
 $data['title'] = 'News archive';

 $this->load->view('templates/header', $data);
 $this->load->view('news/index', $data);
 $this->load->view('templates/footer');
}

The code above gets all news records from the model and assigns it to a
variable. The value for the title is also assigned to the $data['title']
element and all data is passed to the views. You now need to create a
view to render the news items. Create application/views/news/index.php
and add the next piece of code.

<h2><?php echo $title; ?></h2>

<?php foreach ($news as $news_item): ?>

 <h3><?php echo $news_item['title']; ?></h3>
 <div class="main">
 <?php echo $news_item['text']; ?>
 </div>
 <p><a href="<?php echo site_url('news/'.$news_item['slug']); ?>">View article</p>

<?php endforeach; ?>

Here, each news item is looped and displayed to the user. You can see we
wrote our template in PHP mixed with HTML. If you prefer to use a template
language, you can use CodeIgniter’s Template
Parser class or a third party parser.

The news overview page is now done, but a page to display individual
news items is still absent. The model created earlier is made in such
way that it can easily be used for this functionality. You only need to
add some code to the controller and create a new view. Go back to the
News controller and update view() with the following:

public function view($slug = NULL)
{
 $data['news_item'] = $this->news_model->get_news($slug);

 if (empty($data['news_item']))
 {
 show_404();
 }

 $data['title'] = $data['news_item']['title'];

 $this->load->view('templates/header', $data);
 $this->load->view('news/view', $data);
 $this->load->view('templates/footer');
}

Instead of calling the get_news() method without a parameter, the
$slug variable is passed, so it will return the specific news item.
The only things left to do is create the corresponding view at
application/views/news/view.php. Put the following code in this file.

<?php
echo '<h2>'.$news_item['title'].'</h2>';
echo $news_item['text'];

Routing

Because of the wildcard routing rule created earlier, you need an extra
route to view the controller that you just made. Modify your routing file
(application/config/routes.php) so it looks as follows.
This makes sure the requests reaches the News controller instead of
going directly to the Pages controller. The first line routes URI’s
with a slug to the view() method in the News controller.

$route['news/(:any)'] = 'news/view/$1';
$route['news'] = 'news';
$route['(:any)'] = 'pages/view/$1';
$route['default_controller'] = 'pages/view';

Point your browser to your document root, followed by index.php/news and
watch your news page.

Create news items

You now know how you can read data from a database using CodeIgniter, but
you haven’t written any information to the database yet. In this section
you’ll expand your news controller and model created earlier to include
this functionality.

Create a form

To input data into the database you need to create a form where you can
input the information to be stored. This means you’ll be needing a form
with two fields, one for the title and one for the text. You’ll derive
the slug from our title in the model. Create the new view at
application/views/news/create.php.

<h2><?php echo $title; ?></h2>

<?php echo validation_errors(); ?>

<?php echo form_open('news/create'); ?>

 <label for="title">Title</label>
 <input type="text" name="title" />

 <label for="text">Text</label>
 <textarea name="text"></textarea>

 <input type="submit" name="submit" value="Create news item" />

</form>

There are only two things here that probably look unfamiliar to you: the
form_open() function and the validation_errors() function.

The first function is provided by the form
helper and renders the form element and
adds extra functionality, like adding a hidden CSRF prevention
field. The latter is used to report
errors related to form validation.

Go back to your news controller. You’re going to do two things here,
check whether the form was submitted and whether the submitted data
passed the validation rules. You’ll use the form
validation library to do this.

public function create()
{
 $this->load->helper('form');
 $this->load->library('form_validation');

 $data['title'] = 'Create a news item';

 $this->form_validation->set_rules('title', 'Title', 'required');
 $this->form_validation->set_rules('text', 'Text', 'required');

 if ($this->form_validation->run() === FALSE)
 {
 $this->load->view('templates/header', $data);
 $this->load->view('news/create');
 $this->load->view('templates/footer');

 }
 else
 {
 $this->news_model->set_news();
 $this->load->view('news/success');
 }
}

The code above adds a lot of functionality. The first few lines load the
form helper and the form validation library. After that, rules for the
form validation are set. The set_rules() method takes three arguments;
the name of the input field, the name to be used in error messages, and
the rule. In this case the title and text fields are required.

CodeIgniter has a powerful form validation library as demonstrated
above. You can read more about this library
here.

Continuing down, you can see a condition that checks whether the form
validation ran successfully. If it did not, the form is displayed, if it
was submitted and passed all the rules, the model is called. After
this, a view is loaded to display a success message. Create a view at
application/views/news/success.php and write a success message.

Model

The only thing that remains is writing a method that writes the data to
the database. You’ll use the Query Builder class to insert the
information and use the input library to get the posted data. Open up
the model created earlier and add the following:

public function set_news()
{
 $this->load->helper('url');

 $slug = url_title($this->input->post('title'), 'dash', TRUE);

 $data = array(
 'title' => $this->input->post('title'),
 'slug' => $slug,
 'text' => $this->input->post('text')
);

 return $this->db->insert('news', $data);
}

This new method takes care of inserting the news item into the database.
The third line contains a new function, url_title(). This function -
provided by the URL helper - strips down
the string you pass it, replacing all spaces by dashes (-) and makes
sure everything is in lowercase characters. This leaves you with a nice
slug, perfect for creating URIs.

Let’s continue with preparing the record that is going to be inserted
later, inside the $data array. Each element corresponds with a column in
the database table created earlier. You might notice a new method here,
namely the post() method from the input
library. This method makes sure the data is
sanitized, protecting you from nasty attacks from others. The input
library is loaded by default. At last, you insert our $data array into
our database.

Routing

Before you can start adding news items into your CodeIgniter application
you have to add an extra rule to config/routes.php file. Make sure your
file contains the following. This makes sure CodeIgniter sees ‘create’
as a method instead of a news item’s slug.

$route['news/create'] = 'news/create';
$route['news/(:any)'] = 'news/view/$1';
$route['news'] = 'news';
$route['(:any)'] = 'pages/view/$1';
$route['default_controller'] = 'pages/view';

Now point your browser to your local development environment where you
installed CodeIgniter and add index.php/news/create to the URL.
Congratulations, you just created your first CodeIgniter application!
Add some news and check out the different pages you made.

Conclusion

This tutorial did not cover all of the things you might expect of a
full-fledged content management system, but it introduced you to the
more important topics of routing, writing controllers, and models. We
hope this tutorial gave you an insight into some of CodeIgniter’s basic
design patterns, which you can expand upon.

Now that you’ve completed this tutorial, we recommend you check out the
rest of the documentation. CodeIgniter is often praised because of its
comprehensive documentation. Use this to your advantage and read the
“Introduction” and “General Topics” sections thoroughly. You should read
the class and helper references when needed.

Every intermediate PHP programmer should be able to get the hang of
CodeIgniter within a few days.

If you still have questions about the framework or your own CodeIgniter
code, you can:

	Check out our forums [http://forum.codeigniter.com/]

	Visit our IRC chatroom [https://github.com/bcit-ci/CodeIgniter/wiki/IRC]

	Explore the Wiki [https://github.com/bcit-ci/CodeIgniter/wiki/]

Credits

CodeIgniter was originally developed by Rick Ellis [https://ellislab.com/]
(CEO of EllisLab, Inc. [https://ellislab.com/]). The framework was written for
performance in the real world, with many of the class libraries, helpers, and
sub-systems borrowed from the code-base of ExpressionEngine [https://ellislab.com/expressionengine].

It was, for years, developed and maintained by EllisLab, the ExpressionEngine
Development Team and a group of community members called the Reactor Team.

In 2014, CodeIgniter was acquired by the British Columbia Institute of Technology [http://www.bcit.ca/] and was then officially announced as a community-maintained
project.

Bleeding edge development is spearheaded by the handpicked contributors
of the Reactor Team.

A hat tip goes to Ruby on Rails for inspiring us to create a PHP framework, and
for bringing frameworks into the general consciousness of the web community.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	__get() (CI_Session method)

 	
 	__set() (CI_Session method)

 	_display() (CI_Output method)

A

 	
 	accept_charset() (CI_User_agent method)

 	accept_lang() (CI_User_agent method)

 	active() (CI_Unit_test method)

 	add_column() (CI_DB_forge method)

 	add_data() (CI_Zip method)

 	add_dir() (CI_Zip method)

 	add_field() (CI_DB_forge method)

 	add_key() (CI_DB_forge method)

 	add_package_path() (CI_Loader method)

 	add_row() (CI_Table method)

 	adjust_date() (CI_Calendar method)

 	affected_rows() (CI_DB_driver method)

 	agent_string() (CI_User_agent method)

 	
 	all_userdata() (CI_Session method)

 	alternator() (global function)

 	anchor() (global function)

 	anchor_popup() (global function)

 	append_output() (CI_Output method)

 	archive() (CI_Zip method)

 	array_column() (global function)

 	ascii_to_entities() (global function)

 	assoc_to_uri() (CI_URI method)

 	attach() (CI_Email method)

 	attachment_cid() (CI_Email method)

 	auto_link() (global function)

 	auto_typography() (CI_Typography method)

 	(global function)

B

 	
 	backup() (CI_DB_utility method)

 	base_url() (CI_Config method)

 	(global function)

 	
 	bcc() (CI_Email method)

 	br() (global function)

 	browser() (CI_User_agent method)

 	byte_format() (global function)

C

 	
 	cache() (CI_Output method)

 	cache_delete() (CI_DB_driver method)

 	cache_delete_all() (CI_DB_driver method)

 	cache_info() (CI_Cache method)

 	cache_off() (CI_DB_driver method)

 	cache_on() (CI_DB_driver method)

 	cache_set_path() (CI_DB_driver method)

 	call_function() (CI_DB_driver method)

 	camelize() (global function)

 	cc() (CI_Email method)

 	changedir() (CI_FTP method)

 	character_limiter() (global function)

 	charsets() (CI_User_agent method)

 	chmod() (CI_FTP method)

 	CI_Benchmark (class)

 	CI_Cache (class)

 	CI_Calendar (class)

 	CI_Cart (class)

 	CI_Config (class)

 	CI_DB_driver (class)

 	CI_DB_forge (class)

 	CI_DB_query_builder (class)

 	CI_DB_result (class)

 	CI_DB_utility (class)

 	CI_Email (class)

 	CI_Encrypt (class)

 	CI_Encryption (class)

 	CI_Form_validation (class)

 	CI_FTP (class)

 	CI_Image_lib (class)

 	CI_Input (class)

 	CI_Lang (class)

 	CI_Loader (class)

 	CI_Migration (class)

 	CI_Output (class)

 	CI_Pagination (class)

 	CI_Parser (class)

 	CI_Security (class)

 	CI_Session (class)

 	
 	CI_Table (class)

 	CI_Trackback (class)

 	CI_Typography (class)

 	CI_Unit_test (class)

 	CI_Upload (class)

 	CI_URI (class)

 	CI_User_agent (class)

 	CI_Xmlrpc (class)

 	CI_Zip (class)

 	clean() (CI_Cache method)

 	clear() (CI_Email method)

 	(CI_Image_lib method)

 	(CI_Table method)

 	clear_data() (CI_Zip method)

 	clear_vars() (CI_Loader method)

 	close() (CI_DB_driver method)

 	(CI_FTP method)

 	compile_binds() (CI_DB_driver method)

 	config() (CI_Loader method)

 	config_item() (global function)

 	connect() (CI_FTP method)

 	contents() (CI_Cart method)

 	convert_accented_characters() (global function)

 	convert_ascii() (CI_Trackback method)

 	convert_xml() (CI_Trackback method)

 	cookie() (CI_Input method)

 	count_all() (CI_DB_driver method)

 	count_all_results() (CI_DB_query_builder method)

 	create_captcha() (global function)

 	create_database() (CI_DB_forge method)

 	create_key() (CI_Encryption method)

 	create_links() (CI_Pagination method)

 	create_table() (CI_DB_forge method)

 	crop() (CI_Image_lib method)

 	csv_from_result() (CI_DB_utility method)

 	current() (CI_Migration method)

 	current_url() (global function)

 	custom_result_object() (CI_DB_result method)

 	custom_row_object() (CI_DB_result method)

D

 	
 	data() (CI_Trackback method)

 	(CI_Upload method)

 	data_seek() (CI_DB_result method)

 	database() (CI_Loader method)

 	database_exists() (CI_DB_utility method)

 	date_range() (global function)

 	days_in_month() (global function)

 	db_connect() (CI_DB_driver method)

 	db_pconnect() (CI_DB_driver method)

 	db_select() (CI_DB_driver method)

 	db_set_charset() (CI_DB_driver method)

 	dbforge() (CI_Loader method)

 	dbprefix() (CI_DB_query_builder method)

 	dbutil() (CI_Loader method)

 	decode() (CI_Encrypt method)

 	decrement() (CI_Cache method)

 	decrypt() (CI_Encryption method)

 	default_template() (CI_Calendar method)

 	delete() (CI_Cache method)

 	(CI_DB_query_builder method)

 	delete_cookie() (global function)

 	
 	delete_dir() (CI_FTP method)

 	delete_file() (CI_FTP method)

 	delete_files() (global function)

 	destroy() (CI_Cart method)

 	directory_map() (global function)

 	display_error() (CI_DB_driver method)

 	(CI_Xmlrpc method)

 	display_errors() (CI_Image_lib method)

 	(CI_Trackback method)

 	(CI_Upload method)

 	display_response() (CI_Xmlrpc method)

 	distinct() (CI_DB_query_builder method)

 	do_hash() (global function)

 	do_upload() (CI_Upload method)

 	doctype() (global function)

 	download() (CI_FTP method)

 	(CI_Zip method)

 	driver() (CI_Loader method)

 	drop_column() (CI_DB_forge method)

 	drop_database() (CI_DB_forge method)

 	drop_table() (CI_DB_forge method)

E

 	
 	elapsed_time() (CI_Benchmark method)

 	(CI_DB_driver method)

 	element() (global function)

 	elements() (global function)

 	ellipsize() (global function)

 	empty_table() (CI_DB_query_builder method)

 	enable_profiler() (CI_Output method)

 	encode() (CI_Encrypt method)

 	encode_from_legacy() (CI_Encrypt method)

 	encode_php_tags() (global function)

 	encrypt() (CI_Encryption method)

 	
 	entity_decode() (CI_Security method)

 	(global function)

 	error() (CI_Form_validation method)

 	error_array() (CI_Form_validation method)

 	error_string() (CI_Form_validation method)

 	(CI_Migration method)

 	escape() (CI_DB_driver method)

 	escape_identifiers() (CI_DB_driver method)

 	escape_like_str() (CI_DB_driver method)

 	escape_str() (CI_DB_driver method)

 	extract_urls() (CI_Trackback method)

F

 	
 	field_data() (CI_DB_driver method)

 	(CI_DB_result method)

 	field_exists() (CI_DB_driver method)

 	file() (CI_Loader method)

 	find_migrations() (CI_Migration method)

 	first_row() (CI_DB_result method)

 	flashdata() (CI_Session method)

 	flush_cache() (CI_DB_query_builder method)

 	force_download() (global function)

 	form_button() (global function)

 	form_checkbox() (global function)

 	form_close() (global function)

 	form_dropdown() (global function)

 	form_error() (global function)

 	form_fieldset() (global function)

 	form_fieldset_close() (global function)

 	form_hidden() (global function)

 	
 	form_input() (global function)

 	form_label() (global function)

 	form_multiselect() (global function)

 	form_open() (global function)

 	form_open_multipart() (global function)

 	form_password() (global function)

 	form_prep() (global function)

 	form_radio() (global function)

 	form_reset() (global function)

 	form_submit() (global function)

 	form_textarea() (global function)

 	form_upload() (global function)

 	format_characters() (CI_Typography method)

 	free_result() (CI_DB_result method)

 	from() (CI_DB_query_builder method)

 	(CI_Email method)

 	function_usable() (global function)

G

 	
 	generate() (CI_Calendar method)

 	(CI_Table method)

 	get() (CI_Cache method)

 	(CI_DB_query_builder method)

 	(CI_Input method)

 	get_clickable_smileys() (global function)

 	get_compiled_delete() (CI_DB_query_builder method)

 	get_compiled_insert() (CI_DB_query_builder method)

 	get_compiled_select() (CI_DB_query_builder method)

 	get_compiled_update() (CI_DB_query_builder method)

 	get_content_type() (CI_Output method)

 	get_cookie() (global function)

 	get_csrf_hash() (CI_Security method)

 	get_csrf_token_name() (CI_Security method)

 	get_day_names() (CI_Calendar method)

 	get_dir_file_info() (global function)

 	get_file_info() (global function)

 	get_filenames() (global function)

 	get_flash_keys() (CI_Session method)

 	get_header() (CI_Output method)

 	get_id() (CI_Trackback method)

 	
 	get_instance() (global function)

 	get_item() (CI_Cart method)

 	get_metadata() (CI_Cache method)

 	get_mime_by_extension() (global function)

 	get_mimes() (global function)

 	get_month_name() (CI_Calendar method)

 	get_output() (CI_Output method)

 	get_package_paths() (CI_Loader method)

 	get_post() (CI_Input method)

 	get_random_bytes() (CI_Security method)

 	get_request_header() (CI_Input method)

 	get_temp_keys() (CI_Session method)

 	get_total_days() (CI_Calendar method)

 	get_var() (CI_Loader method)

 	get_vars() (CI_Loader method)

 	get_where() (CI_DB_query_builder method)

 	get_zip() (CI_Zip method)

 	gmt_to_local() (global function)

 	group_by() (CI_DB_query_builder method)

 	group_end() (CI_DB_query_builder method)

 	group_start() (CI_DB_query_builder method)

H

 	
 	has_options() (CI_Cart method)

 	has_rule() (CI_Form_validation method)

 	has_userdata() (CI_Session method)

 	hash_equals() (global function)

 	hash_pbkdf2() (global function)

 	having() (CI_DB_query_builder method)

 	heading() (global function)

 	
 	helper() (CI_Loader method)

 	hex2bin() (global function)

 	highlight_code() (global function)

 	highlight_phrase() (global function)

 	hkdf() (CI_Encryption method)

 	html_escape() (global function)

 	human_to_unix() (global function)

 	humanize() (global function)

I

 	
 	img() (global function)

 	increment() (CI_Cache method)

 	increment_string() (global function)

 	index_page() (global function)

 	initialize() (CI_Calendar method)

 	(CI_DB_driver method)

 	(CI_Encryption method)

 	(CI_Image_lib method)

 	(CI_Pagination method)

 	(CI_Upload method)

 	(CI_Xmlrpc method)

 	input_stream() (CI_Input method)

 	insert() (CI_Cart method)

 	(CI_DB_query_builder method)

 	insert_batch() (CI_DB_query_builder method)

 	
 	insert_string() (CI_DB_driver method)

 	ip_address() (CI_Input method)

 	is_ajax_request() (CI_Input method)

 	is_browser() (CI_User_agent method)

 	is_cli() (global function)

 	is_cli_request() (CI_Input method)

 	is_https() (global function)

 	is_loaded() (CI_Loader method)

 	is_mobile() (CI_User_agent method)

 	is_php() (global function)

 	is_really_writable() (global function)

 	is_referral() (CI_User_agent method)

 	is_robot() (CI_User_agent method)

 	is_supported() (CI_Cache method)

 	is_write_type() (CI_DB_driver method)

 	item() (CI_Config method)

J

 	
 	join() (CI_DB_query_builder method)

K

 	
 	keep_flashdata() (CI_Session method)

L

 	
 	lang() (global function)

 	language() (CI_Loader method)

 	languages() (CI_User_agent method)

 	last_query() (CI_DB_driver method)

 	last_row() (CI_DB_result method)

 	latest() (CI_Migration method)

 	library() (CI_Loader method)

 	like() (CI_DB_query_builder method)

 	limit() (CI_DB_query_builder method)

 	limit_characters() (CI_Trackback method)

 	
 	line() (CI_Lang method)

 	link_tag() (global function)

 	list_databases() (CI_DB_utility method)

 	list_fields() (CI_DB_driver method)

 	(CI_DB_result method)

 	list_files() (CI_FTP method)

 	list_tables() (CI_DB_driver method)

 	load() (CI_Config method)

 	(CI_Lang method)

 	local_to_gmt() (global function)

 	log_message() (global function)

M

 	
 	mailto() (global function)

 	make_columns() (CI_Table method)

 	mark() (CI_Benchmark method)

 	mark_as_flash() (CI_Session method)

 	mark_as_temp() (CI_Session method)

 	mb_strlen() (global function)

 	mb_strpos() (global function)

 	mb_substr() (global function)

 	mdate() (global function)

 	memory_usage() (CI_Benchmark method)

 	
 	message() (CI_Email method)

 	meta() (global function)

 	method() (CI_Input method)

 	(CI_Xmlrpc method)

 	mirror() (CI_FTP method)

 	mkdir() (CI_FTP method)

 	mobile() (CI_User_agent method)

 	model() (CI_Loader method)

 	modify_column() (CI_DB_forge method)

 	move() (CI_FTP method)

 	mysql_to_unix() (global function)

N

 	
 	nbs() (global function)

 	next_row() (CI_DB_result method)

 	nice_date() (global function)

 	nl2br_except_pre() (CI_Typography method)

 	(global function)

 	
 	not_group_start() (CI_DB_query_builder method)

 	not_like() (CI_DB_query_builder method)

 	now() (global function)

 	num_fields() (CI_DB_result method)

 	num_rows() (CI_DB_result method)

O

 	
 	octal_permissions() (global function)

 	offset() (CI_DB_query_builder method)

 	ol() (global function)

 	optimize_database() (CI_DB_utility method)

 	optimize_table() (CI_DB_utility method)

 	or_group_start() (CI_DB_query_builder method)

 	or_having() (CI_DB_query_builder method)

 	
 	or_like() (CI_DB_query_builder method)

 	or_not_group_start() (CI_DB_query_builder method)

 	or_not_like() (CI_DB_query_builder method)

 	or_where() (CI_DB_query_builder method)

 	or_where_in() (CI_DB_query_builder method)

 	or_where_not_in() (CI_DB_query_builder method)

 	order_by() (CI_DB_query_builder method)

P

 	
 	parse() (CI_Parser method)

 	(CI_User_agent method)

 	parse_smileys() (global function)

 	parse_string() (CI_Parser method)

 	parse_template() (CI_Calendar method)

 	password_get_info() (global function)

 	password_hash() (global function)

 	password_needs_rehash() (global function)

 	password_verify() (global function)

 	platform() (CI_DB_driver method)

 	(CI_User_agent method)

 	
 	plural() (global function)

 	post() (CI_Input method)

 	post_get() (CI_Input method)

 	prep_url() (global function)

 	previous_row() (CI_DB_result method)

 	primary() (CI_DB_driver method)

 	print_debugger() (CI_Email method)

 	process() (CI_Trackback method)

 	product_options() (CI_Cart method)

 	protect_identifiers() (CI_DB_driver method)

Q

 	
 	query() (CI_DB_driver method)

 	
 	quotes_to_entities() (global function)

R

 	
 	random_element() (global function)

 	random_string() (global function)

 	read_dir() (CI_Zip method)

 	read_file() (CI_Zip method)

 	(global function)

 	receive() (CI_Trackback method)

 	reconnect() (CI_DB_driver method)

 	redirect() (global function)

 	reduce_double_slashes() (global function)

 	reduce_multiples() (global function)

 	referrer() (CI_User_agent method)

 	remove() (CI_Cart method)

 	remove_invisible_characters() (global function)

 	remove_package_path() (CI_Loader method)

 	rename() (CI_FTP method)

 	rename_table() (CI_DB_forge method)

 	repair_table() (CI_DB_utility method)

 	repeater() (global function)

 	replace() (CI_DB_query_builder method)

 	reply_to() (CI_Email method)

 	
 	report() (CI_Unit_test method)

 	request() (CI_Xmlrpc method)

 	request_headers() (CI_Input method)

 	reset_query() (CI_DB_query_builder method)

 	reset_validation() (CI_Form_validation method)

 	resize() (CI_Image_lib method)

 	result() (CI_DB_result method)

 	(CI_Unit_test method)

 	result_array() (CI_DB_result method)

 	result_object() (CI_DB_result method)

 	robot() (CI_User_agent method)

 	rotate() (CI_Image_lib method)

 	row() (CI_DB_result method)

 	row_array() (CI_DB_result method)

 	row_object() (CI_DB_result method)

 	rsegment() (CI_URI method)

 	rsegment_array() (CI_URI method)

 	run() (CI_Form_validation method)

 	(CI_Unit_test method)

 	ruri_string() (CI_URI method)

 	ruri_to_assoc() (CI_URI method)

S

 	
 	safe_mailto() (global function)

 	sanitize_filename() (CI_Security method)

 	(global function)

 	save() (CI_Cache method)

 	segment() (CI_URI method)

 	segment_array() (CI_URI method)

 	select() (CI_DB_query_builder method)

 	select_avg() (CI_DB_query_builder method)

 	select_max() (CI_DB_query_builder method)

 	select_min() (CI_DB_query_builder method)

 	select_sum() (CI_DB_query_builder method)

 	send() (CI_Email method)

 	(CI_Trackback method)

 	send_email() (global function)

 	send_error() (CI_Trackback method)

 	send_error_message() (CI_Xmlrpc method)

 	send_request() (CI_Xmlrpc method)

 	send_success() (CI_Trackback method)

 	server() (CI_Input method)

 	(CI_Xmlrpc method)

 	sess_destroy() (CI_Session method)

 	sess_regenerate() (CI_Session method)

 	set() (CI_DB_query_builder method)

 	set_alt_message() (CI_Email method)

 	set_caption() (CI_Table method)

 	set_checkbox() (global function)

 	set_cipher() (CI_Encrypt method)

 	set_content_type() (CI_Output method)

 	set_cookie() (CI_Input method)

 	(global function)

 	set_data() (CI_Form_validation method)

 	set_dbprefix() (CI_DB_query_builder method)

 	set_delimiters() (CI_Parser method)

 	set_empty() (CI_Table method)

 	set_error() (CI_Trackback method)

 	set_error_delimiters() (CI_Form_validation method)

 	set_flashdata() (CI_Session method)

 	set_header() (CI_Email method)

 	(CI_Output method)

 	set_heading() (CI_Table method)

 	set_insert_batch() (CI_DB_query_builder method)

 	
 	set_item() (CI_Config method)

 	set_message() (CI_Form_validation method)

 	set_mode() (CI_Encrypt method)

 	set_output() (CI_Output method)

 	set_profiler_sections() (CI_Output method)

 	set_radio() (global function)

 	set_realpath() (global function)

 	set_row() (CI_DB_result method)

 	set_rules() (CI_Form_validation method)

 	set_select() (global function)

 	set_status_header() (CI_Output method)

 	(global function)

 	set_tempdata() (CI_Session method)

 	set_template() (CI_Table method)

 	(CI_Unit_test method)

 	set_test_items() (CI_Unit_test method)

 	set_update_batch() (CI_DB_query_builder method)

 	set_userdata() (CI_Session method)

 	set_value() (global function)

 	should_do_something() (Some_class method)

 	show_404() (global function)

 	show_error() (global function)

 	simple_query() (CI_DB_driver method)

 	singular() (global function)

 	site_url() (CI_Config method)

 	(global function)

 	slash_item() (CI_Config method)

 	slash_rsegment() (CI_URI method)

 	slash_segment() (CI_URI method)

 	smiley_js() (global function)

 	Some_class (class)

 	some_method() (Some_class method)

 	standard_date() (global function)

 	start_cache() (CI_DB_query_builder method)

 	stop_cache() (CI_DB_query_builder method)

 	strip_image_tags() (global function)

 	strip_quotes() (global function)

 	strip_slashes() (global function)

 	subject() (CI_Email method)

 	symbolic_permissions() (global function)

 	system_url() (CI_Config method)

T

 	
 	table_exists() (CI_DB_driver method)

 	tempdata() (CI_Session method)

 	timeout() (CI_Xmlrpc method)

 	timespan() (global function)

 	timezone_menu() (global function)

 	timezones() (global function)

 	to() (CI_Email method)

 	total() (CI_Cart method)

 	total_items() (CI_Cart method)

 	
 	total_queries() (CI_DB_driver method)

 	total_rsegments() (CI_URI method)

 	total_segments() (CI_URI method)

 	trans_complete() (CI_DB_driver method)

 	trans_off() (CI_DB_driver method)

 	trans_start() (CI_DB_driver method)

 	trans_status() (CI_DB_driver method)

 	trans_strict() (CI_DB_driver method)

 	trim_slashes() (global function)

 	truncate() (CI_DB_query_builder method)

U

 	
 	ul() (global function)

 	unbuffered_row() (CI_DB_result method)

 	underscore() (global function)

 	unix_to_human() (global function)

 	unmark_flash() (CI_Session method)

 	unmark_temp() (CI_Session method)

 	unset_userdata() (CI_Session method)

 	update() (CI_Cart method)

 	(CI_DB_query_builder method)

 	
 	update_batch() (CI_DB_query_builder method)

 	update_string() (CI_DB_driver method)

 	upload() (CI_FTP method)

 	uri_string() (CI_URI method)

 	(global function)

 	uri_to_assoc() (CI_URI method)

 	url_title() (global function)

 	use_strict() (CI_Unit_test method)

 	user_agent() (CI_Input method)

 	userdata() (CI_Session method)

V

 	
 	valid_email() (global function)

 	valid_ip() (CI_Input method)

 	validate_url() (CI_Trackback method)

 	validation_errors() (global function)

 	
 	vars() (CI_Loader method)

 	version() (CI_DB_driver method)

 	(CI_Migration method)

 	(CI_User_agent method)

 	view() (CI_Loader method)

W

 	
 	watermark() (CI_Image_lib method)

 	where() (CI_DB_query_builder method)

 	where_in() (CI_DB_query_builder method)

 	where_not_in() (CI_DB_query_builder method)

 	
 	word_censor() (global function)

 	word_is_countable() (global function)

 	word_limiter() (global function)

 	word_wrap() (global function)

 	write_file() (global function)

X

 	
 	xml_convert() (global function)

 	xml_from_result() (CI_DB_utility method)

 	
 	xss_clean() (CI_Security method)

 	(global function)

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 CodeIgniter User Guide

 		
 Welcome to CodeIgniter

 		
 Installation Instructions

 		
 Downloading CodeIgniter

 		
 Installation Instructions

 		
 Upgrading From a Previous Version

 		
 Upgrading from 3.1.10 to 3.1.11

 		
 Upgrading from 3.1.9 to 3.1.10

 		
 Upgrading from 3.1.8 to 3.1.9

 		
 Upgrading from 3.1.7 to 3.1.8

 		
 Upgrading from 3.1.6 to 3.1.7

 		
 Upgrading from 3.1.5 to 3.1.6

 		
 Upgrading from 3.1.4 to 3.1.5

 		
 Upgrading from 3.1.3 to 3.1.4

 		
 Upgrading from 3.1.2 to 3.1.3

 		
 Upgrading from 3.1.1 to 3.1.2

 		
 Upgrading from 3.1.0 to 3.1.1

 		
 Upgrading from 3.0.6 to 3.1.0

 		
 Upgrading from 3.0.5 to 3.0.6

 		
 Upgrading from 3.0.4 to 3.0.5

 		
 Upgrading from 3.0.3 to 3.0.4

 		
 Upgrading from 3.0.2 to 3.0.3

 		
 Upgrading from 3.0.1 to 3.0.2

 		
 Upgrading from 3.0.0 to 3.0.1

 		
 Upgrading from 2.2.x to 3.0.x

 		
 Upgrading from 2.2.2 to 2.2.3

 		
 Upgrading from 2.2.1 to 2.2.2

 		
 Upgrading from 2.2.0 to 2.2.1

 		
 Upgrading from 2.1.4 to 2.2.x

 		
 Upgrading from 2.1.3 to 2.1.4

 		
 Upgrading from 2.1.2 to 2.1.3

 		
 Upgrading from 2.1.1 to 2.1.2

 		
 Upgrading from 2.1.0 to 2.1.1

 		
 Upgrading from 2.0.3 to 2.1.0

 		
 Upgrading from 2.0.2 to 2.0.3

 		
 Upgrading from 2.0.1 to 2.0.2

 		
 Upgrading from 2.0 to 2.0.1

 		
 Upgrading from 1.7.2 to 2.0

 		
 Upgrading from 1.7.1 to 1.7.2

 		
 Upgrading from 1.7.0 to 1.7.1

 		
 Upgrading from 1.6.3 to 1.7.0

 		
 Upgrading from 1.6.2 to 1.6.3

 		
 Upgrading from 1.6.1 to 1.6.2

 		
 Upgrading from 1.6.0 to 1.6.1

 		
 Upgrading from 1.5.4 to 1.6.0

 		
 Upgrading from 1.5.3 to 1.5.4

 		
 Upgrading from 1.5.2 to 1.5.3

 		
 Upgrading from 1.5.0 or 1.5.1 to 1.5.2

 		
 Upgrading from 1.4.1 to 1.5.0

 		
 Upgrading from 1.4.0 to 1.4.1

 		
 Upgrading from 1.3.3 to 1.4.0

 		
 Upgrading from 1.3.2 to 1.3.3

 		
 Upgrading from 1.3.1 to 1.3.2

 		
 Upgrading from 1.3 to 1.3.1

 		
 Upgrading from 1.2 to 1.3

 		
 Upgrading from 1.1 to 1.2

 		
 Upgrading from Beta 1.0 to Beta 1.1

 		
 Troubleshooting

 		
 CodeIgniter Overview

 		
 Getting Started

 		
 CodeIgniter at a Glance

 		
 Supported Features

 		
 Application Flow Chart

 		
 Model-View-Controller

 		
 Architectural Goals

 		
 Tutorial

 		
 Static pages

 		
 News section

 		
 Create news items

 		
 Conclusion

 		
 Contributing to CodeIgniter

 		
 Writing CodeIgniter Documentation

 		
 Developer’s Certificate of Origin 1.1

 		
 General Topics

 		
 CodeIgniter URLs

 		
 Controllers

 		
 Reserved Names

 		
 Views

 		
 Models

 		
 Helpers

 		
 Using CodeIgniter Libraries

 		
 Creating Libraries

 		
 Using CodeIgniter Drivers

 		
 Creating Drivers

 		
 Creating Core System Classes

 		
 Creating Ancillary Classes

 		
 Hooks - Extending the Framework Core

 		
 Auto-loading Resources

 		
 Common Functions

 		
 Compatibility Functions

 		
 URI Routing

 		
 Error Handling

 		
 Caching

 		
 Profiling Your Application

 		
 Running via the CLI

 		
 Managing your Applications

 		
 Handling Multiple Environments

 		
 Alternate PHP Syntax for View Files

 		
 Security

 		
 PHP Style Guide

 		
 Libraries

 		
 Benchmarking Class

 		
 Caching Driver

 		
 Calendaring Class

 		
 Shopping Cart Class

 		
 Config Class

 		
 Email Class

 		
 Encrypt Class

 		
 Encryption Library

 		
 File Uploading Class

 		
 Form Validation

 		
 FTP Class

 		
 Image Manipulation Class

 		
 Input Class

 		
 Javascript Class

 		
 Language Class

 		
 Loader Class

 		
 Migrations Class

 		
 Output Class

 		
 Pagination Class

 		
 Template Parser Class

 		
 Security Class

 		
 Session Library

 		
 HTML Table Class

 		
 Trackback Class

 		
 Typography Class

 		
 Unit Testing Class

 		
 URI Class

 		
 User Agent Class

 		
 XML-RPC and XML-RPC Server Classes

 		
 Zip Encoding Class

 		
 Database Reference

 		
 Quick Start: Usage Examples

 		
 Database Configuration

 		
 Connecting to a Database

 		
 Running Queries

 		
 Generating Query Results

 		
 Query Helper Functions

 		
 Query Builder Class

 		
 Transactions

 		
 Getting MetaData

 		
 Custom Function Calls

 		
 Query Caching

 		
 Database Manipulation with Database Forge

 		
 Database Utilities Class

 		
 Database Driver Reference

 		
 Helpers

 		
 Array Helper

 		
 CAPTCHA Helper

 		
 Cookie Helper

 		
 Date Helper

 		
 Directory Helper

 		
 Download Helper

 		
 Email Helper

 		
 File Helper

 		
 Form Helper

 		
 HTML Helper

 		
 Inflector Helper

 		
 Language Helper

 		
 Number Helper

 		
 Path Helper

 		
 Security Helper

 		
 Smiley Helper

 		
 String Helper

 		
 Text Helper

 		
 Typography Helper

 		
 URL Helper

 		
 XML Helper

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_images/smile.gif

_images/appflowchart.gif
index.php

-

=1
&
=3

Security

ARl

Libraries

Helpers

